We have that \(W \cap U = \sum_{i=1}^{m} m_i [X_i \cap U] \)

is the divisor of \(f_U := \prod_{i=1}^{m} \alpha_i \), i.e., \(W \cap U = D(f_U) \).

Because the image of \(\alpha_i \) in the local ring of the generic point of \(X_i \) generates the maximal ideal of \(\mathcal{O}_{X_i, \eta_i} \),

because \((\alpha_i) = \mathfrak{p}_i \), \(\mathfrak{p}_i \cap \mathcal{A}_{\mathcal{X}, \eta_i} = \mathfrak{m}_{X, \eta_i} \).

We have a well-defined Cartier divisor represented by \(\{(U, f_U)\} \), because, for two affine open sets \(U, V \)
as above, \(f_U / f_V \) is invertible. \(U \cap V \) is affine because \(X \) is separated, \(f_U \) and \(f_V \) generate the same ideal in the ring of \(U \cap V \).
By construction the maps D and F are inverses to each other and principal divisors go to principal divisors (think about this a little bit at home).

Remark: The morphism D is well-defined without assuming X locally factorial.

The proof above shows that we can think of Cartier divisors as locally principal Weil divisors (i.e., every point has a neighborhood on which the Weil divisor is principal).

What we proved is that when X is locally factorial, all Weil divisors are locally principal.

This is “the same” as saying that $\text{Cl}(\mathcal{O}_{\text{Spec} A}) = 0$ when A is a UFD.
Example: \mathbf{P}^n_k is locally factorial.

$$\Rightarrow \mathcal{O}(\mathbf{P}^n_k) \cong \text{CaCl}(\mathbf{P}^n_k) \cong \text{Pic}(\mathbf{P}^n_k)$$

$$\mathbb{Z}[\mathbb{Z}_0] = \mathbb{Z}[\mathbb{Z}(x_0)] = \mathbb{Z}[\mathcal{O}_{\mathbf{P}^n_k}(1)]$$

Effective divisors:

Def. A Cartier divisor is effective if it can be represented by $\{(f_i, U_i) \mid \text{ s.t. } \forall i \ f_i \in \mathcal{O}(U_i) \subset \mathbb{K}_x(U_i)$.

A Weil divisor $C = \sum_{i=1}^m n_i [X_i]$ is effective if $\forall i, n_i \geq 0$.

The proof of the previous proposition shows that in a noetherian, integral, separated, locally factorial scheme, effective Cartier divisors correspond to effective Weil divisors.
Given an effective Cartier divisor C resp. by $\{ (U_i, f_i) \}$, we define the associated locally principal subsheave $\mathcal{Z}(C)$ to be the subsheave whose sheaf of ideals is generated by f_i on U_i: $\mathcal{I}_{\mathcal{Z}(C) \cap U_i} := \mathcal{O}_{U_i} f_i \subset \mathcal{O}_{U_i}$.

In the proof of the proposition, we had $f = \prod_{i=1}^{n} a_i^{m_i}$ and

$$\mathcal{I}_{\mathcal{Z}(C) \cap U} = \langle f \rangle \subset A.$$

These glue together to define $\mathcal{I}_{\mathcal{Z}(C)} \subset \mathcal{O}_X$ because in any $U_i \cap U_j$, f_i/f_j is invertible \Rightarrow

$$\mathcal{O}_{U_i \cap U_j} \cdot f_i = \mathcal{O}_{U_i \cap U_j} \cdot f_j \subset \mathcal{O}_{U_i \cap U_j}.$$

Recall that we defined $\mathcal{O}_X(\mathcal{C})$ as the subsheaf of \mathcal{K}_X generated in U_i by f_i.
This means $\mathbb{Z}(C) = G \times (-C)$ by def.

when C is effective. So $G \times (-C) \subseteq G \times C \subseteq G \times (C) \subseteq \mathbb{P}^n$

(locally $G_{U_i} \subseteq G_{U_i} \subseteq \mathbb{P}^n_{U_i}$)

Morphisms to projective space: (everything noetherian)

We fix a ring A, $\mathbb{P}^n = \mathbb{P}^n_A$

Theorem: Suppose X is a scheme over A ($X \to \text{Spec} A$)

(1) Given an invertible sheaf \mathcal{L} on X and global sections s_0, \ldots, s_n of \mathcal{L} which generate \mathcal{L}, there exists a unique A-morphism $\varphi : X \to \mathbb{P}^n_A$ s.t. $\mathcal{L} \cong \varphi^* O_{\mathbb{P}^n_A}$

and $\forall i \quad s_i = \varphi^* X_i$.

$\xymatrix{ \mathbb{P}^n_A \ar[r]^\varphi \ar[d] & \text{Spec} A \ar[d] \cr X \ar[r] & X }$
(2) Given a morphism \(\varphi : X \to \mathbb{P}^n \), put
\[L := \varphi^* \mathcal{O}_{\mathbb{P}^n}(1) \] and \(s_i := \varphi^* X_i \quad \forall i = 0, \ldots, n \). Then the sections \(s_i \) generate \(L \) and \(\varphi \) is the morphism from (1) associated to \(L \) and \(s_0, \ldots, s_n \).

Proof: (1) For each \(i \), let
\[V_i := \{ x \in X \mid s_i(x) \notin m_x \mathcal{L}_x \} \]
be the open set of \(X \) where \(s_i \) generates \(\mathcal{L} \) (i.e., \(s_i(x) \) generates \(\mathcal{L}_x \)):
\[\forall x \in V_i : \mathcal{L}_x = \mathcal{G}_{X, x} s_i(x). \quad (m_x \subset \mathcal{G}_{X, x}) \]

\[\Rightarrow \mathcal{L} \mid V_i \cong \mathcal{G}_{V_i} s_i \mid V_i \]

Fix \(i \), \(\forall j : \exists \, t_{ji} \in \mathcal{O}_X (V_i) \) s.t. \(s_j \mid V_i = t_{ji} s_i \mid V_i \).
Define $\varphi_i : V_i \to U_i = \text{Spec} A[\frac{X_0}{X_i}, \ldots, \frac{X_n}{X_i}] \subset \mathbb{P}^n$ by the morphism of global sections (of $A_{-\text{alg}}$)

$$
\varphi_i : A[\frac{X_0}{X_i}, \ldots, \frac{X_n}{X_i}] \to \mathcal{O}_X(V_i)
$$

$$
\frac{X_j}{X_i} \longmapsto t_{ji}
$$