Remark: For any \(\mathcal{O}_X \)-module \(\mathcal{F} \) and collection \(\{ s_i \mid i \in I \} \subset \mathcal{F}(X, \mathcal{F}) \), we can define a morphism of \(\mathcal{O}_X \)-modules: \(\varphi \colon \mathcal{O}_X \otimes I \to \mathcal{F} \)

which on any open \(U \subset X \) sends \(\sum_{i \in I} f_i \in (\mathcal{O}_X)(U) \) to \(\sum_{i \in I} f_i s_i |_U \in \mathcal{F}(U) \).

We have that \(\mathcal{F} \) is generated by \(\{ s_i \mid i \in I \} \) iff \(\varphi \) is surjective.

Another notion we need: Zeros of sections of (quasi-)coherent sheaves.

Let \(\mathcal{F} \) be a (quasi-)coherent sheaf on a noetherian scheme \(X \) and \(s \in \Gamma(X, \mathcal{F}) \). We define the scheme of zeros of \(s \),
denoted $Z(s)$, as follows (this is a closed subscheme of X): s defines a morphism of \mathcal{O}_X-modules

$$s : \mathcal{F}_s^* \to \mathcal{O}_X$$

on any $U \subseteq X$ then $\mathcal{F}_s^*(U) \ni s_U \mapsto l(s_U) \in \mathcal{O}_X(U)$

$$l \in \mathcal{F}_s^*(U) = \text{Hom}_{\mathcal{O}_U}(\mathcal{F}_s|_U, \mathcal{O}_U) \subseteq \mathcal{O}_U(U)$$

The image of s is a coherent \mathcal{O}_X-submodule of \mathcal{O}_X, i.e., a coherent sheaf of ideals in X, the associated closed subscheme is, by definition, $Z(s)$.

Claim 1: The support $\text{Supp } Z(s)$ of $Z(s)$ (i.e., the underlying closed subset of $Z(s)$) is the set of points $x \in X$ s.t. the image of $s_x : \mathcal{F}_s^* \to \mathcal{O}_X, x$ is contained
in the maximal ideal $M_x \subset O_X, x$.

Proof:

\[s: \mathcal{F}_x^* \rightarrow O_X \]

\[\xymatrix{ \mathcal{F}_x^* \ar[r] & O_X \ar[r] & i_x O_{Z(s)} \ar[r] & 0 } \]

0 \rightarrow \(O_{Z(s)} \rightarrow O_X \rightarrow i_x O_{Z(s)} \rightarrow 0 \)

where \(i: Z(s) \rightarrow X \)

\[x \in Z(s) \iff (i_x O_{Z(s)})_x \neq 0 \]

\[\Rightarrow \quad O_{Z(s), x} \not\cong O_{X, x} \]

\[\Rightarrow \quad O_{Z(s), x} \subset M_x \subset O_{X, x} \]

\[\Rightarrow \quad s(\mathcal{F}_x^*) \subset M_x. \]

Claim 2: Suppose \(\mathcal{F}_x \) is locally free of finite rank \(r \).

Then, for \(x \in X, \mathcal{F}_x \) is a free \(O_X, x \)-module of rank \(r \).
\[F_x \cong C \times_1 C \]

\[\Rightarrow \quad F_x^* = \text{Hom}_{C \times_1 C} (F_x, C \times_1 C) \cong \text{Hom}_{C \times_1 C} (C \oplus C, C \times_1 C) \]

The condition \(s_x (F_x^*) \subset M_x \) means \(s (x) \in \mathfrak{m}_x F_x \).

Indeed, if we pass to the quotient by \(M_x \):

\[F_x / M_x F_x \cong C \times_1 C / M_x \cong k (x) \oplus k (x) \]

and \(F_x^*/M_x F_x^* \cong (F_x / M_x F_x)^* \cong (k (x) \oplus k (x))^* \)

\(s_x (F_x^*) \subset M_x \) \(\Rightarrow \) \(s_x \) induces the linear map \(M_x (k (x) \oplus k (x))^* \)

\(\Rightarrow \) \(s_x = 0 \in k (x) \oplus k (x) = F_x / M_x F_x \)

\(\Rightarrow \) \(s (x) \in \mathfrak{m}_x F_x \).
Note: This fails if \(X \) is not locally free:

\[\text{e.g.: } \mathcal{O} = \text{skyline sheaf supported on a proper closed subset of } X. \]

Then \(\mathcal{O}^* = \mathcal{O}_X \) the zero sheaf on \(X \)

Homogeneous ideals of subsets of projective space:

Assume \(S := R \langle X_0, \ldots, X_n \rangle \), \(R \) commutative

\(X := \text{Proj} \ S = \mathbb{P}^n_R \)

We saw that \(\Gamma(X, \mathcal{O}_X(d)) = S_d \quad \forall \ d \in \mathbb{Z} \)

i.e., \(\Gamma_*(\mathcal{O}_X) = S \).

Def: (1) For a subset \(Y \subset X \), define

\[I_{Y,d} := \{ s \in S_d \mid Y \subset \omega Z(s) \} \]
the set of homogeneous polynomials of degree vanishing on \(Y := \{ s \in S^d \mid \forall x \in X, s(x) \in m_x \} \).

(2) For a closed subscheme \(Y \subset X \) with ideal sheaf \(\mathcal{I}_Y \), define
\[
I_{Y,d} := \{ s \in S^d \mid \mathcal{I}_Y^2(s) \subset \mathcal{I}_Y \} = \{ s \in S^d \mid Y \subset Z(s) \text{ as subschemes} \}.
\]

Ex: If \(Y \) is reduced, the two definitions are equal.

Def: The homogeneous ideal of a subset or closed subscheme \(Y \subset X = \mathbb{P}^n_R \) is
\[
I_Y := \bigoplus_{d \in \mathbb{Z}} I_{Y,d} \subset S
\]
The homogeneous coordinate ring of \(Y \) is \(S(Y) := \frac{S}{I(Y)} \).
Remark: Choose \(s \in \mathcal{S}_d \) and suppose \(Y \subset X \) is a closed subscheme. We have \(s \in \mathcal{I}_Y \) if \(I_z(s) \subset \mathcal{I}_Y \).

\(I_z(s) \) is the image of \(s : \mathcal{O}_X(d)^* \to \mathcal{O}_X \)

Recall that \(\mathcal{O}_X(d)^* \cong \mathcal{O}_X(-d) \), so

\(I_z(s) \) is the image of \(s : \mathcal{O}_X(-d) \to \mathcal{O}_X \)

\(I_z(s) \subset \mathcal{I}_Y \) \(\iff \) \(\mathcal{O}_X(-d) \to \mathcal{O}_X \to \mathcal{O}_Y \) factor

Twist by \(\mathcal{O}_X(d) : \mathcal{O}_X(-d) \otimes \mathcal{O}_X(d) \to \mathcal{O}_X(d) \to \mathcal{O}_Y(d) \)
Fact: \[C_X \xrightarrow{S} C_X(d) \] is "multiplication" by \(S \):

\[\forall u \in C_X \quad C_X(u) \xrightarrow{S} C_X(d)(u) \]

\[\exists \phi | s | u \in C_X(d)(u) \]

\(S \) factors through \(I_y(d) \) \(\iff \) \(s \in \Gamma (X, I_y(d)) \)

More generally: \(\forall \) \(C_X \)-module \(\mathcal{F} \),

\[\Gamma (X, \mathcal{F}) = \text{Hom}_{C_X} (C_X, \mathcal{F}) \]

\[s \mapsto \left(f \mapsto \sum s | u \text{ in any } u \right) \]

\[\varphi (1) \leftarrow \varphi \]

\(\Rightarrow \) \(s \in \Gamma (X, I_y(d)) \) \(\iff \) \(s : C_X \rightarrow I_y(d) \)

Conclusion: \(s \in I_{Y, d} \) \(\iff \) \(s \in \Gamma (X, I_y(d)) \).
\[I_{y,d} = \Gamma(X, I_y(d)) \]

Note that \(I_y \subset O_X \Rightarrow I_y(d) \subset O_X(d) \]
\[\Rightarrow \Gamma(I_y(d)) \subset \Gamma(O_X(d)) \subset I_{y,d} \]

\[\Rightarrow I_y = \bigoplus_{d \in \mathbb{Z}} I_{y,d} = \bigoplus_{d \in \mathbb{Z}} \Gamma(I_y(d)) \]

\[=: \Gamma_{\mathbb{Z}}(I_y) \]

Recall: If \(S \) is finitely generated by \(S_1 \) as an \(S_0 \)-alg. and \(T \) is quasi-coherent, then \(T \times (\tilde{S}_1) \tilde{\cong} T_0 \)

This is true for \(S = R[X_0, \ldots, X_n] \) and \(T = I_y \), so \(\Gamma_{\mathbb{Z}}(I_y) \tilde{\cong} I_y \), i.e., \(I_y \tilde{\cong} I_y \).
Main Lemma: There is a natural isomorphism

\[g : Y \cong \text{Proj} \cdot S(Y) \]

Proof: The quotient morphism \(q : S \rightarrow S(Y) = S/I(Y) \)

induces a morphism \(f : \text{Proj} \cdot S(Y) \rightarrow \text{Proj} \cdot S \).

(\(f \) is defined everywhere because \(q \) is surjective)

We will show that \(f \) factors through an isomorphism.

\[\text{Proj} \cdot S(Y) \cong Y \hookrightarrow X := \text{Proj} \cdot S \]

We have the exact sequence

\[0 \rightarrow I_Y \rightarrow S \rightarrow S(Y) \rightarrow 0 \quad \text{(by def.)} \]

Lemma: The \(\sim \) functor is exact.
Proof: Suppose given an exact sequence of graded S-modules:

$$0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$$

Then, for $t \in S_d$, we have the exact sequences:

$$0 \rightarrow M',[t-1] \rightarrow M,[t-1] \rightarrow M'',[t-1] \rightarrow 0$$

and

$$0 \rightarrow M',[t-1],_0 \rightarrow M,[t-1],_0 \rightarrow M'',[t-1],_0 \rightarrow 0$$

on the affine scheme $U := Spec S[t^{-1}],_0 \subset X$.

$$\Rightarrow 0 \rightarrow \widetilde{M}',(t),_0 \rightarrow \widetilde{M},(t),_0 \rightarrow \widetilde{M}'',(t),_0 \rightarrow 0$$

on $U,(t)_0$.

$$\Rightarrow 0 \rightarrow \tilde{M}',(t) \rightarrow \tilde{M},(t) \rightarrow \tilde{M}'',(t) \rightarrow 0$$

The open sets $U,(t)$ cover $X \Rightarrow 0 \rightarrow \tilde{M}',\tilde{M} \rightarrow \tilde{M}'', \rightarrow 0$ is exact on X. \Box