Proof of the theorem from the last class about quasi-coherent sheaves:

Choose an open affine set \(U = \text{Spec} \, A \subset X \).

As in the proof of the previous lemma, we can cover \(U \) with basic open sets \(\text{Spec} \, A[\mathfrak{g}_i] \) s.t. \(\forall \, i \in I \) on \(A[\mathfrak{g}_i] \) and \(M_i \):

\[
\text{Spec} \, A[\mathfrak{g}_i] \supseteq M_i
\]

Put \(M := \Gamma(U, \mathcal{F}) \). We show \(\mathcal{F} \cong M \).

Homework (Ex. II.5.3) \(\exists \) morphism of sheaves

\[
\alpha : M \to \mathcal{F}
\]

we show \(\alpha \) is an isomorphism.

We know \(\mathcal{F} \mid_{D(\mathfrak{g}_i)} \cong M_i \) and \(M_i = \Gamma(D(\mathfrak{g}_i), \mathcal{F}) \).
The previous lemma implies \(M_i = M[g_i^-] \).

(Induced by restriction \(M \to M_i \))

\[\Gamma(U, \mathscr{F}) \cong \Gamma(D(g_i), \mathscr{F}) \]

show that it factors through \(M \to M[g_i^-] \).

So we have \(\mathfrak{F} \)\(\xrightarrow{D(g_i)} \)\(\cong \tilde{M}_i \cong M[g_i^-] \cong \tilde{M} \)\(\xrightarrow{D(g_i)} \).

\(\Rightarrow \) \(\alpha \) is an isom. \(\forall i \Rightarrow \alpha \) is an isom. \(\square \)
A few words about sheaves of ideals.

Def: A sheaf of ideals on \(X \) is an \(O_X \)-submodule of \(O_X \).

For any closed subscheme \(Z \) of \(X \), we define the sheaf of ideals \(\mathcal{I}_Z \) associated to \(Z \) of elements of \(O_X \) vanishing on \(Z \). Formally, let \(i: Z \to X \) be the inclusion morphism, we have \(i^\#: O_X \to i_* O_Z \).

\[
\mathcal{I}_Z := \ker (i^\#: O_X \to i_* O_Z).
\]

\[
\Rightarrow \quad O \to \mathcal{I}_Z \to O_X \to i_* O_Z \to 0 \quad \text{is exact.}
\]

\(i_* O_Z \) is a pushforward of a coherent sheaf \(\Rightarrow \) quasi-coherent. \(\mathcal{I}_Z \) is the kernel of a morphism of
quasi-coherent sheaves \(\Rightarrow \mathcal{F}_Z \) is quasi-coherent.

\(X \) noetherian \(\Rightarrow \mathcal{F}_Z \) is coherent.

On any open affine \(U = \text{Spec } \mathcal{A} \subset X \), by the theorem, \(\exists \) an ideal \(I \subset \mathcal{A} \) s.t. \(\mathcal{F}_Z|_U \cong \mathcal{I} \) and \(Z \) is defined by the ideal \(I \). In particular (exercise), we have \(Z \cong \text{Spec } \mathcal{A}/I \).

In particular, if \(X = \text{Spec } \mathcal{A} \) is affine, we have a 1-to-1 correspondence between closed subschemes of \(X \) and ideals \(I \subset \mathcal{A} \).

If \(X \) is not affine, we have a 1-to-1 correspondence between closed subschemes of \(X \) and coherent sheaves of ideals.
Note: \(i_* G_2 \) is quasi-coherent and a quotient of \(O_X \)

\[
\Rightarrow \text{ on open affine set } \quad i_* G_2 \mid_{\text{spec } A} \cong \tilde{M}
\]

\[
G_X \mid_{\text{spec } A} = \text{ spec } A = \tilde{A}
\]

\[
G_X \rightarrow i_* G_2
\]

\[
\Rightarrow \tilde{A} \rightarrow \tilde{M}
\]

\[
\Rightarrow \text{ } M \text{ is finitely generated (see future homework)}
\]

So \(i_* G_2 \) is coherent.

In general, any quotient of a coherent sheaf is coherent.
Some fact about Proj:

Let $S = \bigoplus_{d=0}^{\infty} S_d$ be a graded ring and put

$$S_+ := \bigoplus_{d=1}^{\infty} S_d$$

If S_0 is a field, this is the largest homogeneous ideal.

Recall: $\text{Proj } S = \{ \mathfrak{p} \mid \mathfrak{p} \not\in S_+ \text{ homogeneous} \}$

closed subset $\mathcal{Z}(I) = \{ \mathfrak{p} \in \text{Proj } S \mid \mathfrak{p} \supset I \}$
$I \subset S$ homogeneous ideal.

basic open set, for $f \in S_d$, $d > 0$

$$U_f := \{ \mathfrak{p} \in \text{Proj } S \mid f \not\in \mathfrak{p} \} = \text{Proj } S \setminus \mathcal{Z}(f)$$

$S(f) := S[f^{-1}]$, the ring of degree 0 elements of $S[f^{-1}]$.
We saw \(\mathcal{U}_f = \text{Spec } S(f) = \text{Spec } S[f^{-1}] \).
\[
\mathcal{O}_{\text{Proj}_S}(U_f) = S(f) = S[f^{-1}].
\]
The requirement \(f \not\in S^+ \) ensures that the basic open sets \(U_f \) cover \(\text{Proj}_S \), in fact they form a basis of the topology of \(\text{Proj}_S \).

For any graded \(S \)-module \(M = \bigoplus_{d \in \mathbb{Z}} M_d \), we define the sheaf \(\tilde{M} \) on \(\text{Proj}_S \) via the sheaf
\[
\tilde{M}(U_f) := M[f^{-1}] =: M(f)
\]
\[
\tilde{M}|_{U_f} \cong M[f^{-1}].
\]
(similar to \(U_f \cong \text{Spec } S(f) \)) (unwind the definitions)
$\Rightarrow \tilde{\mathcal{M}}$ is quasi-coherent.

We generalize the sheaves $\mathcal{O}(u)$ to $\text{Proj} S$:

Put $S[n] := \bigoplus S[n]_d$ where $S[n]_d := S_{n+d}$, where \mathbf{deZ} denotes the shift of S by n, for $n \in \mathbb{Z}$.

Define $\mathcal{O}_{\text{Proj} S}(n) := \tilde{S[n]}$.

Ex: When $S = R[X_0, \ldots, X_n]$ for a commutative ring R, this definition agrees with the previous definition of $\mathcal{O}(u)$.

In other words, $\mathcal{O}(u)$ is free on $U_i := U X_i$, and the transition functions are \((\frac{X_j}{X_i})^u\).
Some examples: (Ex III.2.14):

Let \(\varphi : S \to T \) be a hom. of graded rings \((\varphi(S_d) \subseteq T_d)\).

Put \(U := \{ \mathfrak{p} \in \text{Proj} \; T \mid \mathfrak{p} \neq \varphi(S_+) \} \).

Then \(U \) is an open subset of \(\text{Proj} \; T \) and \(\varphi \) defines a natural morphism of schemes \(f : U \to \text{Proj} \; S \).

At the level of sets, \(f(\mathfrak{p}) := \varphi^{-1}(\mathfrak{p}) \).

One checks that \(f \) is a continuous map of top. spaces, in fact \(f^{-1}(U g) = U \varphi(g) \), \(\forall \; g \in S_+ \) homogeneous.

At the level of sheaves, \(\varphi \) induces a graded morphism

\[
S \left[g^{-1} \right] \to T \left[\varphi(g)^{-1} \right]
\]

\[
\Rightarrow \; \; S \left[g^{-1} \right]_0 \to T \left[\varphi(g)^{-1} \right]_0.
\]
If $d > 0$ s.t. φ induces isomorphisms

\[\varphi_n : S_n \cong T_n \quad \forall \ n \geq d \],

then

\[U = \text{Proj} T \quad \text{and} \quad f : \text{Proj} T \cong \text{Proj} S. \]

For this, use the fact that $\forall g \in S_+ \text{ homogeneous}$, and, $\forall n > 0$, $U_g = U_{g^n}$, $S[\varphi^{-1}] \cong S[\varphi^n]^{-1}$

and $S[\varphi^{-1}]_0 = S[\varphi^n]_0$.

Example 1: The d-relative embeddings R a commutating

\[P_n := P_R^n \quad m := \binom{n+d}{d} - 1 \]

counting exercise: $T := R[\gamma_0, \ldots, \gamma_n]$, the number of

degree d monomials in $\gamma_0, \ldots, \gamma_n$ is $\binom{n+d}{d}$.
Put $S := R[X_0, \ldots, X_n]$

Define a morphism of graded R-algebras $\phi: S \to T$ by first choosing an ordering of all the monomials of degree d in X_0, \ldots, X_n and sending X_i to the i-th monomial. Using \textit{ex. II.2.14}, we obtain a morphism

$$f: \text{Proj } T \to \text{Proj } S$$

One can show

$$\mathbb{P}^n \to \mathbb{P}^n$$

closed embedding

\textit{Def:} this is the d-uple embedding.

A little more concretely, in terms of homogeneous
coordinates, I send \((b_0, \ldots, b_n) \in \mathbb{P}^n\) to the point of coordinates \((a_0, \ldots, a_n) \in \mathbb{P}^n\) where \(a_i\) is the \(i\)-th monomial of degree \(d\) in \(b_0, \ldots, b_n\).

First case: \(R = k\) alg. closed field

1. \(n = 1, \; d = 2\)

 \(m = \binom{1+2}{1} - 1 = 2\)

 \(\mathbb{P}^1 \rightarrow \mathbb{P}^2\) image is a conic

 \((b_0, b_1) \mapsto (a_0, a_1, a_2) = (b_0^2, b_0 b_1, b_1^2)\)

 relation: \(a_0 a_2 - a_1^2 = 0\)

 \(
 \Rightarrow \text{image } \subset \mathbb{Z} \left(x_0 x_2 - x_1^2 \right)

 \text{can show } = .\)
(2) Twisted cubic: \(u = 1 \), \(d = 3 \), \(m = \left(\frac{1 + 3}{3} \right) - 1 = 3 \)

\[f: \mathbb{P}^1 \rightarrow \mathbb{P}^3 \]

\((v_0, v_1) \mapsto (a_0, a_1^2, a_2, a_3) = (v_0^3, v_0^2 v_1, v_0 v_1^2, v_1^3)\)

relations: \(a_0 a_3 - a_1 a_2, a_0 a_2 - a_1^2, a_1 a_3 - a_2^2 \)

\[f(\mathbb{P}^1) \subset \mathbb{Z} (X_0 X_3 - X_1 X_2, X_0 X_2 - X_1^2, X_1 X_3 - X_2^2) \]

can show \(= \).