Any \(\eta \in X \) of codim. 1 s.t. \(\nu_\eta (f) < 0 \) is the generic point of one of the \(Y_i \).

\[\{ \eta \in X \mid \eta \text{ of codim. 1, } \nu_\eta (f) < 0 \text{ is finite} \} \]

Replace \(f \) by \(f' \) to see that

\[\{ \eta \in X \mid \eta \text{ of codim. 1, } \nu_\eta (f') > 0 \text{ is finite} \} \]

\(\Rightarrow \) \(\text{Div} (f) \) is well-defined. \(\square \)

Definition: The divisor class group \(Cl (X) \) is the quotient of the group \(\text{Div} (X) \) of Weil divisors on \(X \) by the subgroup generated by principal divisors.

Def: We say two Weil divisors \(D_1, D_2 \in \text{Div} (X) \) are linearly equivalent if their difference is principal, i.e.
There is a function \(f \in K \) s.t. \(D_1 - D_2 = \text{Div}(f) \).

Proof: If \(X = \text{Spec} \ A \) (in practice, \(A \) is a Noetherian integral domain), then \(A \) is a UFD if and only if \(X \) is normal (i.e., \(A \) is integrally closed) and \(\text{Cl}(X) = 0 \).

(Proof is Hartshorne)

Corollary: If \(X = \mathbb{A}^n_k \), then \(\text{Cl}(X) = 0 \)

Divisors in projective space: \(S := k[x_0, \ldots, x_n] = \bigoplus_{d \geq 0} S_d \)

\(X = \text{Proj } S = \mathbb{P}^n_k \). Let \(s \in S_d \), put \(Y := Z(s) \).

Lemma: \(Y \) is a closed subscheme of \(X \) of pure codimension 1 in \(X \) (i.e., every irreducible component of \(Y \) has codim 1).
The irreducible components of (the underlying topo. space of) \(Y \) are the zeros of the irreducible factors of \(s \).

Proof: The ideal sheaf \(\mathcal{I}_Y \) is the image of

\[
s : \mathcal{O}_X(-d) \rightarrow \mathcal{O}_X.
\]

Hence, in each open set \(U_i = \text{Spec} S[X_i^{-1}] \), the ideal sheaf \(\mathcal{I}_{Y \cap U_i} = \mathcal{I}_Y|_{U_i} = \mathcal{O}_{U_i} \frac{s}{X_i^d} \)

and

\[
\mathcal{I}_{Y \cap U_i} = H^0(\mathcal{I}_{Y \cap U_i}) = S[X_i^{-1}]_0 \cdot \frac{s}{X_i^d} \subset S[X_i^{-1}]_0.
\]

(recall \(\mathcal{I}_{Y \cap U_i} = \mathcal{I}_Y|_{U_i} \))
The homogeneous ideal of Y, $I_Y = \bigoplus_{e \geq 0} I_{Y,e}$

$I_{Y,e} = \{ t \in \mathbb{R} \mid Z(t) \subset \partial Y \}$

on U_i, this means $\forall t \in I_{Y,e}$,

$$\frac{t}{x_i^e} \in I_Y \cap U_i = \mathbb{S}(x_i^{-1}) \frac{s}{x_i^d}.$$?

$\Rightarrow \frac{t}{x_i^e}$ is a multiple of $\frac{s}{x_i^d}$

$\exists P_i \in \text{Hom. of degree } n_i \geq 0 \text{ s.t. } \frac{t}{x_i^e} = \frac{P_i}{x_i^{n_i}} \frac{s}{x_i^d}$

$\Rightarrow t = P_i x_i^{d+n_i-e} s \quad \forall i$.

$\Rightarrow t$ is a multiple of s. (exercise)
\[\Rightarrow I_Y = \bigoplus_{e \geq 0} I_{Y,e} = SS = \text{(ideal generated by } s) \]

\[s \in S_d \]

Write \(s = \sum_{i}^{m} s_i \) where \(s_i \) is irreducible of degree \(d_i \) and \(s_i, s_j \) are not proportional for \(i \neq j \).

\[Z(s) = \bigcup Z(s_i) \text{ as a set. (} \cup Z(s_i) = SS_i \bigcup \]

\[Z(s_i) \text{ is irreducible of codimension 1 in } X. \]

We determine \(\alpha(\text{P}^n_k = X) : \)

General Lemma: \((X \text{ is not necessarily projective space}) \)

Suppose \(U \subset X \) is nonempty open and let \(Z_1, \ldots, Z_n \) be the codimension 1 irreducible components of \(X \setminus U \).
Then, intersecting divisors of \(X \) with \(U \) produces the exact sequence:

\[
0 \rightarrow \mathbb{Z}[Z_1] \oplus \cdots \oplus \mathbb{Z}[Z_n] \rightarrow \text{Div}(X) \rightarrow \text{Div}(U) \rightarrow 0
\]

which induces the exact sequence:

\[
\mathbb{Z}[Z_1] \oplus \cdots \oplus \mathbb{Z}[Z_n] \rightarrow \text{Cl}(X) \rightarrow \text{Cl}(U) \rightarrow 0
\]

Proof: The first exact sequence is immediate: a divisor of \(U \) is the intersection with \(U \) of its closure in \(X \).

For the second sequence, surjectivity is true for the same reason. For exactness in the middle; note that \(K = K(X) = K(U) \).

For \(f \in K \), \((\text{Div}_X(f)) \cap U = \text{Div}_U(f) \).
\[0 \rightarrow \{ \text{Div}(f) \} \text{ supported on } X \setminus U \rightarrow \text{Prim}(X) \rightarrow \text{Prim}(U) \rightarrow 0 \]

\[0 \rightarrow \mathbb{Z}[\mathbb{Z}] \oplus \cdots \oplus \mathbb{Z}[\mathbb{Z}] \rightarrow \text{Div}(X) \rightarrow \text{Div}(U) \rightarrow 0 \]

\[0 \rightarrow \mathbb{Z}[\mathbb{Z}] \oplus \cdots \oplus \mathbb{Z}[\mathbb{Z}] \rightarrow \text{Cl}(X) \rightarrow \text{Cl}(U) \rightarrow 0 \]

\[\text{If } D \in \text{Div}(X) \text{ satisfies } D \cap U = \text{Div}_U(f) \]

\[\text{then } D - \text{Div}_X(f) = \text{combination of } [\mathbb{Z}], \ldots, [\mathbb{Z}] \]

\[\Rightarrow \text{ the class of } D \text{ in } \text{Cl}(X) \in \text{subgroup generated by } [\mathbb{Z}], \ldots, [\mathbb{Z}] \]

\[\Rightarrow \text{ exactness in the middle} \]
We use the lemma to compute $\mathbb{C}(\mathbb{P}^n)$.

Take $V = U_0$, $Z_0 := \mathbb{P}_k^n \setminus U_0$

\[\mathbb{Z}[Z_0] \rightarrow \mathbb{C}(\mathbb{P}^n) \rightarrow \mathbb{C}(U_0) \rightarrow 0 \]

$U_0 \cong \mathbb{A}_k^m \Rightarrow \mathbb{C}(U_0) = \mathbb{0}$, so:

\[\mathbb{Z}[Z_0] \rightarrow \mathbb{C}(\mathbb{P}^n) \]

Lemma: $\mathbb{Z}[Z_0] \rightarrow \mathbb{C}(\mathbb{P}^n)$ is injective, hence \[\mathbb{Z}[Z_0] \cong \mathbb{C}(\mathbb{P}^n) \]

Proof: Injectivity means that there are no rational functions f on \mathbb{P}^n with $\text{Div}(f) = \text{multiple of } [Z_0]$. Choose $f \in K(\mathbb{P}^n) = K(U_0) = \text{Frac} k[\frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0}]$

\[= k(\frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0}) \]