Algebraic geometry is the study of geometric objects using algebra (in practice, we use a lot more than algebra, we use topology, we use analysis, diff.geom, etc).

Our guiding principle is that geometric objects are determined by their functions and all of their properties are reflected in the properties of their function. This is a point of view that has revolutionized modern mathematics (it is used in many fields).
Algebro-geometric objects are characterized by the fact that their functions are algebraic, i.e., "rational functions".

Simplest algebro-geometric objects:

affine spaces. \[\leftrightarrow \] functions are polynomial.

ring of functions = \[\mathbb{F}[x_1, \ldots, x_n] \]
\[\mathbb{F} \text{ a field} \]

In a first approximation, \(n \)-dimensional affine space over \(\mathbb{F} \) is \(\mathbb{F}^n \). \(x_1, \ldots, x_n \) are then the coordinate functions on \(\mathbb{F}^n \).
We define the Zariski topology on \mathbb{k}^n:

Def. Given a set $T \subset \mathbb{k}[x_1, \ldots, x_n]$ define $Z(T) := \{(a_1, \ldots, a_n) \in \mathbb{k}^n \mid p(a_1, \ldots, a_n) = 0 \ \forall \ p \in T\}$

Def. and Proposition. The collection of sets $Z(T)$ for $T \subset \mathbb{k}[x_1, \ldots, x_n]$ is a topology on \mathbb{k}^n. This is called the Zariski topology.

Proof. Verify: (1) \emptyset is closed: $\emptyset = Z(T)$ where $T = \{1\}$

(2) \mathbb{k}^n is closed: $\mathbb{k}^n = Z(T)$ where $T = \{0\}$
(3) arbitrary intersections of closed sets is closed:
\[
\{ T_i, i \in I \} \quad T_i \subset k[x_1, \ldots, x_n]
\]
\[
\bigcap_{i \in I} \text{Z} (T_i) = \text{Z} \left(\bigcup_{i \in I} T_i \right)
\]

(4) finite unions of closed sets are closed:
\[
P_1 \in k[x_1, \ldots, x_n] \quad P_2 \in k[x_1, \ldots, x_n]
\]
\[
\text{Z} (P_1) \cup \text{Z} (P_2) = \text{Z} (P_1 P_2)
\]
\[
\text{Z} (T_1) \cup \text{Z} (T_2) = \text{Z} (T_1 T_2)
\]
where \(T_1 T_2 := \{ P_1 P_2 \mid P_1 \in T_1, P_2 \in T_2 \} \subset k[x_1, \ldots, x_n] \)
\[
\text{Z} (T_1) \cup \text{Z} (T_2) \cup \ldots \cup \text{Z} (T_m) = \text{Z} (T_1 \ldots T_m)
\]
\[
T_1 \ldots T_m := \{ P_1 \ldots P_m \mid P_i \in T_i \} \subset k[x_1, \ldots, x_n]
\]
Def. An affine variety is a closed subset and variety of an affine space. The ideal of an affine variety Y is

$$I(Y) := \left\{ P \in k[x_1, \ldots, x_n] \mid P(a_1, \ldots, a_n) = 0 \quad \forall (a_1, \ldots, a_n) \in Y \right\}$$

verify that this is indeed an ideal.

The functions on Y are the restrictions to Y of polynomials.

The values of a polynomial $P \in k[x_1, \ldots, x_n]$ on Y depend only on the class of P modulo $I(Y)$, i.e., on

$$\overline{P} \in k[x_1, \ldots, x_n] / I(Y).$$
In the functions on \(Y \) are the elements of \(\mathbb{A}(Y) = \frac{k[x_1, \ldots, x_n]}{I(Y)} \).

Def: \(\mathbb{A}(Y) \) is called the coordinate ring of \(Y \).

The topology of \(k^n \) induces a topology on \(Y \): this is the Zariski topology on \(Y \), its closed sets are the sets of zeros of collections \(T \subseteq \mathbb{A}(Y) \).

After affine spaces, the simplest object are projective spaces.

Def: \(\mathbb{P}^n_k := \frac{(k^{n+1} \setminus \{0\})}{k^*} \)
where $k^* := k \setminus \{0\}$ acts on k^{n+1} via scalar multiplication:

$$\forall \lambda \in k^*, \quad \lambda(a_0, \ldots, a_n) = (\lambda a_0, \ldots, \lambda a_n)$$

equivalently, \mathbb{P}^n_k is the set of lines through the origin in k^{n+1}.

Function on \mathbb{P}^n_k? First idea: $k[x_0, \ldots, x_n]$

Polynomials do not give well-defined functions on \mathbb{P}^n_k:

- e.g., $P(x_0, x_1) = x_0 + x_1^3$ value on the class of $(a_0, a_1) = (\lambda a_0, \lambda a_1) \in \mathbb{P}^1_k$

However, we can still define a Zariski topology:
We can define set of zeros of "homogeneous" polynomial.

Def: A polynomial is homogeneous if it is a
k-linear combination of monomials of the same degree.

e.g. $P(x_0, x_1) = x_0 + x_1^3$ is not homogeneous.

$Q(x_0, x_1) = x_0 x_1^2 - x_0^3 + x_1^3$ is homogeneous.

If P is homogeneous of degree d, then

$P(\lambda x_0, \ldots, \lambda x_n) = \lambda^d P(x_0, \ldots, x_n)$.

Zeros of homogeneous polynomials are "cones" in k^{n+1}:
union of lines through the origin.
So if P is homogeneous, then $Z(P) \subset \mathbb{P}^n_k$ is well-defined.

Definition: Given $T \subset k[x_0, \ldots, x_n]$

s.t. all $P \in T$ are homogeneous, define

$$Z(T) := \{(a_0, \ldots, a_n) \in \mathbb{P}^n_k \mid P(a_0, \ldots, a_n) = 0 \ \forall P \in T\}$$

Def. and proposition: The Zariski topology on \mathbb{P}^n_k is the topology whose closed sets are the $Z(T)$ for $T \subset k[x_0, \ldots, x_n]$ a set of homogeneous polynomials.
Proof: Verify: (1) \(\phi = \mathbb{Z}(1) \)
\[
\mathbb{Z}(\{x_0, x_1, \ldots, x_n\})
\]
(2) \(\mathbb{P}^n = \mathbb{Z}(0) \)
(3) \(\bigcap_{i \in I} \mathbb{Z}(T_i) = \mathbb{Z}\left(\bigcup_{i \in I} T_i \right) \)
(4) \(\mathbb{Z}(T_i) \cup \ldots \cup \mathbb{Z}(T_m) = \mathbb{Z}(T_1, \ldots, T_n) \)

A product of homogeneous polynomials is homogeneous.

Def: A projective variety is the set of zeros of a set of homogeneous polynomials in \(\mathbb{P}_k^n \).

It will inherit the Zariski topology from \(\mathbb{P}_k^n \).
The closed set of Y are the set of zeros of homogeneous polynomials in Y.

The zero set of a homogeneous polynomial in Y depends only on the class of the polynomial modulo the polynomials that vanish on Y.

Def: $I(Y) := \text{ideal generated by the homogeneous polynomials vanishing on } Y$.

$S(Y) := k[x_0, \ldots, x_n]/I(Y)$ is the homogeneous coordinate ring of Y.
So the closed subsets of \(Y \) are zeros of elements of homogeneous polynomials in \(S(Y) \).

\[I(Y) \text{ is a homogeneous ideal.} \]

Def: An ideal \(I \subset k[x_0, \ldots, x_n] \) is homogeneous if it can be generated by homogeneous polynomials.

\[S := k[x_0, \ldots, x_n] \text{ is a graded ring, i.e.} \]

\[S = \bigoplus_{d \geq 0} S_d \text{ where } S_d := \{ \text{homogeneous polynomials of degree } d \} \cup \{0\} \]