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Abstract

Let a(n; k) denote the number of combinatorial structures of size n with k compo-

nents. One often has
P

n;k a(n; k)x
nyk=n! = exp

�
yC(x)

	
, where C(x) is frequently

the exponential generating function for connected structures. How does a(n; k)

behave as a function of k when n is large and C(x) is entire or has large singular-

ities on its circle of convergence? The Flajolet-Odlyzko singularity analysis does

not directly apply in such cases. We extend some of Hayman's work on admissi-

ble functions of a single variable to functions of several variables. As applications,

we obtain asymptotics and local limit theorems for several set partition problems,

decomposition of vector spaces, tagged permutations, and various complete graph

covering problems.

1991 AMS Classi�cation Numbers. Primary: 05A16
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1. Introduction

A variety of combinatorial structures can be decomposed into components so that

the generating function for all structures is the exponential of the generating func-

tion for components: A(x) = eC(x). (This is a single variable instance of the

exponential formula.) In this case, A(x; y) = eyC(x) is the generating function for

structures by number of components and is an ordinary generating function in y.

For the present discussion, we assume C(x) is an exponential generating function.

One often wishes to study an;k = [xnyk=n!]A(x; y), the number of k-component

structures of size n. In particular, one may ask how an;k varies with k for �xed

large n. From a somewhat di�erent viewpoint, one may want to study the probabil-

ity distribution for the random variable Xn given by Pr(Xn = k) = an;k
�P

k an;k
as n!1.

One approach is to observe that k! an;k = [xn=n!](C(x))k. Such methods are

useful for estimating the larger coe�cients of (C(x))k as n varies and k is large,

which is not the same as studying the larger values of an;k for �xed n. Consequently,

one may �nd that the method only yields estimates in the tail of the distribution

of Xn. See Gardy [7] for a discussion of these methods. However, it is sometimes

possible to extend the range to include the larger values of an;k. See Drmota [3],

especially Section 3.

Working directly with A(x; y) is likely to provide estimates for the larger coef-

�cients rather than tail probabilities. Unfortunately, multivariate generating func-

tions have proven to be recalcitrant subjects for asymptotic analysis. When A(x; y)

has small singularities, methods akin to Darboux's Theorem may be useful. See

Flajolet and Soria [5] and Gao and Richmond [6] for examples. See Odlyzko [12]

for an extensive discussion of asymptotic methods.

In order to study a variety of single-variable functions with large singularities,

Hayman [10] de�ned a class of admissible functions in such a way that (a) class

members have useful properties and (b) class membership can easily be established

for a variety of functions. We refer to his functions as H-admissible. Hayman's

results include:

� If p is a polynomial and the coe�cients of ep are eventually strictly positive,

then ep is H-admissible.

� If f is H-admissible, so is ef .

� If f and g are H-admissible, so is fg.

In [2] we made a somewhat ill-considered attempt to extend his notions to multivari-

ate generating functions. In this paper we present a simpler alternative de�nition

which has applications to the problems described in the �rst paragraph and which

includes H-admissible functions as a special single variable case.

The next section contains our de�nition for a class of admissible functions

and an estimate for coe�cients of such functions. Section 3 provides theorems for

establishing the admissibility of a variety of functions, especially those related to

counting structures by number of components of various types via the exponential

formula. Applications are presented in Section 4. Proofs of the theorems are given
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in Section 5.

2. De�nitions and Asymptotics

Let x be d-dimensional, let R+ be the positive reals, and let rei0 be the vector

whose kth component is rke
i�k . Suppose f(x) has a power series expansion

P
anx

n

where xn is the product of xnkk . The lattice �f � Z
d is the Z-module spanned by

the di�erences of those n for which an 6= 0. We assume that �f is d-dimensional.

Let d(�f ) be the absolute value of the determinant of a basis of �f . In other words,

d(�f ) is the reciprocal of the density of �f in Zd. The polar lattice ��f � R
d is the

Z-module of vectors v such that v �u is an integer for all u 2 �f . If v1; : : : ;vd is a

Z-basis for ��f , a fundamental region for f is the parallelepiped

�(f) =
n
c1v1 + � � �+ cdvd

��� �� � ck � � for 1 � k � d
o
:

Since the basis for a lattice is not unique, neither is �(f). If coe�cients an are

nonzero for all su�ciently large n, then ��f = �f = Z
d, d(�f ) = 1, and we may

take �(f) = [��; �]d.

We say that f(x) = ou(x)(g(x)) for x in some set S if there is a function

�(t) ! 0 as t !1 such that jf(x)=g(x)j � �(ju(x)j) for all x 2 S. The extension

to equations involving little-oh expressions is done in the usual manner.

If B is a square matrix, jBj denotes the determinant of B. We use v0 and S0

to denote the transpose of the vector v and the matrix S.

De�nition of Admissibility. Let f be a d-variable function that is analytic at

the origin and has a fundamental region �(f). When �f is d-dimensional, we say

that f(x) is admissible in R � Rd+ with angles � if there are (i) a function � from

R to open subsets of �(f) containing 0 and (ii) functions

a : C d ! C
d and B : C d ! C

d�d

such that

(a) f(x) is analytic whenever r 2 R and jxij � ri for all i;

(b) B(r) is positive de�nite for r 2 R;

(c) the diameter of �(r) is ou(1), where u = jB(r)j;

(d) for r 2 R, u = jB(r)j, and 0 2 �(r), we have

f(rei0 ) = f(r)
�
1 + ou

�
1)
�
exp

n
ia(r)00 � 00B(r)0=2

o
; (1)

(e) For r 2 R, u = jB(r)j, and 0 in the complement of �(r) relative to �(f), we

have

f(rei0) = ou
�
f(r)

� �
jB(r)j1=2: (2)
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We say f is super-admissible if (2) can be replaced by

f(rei0 ) = ou
�
f(r)

� �
jB(r)jt (3)

for all t, where ou may depend on t.

Usually one can let a(x) and B(x) be the gradient and Hessian of log f with

respect to logx; that is,

ai(x) =
xi@f

f@xi
and Bi;j = xj

@ai

@xj
= Bj;i:

We call these the gradient a and B.

Since H-admissible functions satisfy b(r) ! 1 as r ! R, it is easily veri�ed

that this de�nition includes H-admissible functions. The asymptotic result for H-

admissible functions holds for our admissible functions:

Theorem 1. Suppose f(x) is admissible in R. Let k be any vector such that

[xk]f(x) 6= 0, let u = jB(r)j, and let v = a(r)� n. Then

[xn] f(x) =
d(�f )f(r)r

�n

(2�)d=2jB(r)j1=2

�
exp

�
�vtB(r)�1v=2

	
+ ou(1)

�
(4)

for r 2 R and n� k 2 �f .

3. Classes of Admissible Functions

In this section we state various theorems that allow us to establish admissibility

for generating functions for a variety of combinatorial structures. We begin with

two theorems for multiplying admissible functions: Theorem 2 allows us to combine

structures of similar size and Theorem 3 allows us to make (minor) modi�cations

in our structures. Theorem 4 allows us to do simple multisection of admissible

functions; that is, limit attention to structures with simple congruence properties.

As already remarked H-admissible functions are admissible (with gradient a = a and

B = b). In addition, the exponentials of polynomials considered in Theorems 2 and 3

of [2] are superadmissible. The proofs given there su�ce, but the notation di�ers

somewhat: �(r) is called D(r). It seems likely that one could extend the results

in [2] to larger classes of polynomials and/or larger domains R. In Theorems 5{7

we construct a variety of admissible functions of the form exp fyC(x)g.

Suppose f is admissible in R with angles �. Suppose there are variables not

appearing in f . We extend R and � to include these variables by forming the

Cartesian product of R with copies of (0;1) and the Cartesian product of � with

copies of [��; �]. We extend a and B by adding entries of zeroes; however, we ignore

the appended coordinates when computing jBj and when determining admissibility.
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Theorem 2. We assume the various objects associated with f and g are extended

as described above so that they include the same set of variables. Suppose that

� f is super-admissible in R with angles �f ;

� g is super-admissible in R with angles �g;

� jBf (r) +Bg(r)j is unbounded on R;

� there are constants C and k such that

jBf (r) +Bg(r)j � Cmin
�
jBf (r)j

k; jBg(r)j
k
�

for r 2 R: (5)

Then fg is super-admissible in R with angles �fg(r) = �f (r)\�g(r). Further-

more, �fg = �f +�g, the the set of vectors u+ v where u 2 �f and v 2 �g,

and we may take

afg = af + ag and Bfg = Bf +Bg;

There are two important observations concerning Theorem 2:

� In using it, one normally chooses R to be as big a subset as possible of Rf \Rg

such that (5) holds.

� Hayman shows that, if f(x) is H-admissible, then so is f(x) + p(x) when p(x)

is a polynomial. This is not true for admissible functions. For example, if

f(x) = g(x2) is admissible, f(x) + x is not. This problem could be avoided if

we changed the de�nition of �f to use only su�ciently large n rather than all

n. Unfortunately Theorem 2 would fail because, for example ex
2

and ex
2

+ x

would be super-admissible but their product would not be.

Theorem 3. Suppose that f is admissible (resp. super-admissible) in R with angles

� and that g(rei0) is analytic for r 2 R. Let u = jBf (r)j. Suppose that there are

ag and Bg such that

(a) �g � �f ;

(b) for r 2 R and 0 2 �(r),

g(rei0) = g(r) exp
�
iag(r)

00 � 0 0Bg(r)0 + ou(1)
	
; (6)

(c) there is a constant C such that jg(rei0)j � Cg(r) for r 2 R;

(d) there is a constant C such that jBf (r) +Bg(r)j � CjBf (r)j for r 2 R.

Then fg is admissible (resp. super-admissible) in R with angles � and we may take

afg = af + ag and Bfg = Bf +Bg;

There are three important observations concerning Theorem 3:

� We do not assume that g is admissible.
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� One may need to extend ag and Bg as described before Theorem 2. In this

case, �g should also be extended by adding components containing zeroes to

its vectors.

� If ag and Bg are so small that (6) reduces to g(rei0) = g(r)
�
1 + ou(1)

�
, the

contribution of g to the asymptotics in Theorem 1 is simply a factor of g(r).

Theorem 4. Let f(x) =
P

anx
n be a d-variable admissible (resp. super-admissible)

function. Let � be a sublattice of �f and suppose k is such that ak 6= 0. De�ne

g(x) =
X
n2�

ak+nx
k+n:

We may take �(g) � �(f). The function g is admissible (resp. super-admissible)

with

�g = �; ag = af ; Bg = Bf ; Rg = Rf ; and �g = �f :

Theorem 5. Suppose that

� f(x) =
P

anx
n is an H-admissible function with a0 = 0 and (possibly in�nite)

radius of convergence R;

� K is a subset of f0; 1; : : : ;m� 1g;

� �k are nonnegative reals for 0 � k < m with �k > 0 if and only if k 2 K.

De�ne �n = �k whenever n � k (mod m),

g(x) =

1X
n=0

�nanx
n; (7)

and � =
�Pm�1

k=0 �k
��

m. Then:

(a) For some R0 < R, the function h(x) = eg(x) is super-admissible in

R = fr j R0 < r < Rg with angles

�(r) =
n
�
��� j�j < 1=g(r)1=3+�

o

and the gradient a and B, provided � > 0 is su�ciently small. Also

ah(r) � �rf 0(r) and Bh(r) � �r(rf 0(r))0 :

If d denotes the greatest common divisor of m and the elements of K, then �h

is generated by (d); that is, �h =Z(d).

(b) For some R0 < R and all � > 0, the function h(x; y) = eyg(x) is super-

admissible in

R =
n
(r; s)

��� R0 < r < R and g(r)��1 < s < g(r)1=�
o
:
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with angles

�(r; s) =
n
0

��� j�kj < 1=(sg(r))1=3+�
o

and the gradient a and B, provided � > 0 is su�ciently small. Also

ah(r; s) � �s

�
rf 0(r)

f(r)

�
; Bh(r; s) � �s

�
r(rf 0 (r))0 rf 0(r)

rf 0(r) f(r)

�
;

and

jBh(r; s)j =
s2

2

X
n;k

(n� k)2�nan�kakr
n+k: (8)

If k 2 K and d denotes the greatest common divisor of m and di�erences

of pairs of elements of K, then �h is generated by (k; 1) and (d; 0); that is

�h =Z(d; 0) +Z(k; 1).

Theorem 6. Suppose that

� f(x) is analytic in jxj < 1 with f(0) = 1 and f(x) 6= 0 for jxj < 1;

� x�k log f(x) has a power series expansion in powers of xm for some integers k

and m with 0 � k < m;

� C(r) is a positive function on (0; 1) with

(1� r)
C 0(r)

C(r)
! 0 as r! 1;

� there exist positive constants � and � with � < 1 such that

log f(x) � C(jxj)(1� x)�� as x! 1

uniformly for j arg xj � �(1� r) and such that

��log f(rei� )�� � ��log f(rei�(1�r))�� for �(1� r) � j�j � �=m: (9)

Then, with g(r) = log f(r):

(a) For some R0 < 1, the function f(x) is super-admissible in R = fr j R0 < r < 1g

with angles

�(r) =
n
�
��� j�j < (1� r)=g(r)1=3+�

o

and the gradient a and B, provided � > 0 is su�ciently small. Also �f =Z(d)

where d = gcd(k;m).

(b) For some R0 < 1 and all � > 0, the function h(x; y) = f(x)y is super-admissible

in

R =
n
(r; s)

��� R0 < r < 1 and g(r)��1 < s < g(r)1=�
o
:
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with angles

�(r; s) =
n
(�; ')

��� j�j < (1� r)=(sg(r))1=3+� and j'j < 1=(sg(r))1=3+�
o

and the gradient a and B, provided � > 0 is su�ciently small. Also �h =

Z(m; 0) +Z(1; k).

Theorem 7. Suppose that f(x) =
P

anx
n has radius of convergence R > 0 and

that an � 0 for all n. Let �(r) be the value of n such that anr
n is a maximum.

Suppose that, for every � > 0, �(r) = o(f(r)�) as r ! R. Suppose that there exist

� < 1, A, a function K(m) > 0 and an N depending on �, A, and K such that, for

all � = �(r) > N and all k > 0,

A�k �
atr

t

a�r�
where t = � � k (10)

and

K(m) �
ajr

j

a�r�
whenever jj � �j � m: (11)

Then f(x) is entire and the conclusions of Theorem 5 hold for it.

4. Applications

Admissibility allows one to compute asymptotics for the coe�cients of a variety of

generating functions, but the accuracy of the method is limited by one's ability to

estimate the solution of a(r) = n and then estimate f(r) and rn accurately. On

the other hand, admissibility allows one to establish asymptotic normality rather

easily, and obtaining asymptotic estimates for the means and covariances is usually

fairly easy: Suppose our generating function is of the form f(x;y) and is ordinary

in y. Partition all vectors and matrices into block form according the the two sets of

variables x and y. Let an;k be the coe�cients of f . Set a(r;1) = (n;k�), solve for r

asymptotically in terms of n and use this to compute k� and B(r;1) asymptotically

as functions of n. Let n go to in�nity in a way that (r;1) 2 R and jBj ! 1. From

Theorem 1 and the formula ([13, pp. 25{26])

�
B1;1 B1;2

B0
1;2 B2;2

��1
=

�
A C

C 0 D�1

�
where D = B2;2 �B0

1;2(B1;1)
�1B1;2; (12)

it follows that an;k=
P
k
an;k satis�es a local limit theorem with means vector and

covariance matrix asymptotic to k� and D, respectively. When x and y are 1-

dimensional, D = jBj=B1;1.

Example 1 (Stirling Numbers of the Second Kind). With multivariate situations,

it is important to know the range of values of the subscripts of the coe�cients (rather
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than the variables in the generating function) for which the asymptotics applies. We

examine exp fy(ex � 1)g, the generating function for S(n; k), the Stirling numbers

of the second kind. Let jxj = r and jyj = s. Since f(x) = ex� 1 is H-admissible, we

can apply Theorem 5(b) with m = 1 and �0 = 1. (There is no multisection.) Then

a(r; s) = s

�
rer

er � 1

�
; B(r; s) = s

�
(r2 + r)er rer

rer er � 1

�
;

and

R =
n
(r; s)

��� R0 < r and er(��1) < s < er=�
o
:

Setting a = (n; k), we obtain

(i) n=k � r and

(ii) the value of r lies between the solutions of n = rer� and n = rer(1+1=�).

Thus r is between roughly � logn and log n=�. It follows from this and (i) that we

have admissibility as long as (k logn)=n is bounded away from 0 and 1. Conse-

quently, for any positive constants c andC, Theorem 1 provides uniform asymptotics

for S(n; k) when
cn

logn
< k <

Cn

logn
: (13)

If, instead, we set a(r; 1) = (n; k�), we obtain the equations n = rer and

k� = er � 1. Hence r � logn and k� � n= logn. Using (12), we obtain

D = (er � 1)� (rer )2=(r2 + r)er � er=r � n=(logn)2

and so S(n; k) satis�es a local limit theorem with mean and variance asymptotic to

n= logn and n=(logn)2, respectively, a result obtained by Harper [9].

Example 2 (Other Set Partitions). The coe�cient of yk11 yk22 � � �xn=n! in

f(x;y) = exp

� 1X
k=1

ykx
k=k!

�
(14)

is the number of partitions of an n-set with exactly ki blocks of size i. In the

previous example, we set yi = y for all y. Other results are possible, particularly

when one is interested in residue classes modulo m. Some illustrative examples

follow.

Let K � f0; 1; : : : ;m� 1g and set yi = 1 when i modulo m is in K and 0 oth-

erwise. Since ex � 1 is H-admissible, g(x) = f(x;y) is admissible by Theorem 5(a).

The coe�cient of xn=n! is the number of set partitions of a n-set with block sizes

congruent modulo m to elements in K.

Suppose, instead, we set yi = y when i modulo m is in K and 0 otherwise.

Then Theorem 5(b) applies and the coe�cient of xnyk=n! in g(x;y) is the number

of partitions of an n-set with exactly k blocks all of whose sizes are congruent
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modulo m to elements in K. Asymptotic normality follows as it did for the Stirling

numbers and the mean and variance are asymptotically the same as we found there.

If all but a �nite number of yi = 0 and the rest are equal to y, f(x;y) is the

exponential of a polynomial and admissibility follows by the methods in [2] unless

the polynomial is a monomial.

Not every choice of which yi are zero leads to an admissible function. For

example, it can be shown that f(x) = exp f
P

xnk=(nk)!g is not admissible if the nk
grow su�ciently rapidly since f(rei� )=f(r) is not su�ciently small when r is near

nk and � is a multiple of 2�=nk.

From (14),
�
xnykee ykoo =n!

��
exp

�
ye(coshx � 1)

	
exp

�
yo sinhx

	�
is the number

of partitions of an n-set that have ke blocks of even size and ko blocks of odd size.

By Theorem 5(b), f(x; ye) = exp
�
ye(coshx� 1)

	
and g(x; yo) = exp

�
yo sinhx

	
are

super-admissible and

Rf = Rg =
n
(r; s)

��� R0 < r and e(��1)r < s < er=�
o

�f = �g =
n
0

��� j�kj < (e�r=s))1=3+�
o

Bf (r; se) = se

�
r2 cosh r + r sinh r r sinh r

r sinh r cosh r � 1

�

Bg(r; so) = so

�
r2 sinh r + r cosh r r cosh r

r cosh r sinh r

�
:

(15)

Hence

jBf j = s2er(sinh r � r)(cosh r � 1) � s2ere
2r=4

and

jBgj = s2or(sinh r cosh r � r) � s2ore
2r=4:

We now apply Theorem 2. Since

Bf +Bg =

0
@ r(rse + so) cosh r + r(rso + se) sinh r rse sinh r rso cosh r

rse sinh r se(cosh r � 1) 0

rso cosh r 0 so sinh r

1
A ;

we have

jBf +Bgj = rseso(cosh r � 1)
�
se sinh r(sinh r � r) + so(cosh r sinh r � r)

�
� seso(se + so)re

3r=8:

It follows that fg is super-admissible in

R =
n
(r; se; so)

��� R0 < r and e(��1)r < se; so < er=�
o

with angles

�(r; se; so) =
n
0

��� j�kj < (e�r=max(se; so)))
1=3+�

o
:
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Consequently we obtain asymptotics for the coe�cients provided ke logn=n and

ko logn=n are bounded away from 0 and 1.

Suppose we want to count partitions by the number of non-singleton blocks.

The generating function is f(x; y)g(x) where

f(x; y) = exp
�
y(ex � x � 1)

	
and g(x) = ex:

Apply Theorem 5(b) without multisection to show that f is super-admissible with

angles

�(r; s) =
n
0

��� j�kj < (e�r=s)1=3+�
o
:

Now apply Theorem 3. The conditions on g are easily checked. In particular, one

must verify (6) for j�j < e��r . In this range

exp
�
rei�

	
= exp

�
r
�
1 +O(�)

�	
� er:

Unfortunately, the theorems do not allow us to do the complementary problem|

count partitions by number of singleton blocks using the generating function

exy exp fex � 1� xg.

Fix integers k and m. Let an;j be the number of partitions of an n-set into

j blocks such that the total number of elements in blocks of odd cardinality is

congruent to k modulo m. The generating function is fh where

f(x; y) = exp fy(cosh x� 1)g ; g(x; y) = exp fy sinhxg ;

and h(x; y) is the sum of those terms in g for which the power of x modulo m is

k. By Theorem 5, f and g are super-admissible with the R, � and B given by

(15). By Theorem 4 with � =mZ�Z, h is super-admissible. By Theorem 2, fh is

super-admissible and, furthermore, we may take R and B to be as in Example 1.

It follows that asymptotics are obtainable for a(n; j) whenever (13) holds.

Example 3 (Decompositions of Vector Spaces). Let Dn;k(q) be the number of

decompositions of an n-dimensional vector space over GF(q) as a direct sum of k

nonzero subspaces where the order of the subspaces is irrelevant. It follows from

Example 11 of Bender and Goldman [1] that

h(x; y) = 1 +

1X
n=1

nX
k=1

Dn;k(q)x
nyk

cn
= eyf(x) where f(x) =

1X
n=1

xn

cn
(16)

and cn = (qn�1) � � � (qn�qn�1). Let Ci stand for some positive constant. We apply

Theorem 7 without multisection. Note that cn � Qqn
2

where Q =
Q
(1�q�k). The

largest term in f(r) is near the solution � of r = q2� . If m = � � t is a positive

integer, then a simple calculation shows that

C1q
�t2 <

rm=cm

r�=Qq�
2
< C2q

�t2 :
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Thus Theorem 7 applies. We obtain n=k � � = (logq r)=2. Since C3q
�2 <

f(r) < C4q
�2 and the theorem requires f(r)� < sf(r) < f(r)1=� , it follows that

�(log n)1=2 < � < (logn)1=2=�. Thus asymptotics are obtained when k(logn)1=2=n

is bounded away from 0 and 1.

By solving (n; k�) = a(r; 1) = (rf 0(r); f(r)) for r and k�, the asymptotic for-

mula gives us a local limit theorem for Dn;k(q) as n ! 1. We now study the

asymptotic mean and variance. De�ne � and � as functions of r by

� =
�
(logq r)=2

�
= (logq r)=2 � �:

Using � !1, (10), (11), and (8), we have

f(r) �
1

Q

1X
t=�1

r�+t

q(�+t)
2
=

q�
2+2��

Q

1X
t=�1

1

qt
2�2�t

rf 0(r) �
�q�

2+2��

Q

1X
t=�1

1

qt
2�2�t

� �f(r)

r(rf 0 (r))0 �
�2q�

2+2��

Q

1X
t=�1

1

qt
2�2�t

� �2f(r)

jB(r; 1)j �
q2�

2+4��

2Q2

1X
t;u=�1

(t� u)2

qt
2+u2�2�(t+u)

�
q2�

2+4��(S2S0 � S2
1)

Q2
;

where

Sk = Sk(�; q) =

1X
t=�1

tk

qt
2�2�t

:

From n = r0f(r) we have logq n � �2 and so � �
p
logq n. Thus the mean k� is

asymptotic to n=
p
logq n. Since the variance is given by jBj=B1;1, we have

variance �
C(�; q)n

(logq n)
3=2

where C(�; q) =
S2S0 � S2

1

S2
0

:

To evaluate the sums C(�; q), one needs to know � and this depends on more detailed

knowledge of � and r than we have obtained. However, we can say something about

it:

� We have C(� + 1; q) = C(�; q) = C(��; q) from which it follows that C(�; q) is

determined by its values on 0 � � � 1=2.

� By using the t = 0 and �1 terms in Sk we �nd that,

for �xed � and q !1, C(�; q) �

8><
>:
2=q; if � = 0

1=q1�2�; if 0 < � < 1=2

1=4; if � = 1=2.
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� Since r � q2� and n = rf 0(r), which is between C�q�
2

and C 0�q�
2

, we have

r � exp
n
2 log q

p
logq n

o
. Hence, as n!1, C(�(n); q) approaches a periodic

function of exp
n
2 log q

p
logq n

o
. Since the period of � as a function of r is 1,

its period in terms of n is about

n
p
logq n exp

n
�2 log q

p
logq n

o
:

If we use the Eulerian generating function with cn = (qn�1) � � � (q�1) in (16),

we obtain similar results with q replaced by q1=2 and Dn;k(q) counts direct sum

decompositions into orthogonal subspaces.

Example 4 (Tagged Permutations). A tagged permutation is a permutation writ-

ten in one-line form together with a distinguished increasing subsequence. Following

Flajolet and Sedgewick [4], the generating function is given by

h(x; y) =
1

1� x
exp

�
xy

1� x

�
;

where the exponential variable x keeps track of permutation length and the ordinary

variable y keeps track of distinguished subsequence length. Lifschitz and Pittel [11]

and Flajolet and Sedgewick [4] obtained asymptotics for the coe�cients of h(x; 1)

using real and complex analysis, respectively. Using Theorem 6(b) with f(x) = x
1�x

and C(r) = 1, we see that f(x; y) = exp
n

xy

1�x

o
is super-admissible. One easily

computes

af (r; s) = s

�
r

(1�r)2
r

1�r

�
; Bf (r; s) = s

� r(1+r

(1�r)3
r

(1�r)2
r

(1�r)2
r

1�r

�
;

and jBf (r; s)j =
r3s2

(1�r)4
.

We now apply Theorem 3 with g(x; y) = 1
1�x

to conclude that h(x; y) is super-

admissible. Only (6) requires any e�ort. For (�; ') 2 �f (r; s), where �f is given

by Theorem 6(b), we have

log(1 � rei�) = log(1 � r) +O(�=(1 � r)) = log(1� r) +O

��
1�r
s

�1=3+��
:

Using the de�nition or R in Theorem 6 and the above formula for jBf (r; s)j, one

easily veri�es that the big-oh is ou(1).

Let t(n; k) be the number of n-long tagged permutations with tags of length

k. It follows from the above work that t(n; k) is asymptotically normal as n!1,

with mean and variance asymptotic to
p
n and

p
n=2, respectively. It also follows

from the formula for R that asymptotics can be obtained for tagged permutations

whenever (1�r)1�� < s < (1�r)�1=� . Since k � s
1�r

and n � s
(1�r)2

, some algebra
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shows that we can obtain asymptotics whenever n�=(1+�) < k < n(1+�)=(1+2�); that

is, we can obtain asymptotics for t(n; k) as n ! 1 provided n� < k < n1�� for

some � > 0.

Example 5 (Covering Complete Graphs). A cover of the complete graph with

graphs of some speci�ed type is simply the number of sets of graphs of that type

such that the total number of vertices is n. The exponential formula f(x; y) =

eyg(x) applies, where g(x) is the exponential generating function for graphs of the

desired type. Here are some examples taken from problems 3.3.5{7 in Goulden and

Jackson's text [8, p. 187].

� The generating function for coverings with complete graphs is exp
�
y(ex � 1)

	
,

which was studied in Example 1.

� The generating function for coverings with complete bipartite graphs having

at least one vertex in each part of the bipartition is exp
�
y(ex � 1)2=2

	
and

Theorem 5(b) applies.

� The generating function for coverings with star graphs is exp
�
y(xex � x2=2)

	
and Theorem 5(b) applies. (A star graph on k � 1 vertices is a tree consisting

of one vertex of degree k�1 to which the remaining k�1 vertices are attached.)

� The generating function for coverings with paths is exp
n
yx(2�x)
2(1�x)

o
and Theo-

rem 6(b) applies.

5. Proofs of Theorems

Throughout the proofs, � and C stand for positive constants, not necessarily the

same at each occurrence. The value of � is intended to be small whereas C need not

be. References to results in [10] have an H pre�xed as in Theorem H.II.

Proof (of Theorem 1): We follow essentially the same argument as in [10] and [2].

With f(x) =
P

anx
n and d the dimension of x, we have

anr
n =

1

(2�)d

Z
� � �

Z
[��;�]d

f(rei0) exp f�in00g d0:

Suppose that an 6= 0. Let u 2 ��f . The integrand is invariant when 0 is replaced by

0 + 2�u because u0(m� n) is an integer whenever am 6= 0. It follows that we can

restrict the integral to �(f) and multiply the result by (2�)d=vol(�(f)) = d(�f ).

Let ��(r) be the largest set of 0 such that c0 2 �(r) when 0 < c < 1. Note

the following:

� The interior of ��(r) is contained in �(r).

� exp f�00B0=2g = ou(1)=jB(r)j
1=2 on the boundary of ��(r) because no points

on the boundary of ��(r) are in �(r).
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� For every 0, there is an �(r) such that �0 2 ��(r) because the origin is in the

interior of �(r).

Since B is positive de�nite, replacing 0 by c0 with c > 1 increases 0 0B0 and so

exp f�00B0=2g = ou(1)=jB(r)j
1=2 for all 0 62 ��(r). (17)

It follows that

anr
n =

d(�f )

(2�)d

Z
� � �

Z
��(r)

f(rei0 ) exp f�in00g d0 +
ou(f(r))

jB(r)j1=2
:

Using (1) for 0 2 ��(r) gives us

f(rei0 ) exp f�in00g = f(r)
�
1 + ou

�
1)
�
exp

n
iv00 � 00B(r)0=2

o
:

Since B is positive de�nite, we can write B = S0S for some real d � d matrix S.

With y = S0 and w2 = w0w,

iv00 � 0 0B0=2 = iv0S�1y � y2=2

= �
�
(S0)�1v

�2
=2�

�
y � i(S0)�1v

�2
=2

= �v0B�1v=2�
�
y � i(S0)�1v

�2
=2:

Hence

Z
� � �

Z
��

exp fiv00 � 0 0B(r)0=2g d0

=
exp

�
�v0B(r)�1v=2

	
jB(r)j1=2

Z
� � �

Z
S��

exp
�
�
�
y � i(S0)�1v

�2
=2
	
dy

=
exp

�
�v0B(r)�1v=2

	
jB(r)j1=2

Z
� � �

Z

R d

exp
�
�
�
y � i(S0)�1v

�2
=2
	
dy

+
O(1) exp

�
�v0B(r)�1v=2

	
jB(r)j1=2

Z
� � �

Z
T

exp
�
�x2=2

	
dx;

where, by (17), T is a set of x 2 R
d for which exp

�
�x2=2

	
= ou(1)=jBj

1=2. It

follows that the integral over T is ou(1). The integral over R
d is the product of d

integrals of the form Z 1

�1

exp
�
�(y � ic)2=2

	
dy

and so equals (2�)d=2.
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Proof (of Theorem 2): Let h = fg. As already described before Theorem 2, we

can extend the R, �, a and B values for f and g to include all the variables in h.

We can expand � as well by adding components which equal 0 to the vectors in �.

Then �� will no longer be a lattice|the corresponding components of vectors there

can be any real numbers since a real number times 0 is 0.

For the function h, we must verify (a){(d) and (3) in the de�nition of super-

admissibility in Section 2. Property (a) is immediate.

We now prove (b). Since v0Bhv = v0Bfv+ v0Bgv and since each summand is

nonnegative by the positive semide�niteness of the extended Bf and Bg, it follows

that Bh is positive semide�nite. Suppose that v0Bhv = 0. Then v0Bfv = 0 and

v0Bgv = 0. Since the originalBf is positive de�nite, the components of v associated

with the variables of f must be 0. Similarly, the components of v associated with

the variables of g must be 0. Hence v = 0 and so Bh is positive de�nite.

Using (5) and �h = �f \ �g, we obtain (c) and (d).

Before proving (3), we prove the claim concerning �h. Clearly �h � �f +�g,

but equality may fail due to cancellation of terms when computing fg. Note that

(�f +�g)
� = ��f \ ��g

and the operator � reverses inclusion. Hence it su�ces to prove that ��h � ��f \�
�
g.

Suppose to the contrary that v 2 ��h and v 62 ��f \�
�
g, say v 62 ��f . We may choose

r so that jBhj is as large as we wish and hence also jBf j by (5). From (c) in the

de�nition of admissibility, it follows that �f+v will be disjoint from �f+��f and so,

by (3) for f and (5), we have f(re2�iv) = ou(f(r)). Since v 2 ��h, h(re
2�iv) = h(r),

we have the contradiction

f(r)g(r) = h(r) = h(re2�iv) = f(re2�iv)g(re2�iv) = ou(1)f(r)g(r):

This proves �h = �f +�g and also

��h = ��f \ ��g: (18)

We now turn to (3). Since ��f + ��g is a lattice, it follows that, whenever the

diameters of �f (r) and �g(r) are su�ciently small,

�
�f (r)+2��

�
f

�
\
�
�g(r)+2��

�
g

�
=
�
�f (r)\�g(r)

�
+2�

�
��f\�

�
g

�
= �h(r)+2��

�
h;

by (18) and the de�nition of �h. Consequently, when min(jBf (r)j; jBg(r)j) is suf-

�ciently small and 0 is in the complement of �h(r) relative to �(h), (3) must hold

for at least one of f and g. This implies (3) for h.

Proof (of Theorem 3): Since �g � �f , it follows that �fg = �f . The remainder

of the proof is straightforward and will be omitted.

Proof (of Theorem 4): By multidimensional multisection of series,

g(x) =
1

d(�)

X
v2��=Z d

f(xe2�iv)e�2�iv
0

k;
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where the sum makes sense since e�2�iv
0

k and the vector e2�iv are constant on a

coset of ��=Zd. Noting that, when an 6= 0, the value of e2�iv
0(n�k) is constant on a

coset of ��=��f , we have

g(x) =
1

d(�)

X
v2��=��

f

f(xe2�iv)e�2�iv
0

k:

When the diameter of �f (r) is su�ciently small it follows that, for arg(x) 2 �f (r),

only the v = 0+��f term is large. Let �(g) be a fundamental region for �� contained

in �(f). If arg(x) is in the complement of �f (r) in �(g), then none of arg(x)+2�v

is in �f (r) + �(f). Hence g(x) is small in this case.

The following two lemmas lay the foundation for proving Theorem 5.

Lemma 1. In the notation of Theorem 5 with F = ef and G = eg , we have

g(r) � �f(r),

aG(r) = rg0(r) � �rf 0(r) = �aF (r) = ou(g(r)
1+�);

BG(r) = r(rg0(r))0 � �r(rf 0 (r))0 = �BF (r) = ou(g(r)
1+�);

g(rei�) = g(r) + i�aG(r) � �2BG(r)=2 + ou(�
3g(r)1+�) (19)

for all � > 0.

Proof: Using the asymptotic formula for the coe�cients of admissible functions

and an argument like that in Hayman's proof of Theorem H.II, the results for a

and B follow in a straightforward manner. The last equation follows from Taylor's

Theorem with remainder:

H(�) = H(0) +H 0(0)� +H 00(0)�2=2 +

Z �

0

(t � �)2H 000(t) dt=2

with H(�) = g(rei�) and the observation that for r su�cently near R,

jH 000(�)j � H 000(0) = O(r3f 000(r)) = O(f(r)1+�);

where we used Theorem H.III for growth of derivatives.

Lemma 2. Suppose f is H-admissible in jxj < R, g is given by (7), and C is a

compact subset of (0;1). Then there is an R1 < R depending on f , C, and � such

that:

(a) When d is as in Theorem 5(a),

<
�
g(rei�)

�
� g(r) � g(r)1�2c��

whenever R1 < r < R, c 2 C, and g(r)�c � j�j � �=d.
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(b) When d is as in Theorem 5(b),

��g(rei�)j � g(r) � g(r)1�2c��

whenever R1 < r < R, c 2 C, and g(r)�c � j�j � �=d.

Proof: To prove the existence of R1, it su�ces to consider a �xed c 2 C since

compactness of C allows us to take the maximum R1.

Let x = rei� . We assume that r is su�ciently near R for various asymptotic

estimates given below. By H-admissibility, the coe�cients of all su�ciently high

powers of x in f(x) are nonzero and af (r) !1 as r ! R. Let r be so close to R

that all coe�cients of f(x) with n � af (r) are nonzero. Let t be the least integer

such that mt � af (r) and de�ne �k = amt+kx
mt+k. By H-admissibility, we have

j�kj � f(r)=
p
2�bf (r):

Hayman proves that b(r) = o(a(r)2) = o(f(r)�) for admissible functions. Using

Lemma 1, it follows that mt = o(g(r)�) and j�kj > Cg(r)1��. Let �k be (mt + k)�

reduced modulo 2� so that j�kj � �. Then

j�kj � <�k = (1 � cos �k)j�kj > Cg(r)1���2k:

It su�ces to show that there is some k for which �k 6= 0 and j�kj � g(r)�c��.

Suppose there is no such k. By the gcd condition, there are integers � and �k
for 0 � k < m such that �k = 0 when �k = 0 and

d = �m+
X
k

�kk:

Let j be such that �j 6= 0 and de�ne

' = �(�m+j � �j) +

m�1X
k=0

�k�k:

Since j�kj = O(g(r)�c��), we have j'j = O(g(r)�c��). Modulo 2�,

' � �(m�)+

m�1X
k=0

�k(mt+k)� � d�+

�
t

m�1X
k=0

�k

�
m� � d�+

�
t

m�1X
k=0

�k

�
(�m+j � �j )

and so

d� � '�

�
t

m�1X
k=0

�k

�
(�m+j � �j) (mod 2�):

Since t = o(g(r)�), the right side of this congruence is O(g(r)�c��). Hence � dif-

fers from a multiple of 2�=d by O(g(r)�c��), a contradiction to the assumption

g(r)�c � j�j � �=d. This proves (a).
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The proof of (b) is similar to that for (a) except that we now want to estimate

� = jci�ij+ jck�kj � jci�i + ck�kj:

For two complex numbers z and w with � = arg(zw), we have

(jzj + jwj)2 � jz + wj2 = 2jzwj cos�

whence

jzj+ jwj � jz + wj =
2jzwj cos�

jzj+ jwj+ jz + wj
�
jzwj cos�

jzj+ jwj
:

Hence

� � C cos
�
(i� k)�

�
g(r)1��:

The remainder of the proof is nearly the same as that for (a), with (i� k)� modulo

2� in place of �k.

Proof (of Theorem 5): We begin by deriving the description of �h. Let S be the set

of indices n for which xn has a nonzero coe�cient in g(x). Since f is admissible, its

coe�cients are positive for all su�ciently large indices. Hence, for some su�ciently

large J ,

�
k + jm

�� k 2 K; j � J
	
� S �

�
k + jm

�� k 2 K; j � 0
	
: (20)

The powers of h(x) with nonzero coe�cients are precisely those which are sums of

elements of S. From this and (20), the proof that �h =Z(d) is now straightforward.

The powers of h(x; y) which have nonzero coe�cients are precisely those of the form

(n; j) where n is the sum of j elements of S. This can be rewritten as j(k; 1)+(n�; 0)

where k 2 S and n� is a sum j numbers of the form s � k where s 2 S. From this

and (20), the formula for �h is straightforward.

To prove Theorem 5(a), one need only follow Hayman's proof of Theorem H.VI

with his use of Lemmas H.5 and H.6 replaced by our (19) and Lemma 2(a), respec-

tively.

We now prove Theorem 5(b). Let x = rei� , let y = sei', and let R be the

radius of convergence of g.

One easily computes a and B in terms of g and its derivatives and then applies

Lemma 1 to obtain the asymptotics in the theorem. With g(x) =
P

cnx
n, one has

2jB(r; s)j=s2 = 2r(rg0(r))0g(r) � 2(rg0(r))2

=

1X
n;k=0

n2cnckr
n+k +

1X
n;k=0

cnk
2ckr

n+k � 2

1X
n;k=0

ncnkckr
n+k

=

1X
n;k=0

(n� k)2cnckr
n+k:

This proves (8).
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Since B has positive diagonal entries, it will be positive de�nite if jBj > 0,

which is the case for all r < R if cn � 0 for all n; however, a �nite number of

coe�cients of the H-admissible function f may be negative. Let g� be g with these

negative terms removed. The previous argument shows that

2jB�(r; s)j=s2 =

1X
n;k=0

(n� k)2c�nc
�
kr

n+k

�

1X
n;k=0

c�nc
�
kr

n+k �

1X
n=0

(c�nr
n)2

� g�(r)2 � sup
n

(c�nrn)g�(r) = g�(r)2 �O(g�(r)=bf (r)
1=2)g�(r)

= g�(r)2(1 + o(1)) as r ! R.

Since the entries in B(r; s)=s and B�(r; s)=s di�er by at most a polynomial in r, the

determinants di�er by at most a polynomial in r times the largest entry in B(r; s)=s.

Since f is H-admissible, Lemma H.2 and Theorem H.III tell us that this di�erence

is O(f(r)1+�). Since jB�j grows like g(r)2s2 and R requires that s > g(r)��1, it

follows that r ! R and jB(r; s)j ! 1 are uniformly the same condition in R. We

also have jB(r; s))j > 0 provided r is su�ciently close to R; that is, R0 < r < R for

some R0.

By Lemma 1,

g(x) = g(r)
�
1 + i�(r)� � �(r)�2=2 +O(g(r)��3)

�

where �(r) = aG(r)=g(r) and �(r) = BG(r)=g(r). Hence

yg(x) = sg(r)
�
cos'+ i(�(r)� + sin')� �(r)�2(cos')=2 +O(g(r)��3)

�
(21)

= sg(r)
�
1 + ia00 � 0 0B0

�
+ sg(r)1+�

3X
k=0

O
�
'3�k�k

�
(22)

where 0 = (�; ') and � is any positive number. Let � be a small positive number.

When

j�j � (1=sg(r))2�+1=3 and j'j � (1=sg(r))2�+1=3;

(22) establishes (1). When

j�j � (1=sg(r))�+1=3 and j'j � (1=sg(r))2�+1=3;

�(r)� = o(') and so (21) gives us

jyg(x)j < sg(r)
�
1� C'2) � sg(r) �C(sg(r))1=3�4�

for r su�ciently near R, the radius of convergence of g. This establishes (3) in that

range of 0.
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We �nish establishing the asymptotic requirements on exp
�
yg(x)

	
by proving

(3) for j�j � (1=sg(r))�+1=3. Let � = �(r) = log s= log f(r). We are given � � 1 �

� � 1=�. Let c = 2(�+ 1)=5 and note that

g(r)c = g(r)2(�+1)=5 = (sg(r))2=5 > (sg(r))�+1=3:

Apply Lemma 2(b) to obtain

jyf(x)j � jyj
�
g(r) � g(r)1�2c��

�
= sg(r) � sg(r)(g(r))�2c��

= sg(r) � (sg(r))1=5g(r)��:

Since � is arbitrarily small and sg(r) > g(r)� , condition (3) follows.

Proof (of Theorem 6): This proof uses ideas from the proofs of Theorems 5

and H.XII. All conditions in the de�nition of super-admissibility are easily estab-

lished except for (1) and (3). By (H.17.2), when j�j <
�(1�r)
16r

,

g(rei�) = g(r) + i�af (r) � �2Bf (r)=2 +E(r; �) (23)

where jE(r; �)j < A(�; �)j�j3g(r)(1 � r)�3 for some function A(�; �). From this,

one easily establishes (1) as in the proof of Theorem 5.

The proof of (3) for small � and large ' is similar to the proof in Theorem 5.

The following discussion is intended for part (b) of the theorem. Setting s = 1

allows one to prove part (a).

Suppose (1 � r)=(sg(r))1=3+� < j�j < �(1 � r) for some small � to be speci�ed

later. Let � = �=(1 � r). Hayman shows that

af (r)

g(r)
�

�

1� r
and

Bf (r)

g(r)
�

�(�+ 1)

(1� r)2

From (23),

����g(re
i�)

g(r)

����
2

=
���1� i�af =g � �2Bf=2g +O(�3)

���2

=
�
1� �2Bf=2g +O(�3)

�2
+
�
�af =g +O(�3)

�2
= 1� ��2(1 + o(1)) +O(�3):

It follows that with � (and hence �) su�ciently small we have

����g(re
i�)

g(r)

����
2

< 1� ��2=2:

Since � � (1=sg(r))1=3+�, it follows that

��sg(rei�)�� < jsg(r)j � jsg(r)j1=3��:
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Next suppose that �(1�r) � j�j � �(1�r). Hayman proves that
��g(rei�)=g(r)��

is bounded above by a constant which is strictly less than 1 and so
��g(rei�)�� �

g(r) � �g(r).

For �(1� r) < j�j � �=m, apply the previous paragraph and (9).

Proof (of Theorem 7): To prevent complexity of argument from obscuring the

underlying ideas, we give a proof without multisection of f ; that is, we assume

g(x) = f(x). The proof can be adapted for multisection by following the proof of

Theorem 5.

As can be seen from the proof of Theorem 5, it su�ces to establish

� some estimates of rkf (k)(r) for k = 1; 2,

� Lemma 2 for dealing with angles outside �, and

� Equation (19) for dealing with angles in �.

Using (10), one easily has that rkf (k)(r) = O(�kf(r)), which is o(f(r)1+�) since we

are given � = o(f(r)�) for all � > 0.

Lemma 2 is easily established using (11).

We now prove (19). Let F = ef , let H(r; �) = f(r)+ i�aF (r)� �2BF (r)=2, and

let t be an integer to be speci�ed later. By (10), we have

f(rei� ) =
X
jkj<t

a�+kr
�+kei�(�+k) +O

�
a�r

�
X
k�t

�k
�

=
X
jkj<t

a�+kr
�+k

�
1 + i�(� + k)� �2(� + k)2=2 +O(�3(� + k)3)

�
+O(f(r)�t)

= H(r; �) +
X
jkj�t

O(f(r)�k )
�
1 + j�j(� + k) + �2(� + k)2

�

+O

�
a�r

��3
X
k

(� + k)3�k
�
+O

�
f(r)�t

�

= H(r; �) +

2X
j=0

O
�
f(r)�j (� + t)j�t

�
+O(f(r)�3�3) +O

�
f(r)�t

�

= H(r; �) +O
�
f(r)�t

�
+O

�
f(r)�3(� + t)3�t

�
+O

�
f(r)�3�3

�
:

Using the assumption that � = o(f(r)�) for all � > 0 and setting t = log(f(r))=�j log �j,

(19) follows.
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