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ABSTRACT

Let M be a map on a surface S. The edge-width of M is the length of a shortest

non-contractible cycle of M . The face-width (or, representativity) of M is the smallest

number of intersections a noncontractible curve in S has with M . (The edge-width and

face-width of a planar map may be de�ned to be in�nity.) A map is an LEW-embedding if

its maximum face valency is less than its edge-width. For several families of rooted maps

on a given surface, we prove that there are positive constants c1 and c2, depending on the

family and the surface, such that

1. almost all maps with n edges have face-width and edge-width greater than c1 log n

and

2. the fraction of such maps which are LEW-embeddings and the fraction which are not

LEW-embeddings both exceed n�c2.
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1. Introduction

We begin with some de�nitions:

� A map is a connected graphG embedded in a surface S (a closed 2-manifold) such that

all components of S �G are simply connected regions. These components are called

faces of the map. As is usual with maps, loops and multiple edges are permitted.

A loopless map is a map without loops. A simple map is a map without loops and

multiple edges.

� A map is rooted if an edge is distinguished together with a vertex on the edge and a

side of the edge. Unless stated otherwise, all maps shall be rooted.

� We use Tutte's de�nition [16] of connectivity, a graph or corresponding map is k-

connected (abbreviated k-c) if the girth is at least k and it requires removing at least

k vertices to separate the graph. It follows that a 2-c map has no loops and a 3-c map

has no multiple edges.

� A facial walk in a map is a closed walk along the boundary of a face. The length of

the facial walk is called the valency of the face. By a cycle in a map, we mean a simple

closed curve consisting of edges of the map.

� A cycle is called contractible if it is homotopic to a point, otherwise it is called non-

contractible and denoted by nc-cycle. The edge-width of a mapM , denoted by ew(M),

is the length of a shortest nc-cycle inM . The face-width (or representativity) of a map

M , denoted by fw(M), is the smallest number of intersections a noncontractible curve

in the surface has with the map. A large-edge-width embedding (abbreviated LEW-

embedding) is a map whose edge-width exceeds its maximum face valency.

� An edge is called singular if it incident with only one face. A face is called singular if

its facial walk is not a cycle. A map is called non-singular if it has no singular faces. A

map is called non-bisingular if there are no faces f1; f2 and vertices v1; v2 such that

fi and vj are incident for all choices of i and j, except we allow the four incidences to

occur around one edge (at both ends).
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� Let F be some family of rooted maps and let Fn(S) denote the set of n-edged maps

in F that lie on a surface S. We will say that F grows normally if

jFn(S)j � An�5�=4�n

where � is the Euler characteristic of S, the limit is taken through those n for which

Fn(S) 6= ;, A = A(S;F) depends only on S and F , and � = �(F) depends only on F .

Robertson and Vitray [12] have shown that embeddings with large face-width share

many properties with planar embeddings. For example, if a 2-c graph G has an embedding

� in an orientable surface of genus g with fw(G) � 2g + 3, then any other embedding

of G in the same surface is obtained from � by a sequence of \2-switchings" (de�ned by

Whitney [18] who proved the planar case). It follows from this that if a 3-c graph G has an

embedding with large face-width in an orientable surface, then it has a unique embedding

in that surface and every automorphism of G extends to a map automorphism of that

embedding. Thomassen [13] has shown that LEW-embeddings also share many properties

with planar embeddings. Recently, Thomassen has also shown that if a map has large

edge-width then it is vertex 5-colorable.

Various authors have shown that a variety of families of rooted maps grow normally.

We study the edge-widths and face-widths of maps in a normally growing family, showing

roughly that the edge-width and the face-width of most suchmaps are at least the logarithm

of the number of edges. For convenience, we collect here a list of known families of normally

growing rooted maps.

Proposition 1. Let D be a �nite subset of the positive integers. The normal

growth of the following families of rooted maps is proved in the locations cited.

1. rooted maps [1];

2. rooted smooth maps [1];

3. rooted loopless maps, rooted simple maps and rooted 3-c triangulations [10];

4. rooted nonsingular maps and rooted 2-c maps (and the numbers are asymp-

totically equal) [5];
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5. rooted triangular maps [7];

6. rooted triangulations, that is, rooted 2-c triangular maps [8];

7. for certain D as discussed in [9], rooted maps with all face valencies in D

(D = f3g is case 4).

We expect that 3-c maps will be added to this list in the near future. The following

proposition adds various families of quadrangulations to the list.

Proposition 2. On any given surface S, there is a bijection � between n-edged

maps and n-faced bipartite quadrangulations, such that fw(M) = ew(�(M))=2.

Proof: The proof is a straightforward extension of the bijection on the sphere given by

Brown [6]: For any map M , place a vertex in each face and join it to the vertices on the

boundary of the face through every corner and remove all the original edges of M . This

gives a bipartite quadrangulation Q, whose root corner can be chosen the same as the

root corner of M . This is clearly a bijection, and any nc-cycle of length 2k in Q intersects

G(M) in exactly k vertices.

We are grateful to Nick Wormald for his helpful observations.

2. Statement of results

We will prove the following:

Theorem 1. Let F be one of the families in Proposition 1. For every � > 0,

there is a � = �(�; S) > 0 such that the fraction of maps M in Fn(S) that have

ew(M) < � logn is o(n�1=4+�) as n ! 1. In particular, almost all maps M in

Fn(S) have ew(M) � �(1=4; S) logn as n!1.

Corollary 1. Let F be one of the families in Proposition 1. For every � > 0,

there is a � = �(�; S) > 0 such that the fraction of maps M in Fn(S) that have

fw(M) < � logn is o(n�1=4+�) as n ! 1. In particular, almost all M maps in

Fn(S) have fw(M) � �(1=4; S) logn as n!1.
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Corollary 2. Fix � > 0. For any family of maps in Proposition 1 that are

required to have bounded face valencies, the fraction of maps in Fn(S) which are

not LEW-embeddings is bounded by o(n�1=4+�) as n!1.

We conjecture that \5-colorable" could be replaced by \4-colorable" in the following

corollary. This would be best possible since almost all maps contain a submap requiring 4

colors [3, 4].

Corollary 3. On any given surface:

1. almost all loopless maps are vertex 5-colorable, and dually, almost all maps

without singular edges are face 5-colorable;

2. almost all simple maps are vertex 5-colorable;

3. almost all 2-c maps are vertex 5-colorable and face 5-colorable.

Using Corollary 3 and the standard construction of a k-
ow from a face k-coloring (as in

[11]), we have established Tutte's 5-
ow conjecture [17] for a large class of graphs that do

not have bridges.

In contrast to Corollary 1, we have only been able to obtain weak results on the

number of LEW-embeddings when face valencies are not bounded:

Theorem 2. Let F be either 1-c, smooth or 2-c rooted maps and let S be a

surface other than the sphere. There is a c = c(S) such that, for all su�ciently

large n, the fraction of maps in Fn(S) which are LEW-embeddings is at least n�c

and the fraction which are not LEW-embeddings is also at least n�c. For almost

all maps in Fn(S), the ratio of the maximum face valency to the edge-width is

bounded above by a constant independent of n.

Suppose we are dealing with a class of maps which allows unbounded face valency. In

view of face size estimates as in [2], it seems reasonable to expect that the probability

distribution for face valencies is roughly geometric. Thus, there should be a constant c > 0

so that for all � > 0

Prob

�����maximum face valency

logn
� c

���� > �

�
= o(1) as n!1, (1)
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where the probability is based on a uniform distribution over Fn(S). The proof of The-

orem 1 shows that noncontractible cycles can be identi�ed with faces of certain maps.

Thus, it seems reasonable that a similar result to (1) should hold for the edge-width,

though probably with some other constant c0. If c0 > c, then almost all maps in the class

will be LEW-embeddings and, if c0 < c, then almost no maps in the class will be. We

suspect that c0 < c. Unfortunately, we cannot prove any of these speculations.

3. Proofs

Lemma 1. Let an � 0 and bn � 0 satisfy

an = O(n�Rn) and bn = O(n�Rn)

for some constants �, � and R > 1 and let

cn =
X

n1+n2=n

an1bn2 :

We have

1. if � > �1 and � > �1, then cn = O(n�+�+1Rn);

2. if � < �1 and � � �, then cn = O(n�Rn).

Proof: For any power series A(x) =
P

anx
n and B(x) =

P
bnx

n, we use [xn]A(x) to

denote an and A(x) = O(B(x)) to denote an = O(bn). Assume that � > �1 and � > �1.

Using [15, p. 242, Ex. 8], we have

[xn](1�Rx)�(�+1) �
n�Rn

�(� + 1)
= O

�
n�Rn

�
for � > �1:

Therefore A(x) = O
�
(1�Rx)�(�+1)

�
and B(x) = O

�
(1 �Rx)�(�+1)

�
. Since A(x) and

B(x) have non-negative coe�cients, we have

A(x)B(x) = O
�
(1 �Rx)�(�+�+2)

�
:
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Using [15, p. 242 Ex. 8] again, we obtain the �rst part of the lemma.

We have

cn =
X

n1+n2=n

an1bn2 = O

�
Rn

X
n1+n2=n

n�1n
�

2

�

= O

�
Rn

[n=2]X
n1=1

n�1 (n� n1)
�

�
+O

�
Rn

nX
n1=[n=2]+1

n�1 (n� n1)
�

�
:

For � < �1 and � � �, we have

[n=2]X
n1=1

n�1 (n� n1)
� = O

�
n�
�
;

n�1 (n � n1)
� � n

�

1 (n� n1)
� for n1 � [n=2] + 1;

and thereby,

n�1X
n1=[n=2]+1

n�1 (n � n1)
� = O

� n�1X
n1=[n=2]+1

n
�

1 (n � n1)
�

�
= O

�
n�
�
:

Therefore, cn = O
�
n�Rn

�
in this case

Proof of Theorem 1 for non-singular maps: We use the following standard topological

fact: If C is a cycle in a map of Euler characteristic �, then cutting the surface along

C, duplicating each edge of C and sewing in disks for the created holes gives one of the

following three possibilities. (We can imagine edges having width and then cut through

the middle of each edge of C.)

� If C is contractible, then we have one planar map and another map of characteristic

�.

� If C is an nc-cycle and the result is not connected, then we have two non-planar maps

with the sum of their characteristics being � + 2.

� If C is an nc-cycle and the result is connected, then we have one map with type �+1

or �+ 2, depending on whether the cut destroys a cross cap or a handle.
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For any map M containing an nc-cycle C of length l, apply the cutting process just

described. At least one of the following three possibilities occurs: (1) the result is not

connected, (2) a cross cap destroyed and (3) a handle destroyed. We consider each and

add the results, thereby obtaining an overcount of maps with given edge-widths.

1. Not Connected. The process yields two non-planar rooted maps M1 and M2, where

M1 has a second root edge bordering some face with the same valency l as M1's root face.

It is clear that the cutting process does not create singular faces, hence M1 andM2 are all

non-singular. We can reverse this process by identifying the second rooted face of M1 and

the root face of M2, root edge to root edge, so that the two faces of valency l disappear.

For a rooted map with n edges, there are 4n ways to choose a second root edge. Using

normal growth, we see that the number of maps obtained in this way is bounded by

1X
j=�+1

X
n1+n2=n+l

O(n1n
�5j=4

1 �n1)O(n
�5(��j+2)=4

2 �n2)

= O
�
(n+ l)2�5(�+2)=4�n+l

�
+O

�
(n+ l)1�5(�+1)=4�n+l

�
;

(2)

where the �rst term on the right hand side comes from Lemma 1(1) applied to the terms

with j > � + 1 and the second term comes from Lemma 1(2) applied to the terms with

j = �+ 1. By normal growth and l = O(n), this sum is

O
�
�ln�1=4jFn(S)j

�
: (3)

2. Cross Cap Destroyed. The process yields a rooted map of characteristic � + 1 with

a distinguished face of valency 2l. It is clear that the cutting process does not create

singular faces, hence the resulting map is also non-singular. We can reverse the process

by identifying the opposite edges on the boundary of the distinguished face in such a way

that the face disappears. There are O(n + l) ways to choose a distinguished face. Using

normal growth, we see that the number of maps obtained in this way is bounded by

O
�
(n+ l)(n+ l)�5(�+1)=4�n+l

�
= O

�
�ln�1=4jFn(S)j

�
: (4)

3. Handle Destroyed. The process yields a rooted map of characteristic � + 2 with two

extra rooted faces of valency l. Since the cutting process does not create singular faces,
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the resulting map is also non-singular. We can reverse the process by identifying the

boundaries of two extra rooted faces, root edge to root edge, in such a way that the faces

disappear. Using normal growth, we see that the number of maps obtained in this way is

bounded by

O
�
(n + l)2(n + l)�5(�+2)=4�n+l

�
= O

�
�ln�1=2jFn(S)j

�
:

Since the sum of �l over l < � logn is O(�� log n) = O(n� log �), we complete the proof

for nonsingular maps by choosing � < �= log �.

Proof of rest of Theorem 1: The case of 2-c maps follows from the asymptotic equality

of nonsingular and 2-c maps [5]. The cases of 1-c maps is simpler since we do not need

to justify the 2-connectivity in the various cases. For triangular maps the cutting process

yields near-triangular maps with one or two distinguished faces of valency l. Adding a

vertex to the interior of each distinguished face and joining the vertex to all vertices on

the boundary of the distinguished face creates a triangular map with 2l more edges and

one distinguished vertex for each distinguished face. The cutting process can not create

loops and thereby destroy 2-connectivity. There are O(n) ways to choose a distinguished

vertex so the proof above is easily modi�ed to handle the cases of 1-c or 2-c triangular

maps. The case of general valency restrictions can be handled similarly.

Remark 1. If S is orientable, we may replace 1=4 by 1=2 in Theorem 1 and its corollaries

because the sum in (2) ranges over �+ 2 � j � 0 and (4) never occurs.

Remark 2. If 3-c maps are shown to be in normal families, the above proof is easily modi�ed

to include them: When we sew in the disks we may create bisingularities; however, adding

a vertex to the interior of each distinguished face, then joining the vertex to all vertices

on the boundary of the distinguished face creates a map with an extra 2l edges and no

bisingularities. This does not signi�cantly a�ect the proof.

Proof of the corollaries: Corollary 1 follows immediately from Proposition 2 and Theo-

rem 1. Corollary 2 is immediate. Thomassen [14, Thm. 5.7] has shown that, on a surface

of genus g, maps with edge-width at least 24g+8 are 5-colorable. Corollary 3 follows at
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once from Theorem 1, Thomassen's result and the fact that the edge-width is always no

less than the face-width and the face-width is invariant under the dual operation.

Lemma 2. Let F be a family of rooted maps closed under the operation of adding

a vertex to the interior of a face and then joining the vertex to at least three

vertices on the boundary of the face in cyclic order. Assume that jFn+1(S)j �

AjFn(S)j for someA and all su�ciently large n. Then there are positive constants

�, B1 and B2, depending on A but not on S, such that

1. the fraction of maps in Fn(S) which have root face valency t is at most

B1e
��t for all su�ciently large n.

2. the fraction of maps in Fn(S) which have maximum face valency greater

than t is at most B2ne
��t for all su�ciently large n.

Proof: The proof of the �rst conclusion is an easy modi�cation of that of [5, Lemma 4]

and is included for completeness. We used face operations instead of adding face diagonals

as in [5] because adding face diagonals may create multiple edges and thereby destroy

3-connectivity. We just prove the lemma for 3-c maps. The proofs for 1-c and 2-c maps

are similar.

Given a 3-c rooted map, add a vertex to the interior of the root face, join it to the

root vertex and any other k � 2 vertices on the boundary of the root face in cyclic order.

Keep the original rooting. This process is clearly reversible. Thus we obtain jFn;t(S)j
�
t�1

k

�
di�erent 3-c rooted maps with n+ k edges, where Fn;t(S) is the subset of maps in Fn(S)

with root face valency t. Thus

jFn;t(S)j

�
t� 1

k

�
� jFn+k(S)j � AkjFn(S)j

and so, since
�
m

k

�
> (m=k)k for 0 < k < m,

jFn;t(S)j

jFn(S)j
�

Ak�
t�1

k

� �
�

Ak

t� 1

�k

:

With k = [(t� 1)=(A + 1)] and t!1, the �rst part of the lemma follows immediately.
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Look at those maps in Fn(S) for which the maximum face valency occurs at the root

face. Since there are at most 4n ways to reroot such a map, the rest of the lemma follows

from the �rst part.

Proof of Theorem 2: By normal growth and Lemma 2(2), there are

n�5=2�n(1 + o(1)) (5)

maps in Fn(sphere) which have maximum face valency less than y logn when y is su�-

ciently large. Fix such a y. Call this set of maps F�

n
.

We now show that there is an LEW-embeddingM1(n) on S with O(logn) edges and

edge-width at least y logn. Start with an LEW-embedding on S with k edges and edge-

width l. (By Theorem 1 for triangulations, LEW-embeddings always exist.) Insert m� 1

vertices on every edge. The resulting map is still an LEW-embedding which has km edges

and edge-width lm. Let m be y logn=l rounded up and let e(y; n) be the number of edges

in the resulting map. Clearly e(y; n) = O(logn).

We can join M1(n) and any mapM together by replacing the root edge of M1 with a

digon, placing M inside the digon and identifying its root edge with the root edge of the

altered M1(n). The face valencies of the resulting map are the face valencies of M and

M1(n), and the edge-width equals the edge-width ofM1(n). Do this for allM 2 F�

n�e(y;n)
.

Since M1(n) is �xed the process is reversible and so we obtain jF �

n�e(y;n)
j maps in Fn(S)

which are LEW-embeddings. Since e(y; n) = O(log n), we are done by (5) and normal

growth.

We now construct a fraction n�c2 of maps with n edges on S which are not LEW-

embeddings. Let M2 2 F(S) not be an LEW-embedding. (An M2 can be constructed by

inserting a big cycle in a face of a map.) Let M2 have k edges. We can attach M2 and an

M 2 Fn�k(sphere) as described in the previous paragraph to obtain maps in Fn(S) which

are not LEW-embeddings. We are done by normal growth.

The second part of Theorem 2 follows immediately fromTheorem 1 and Lemma 2(2).
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