
The Effects of Elementary Row Operations on det(A)

The idea is to turn things around somewhat from the book. We begin with the study
of elementary row operations (Section 2.2 in text) and then move backwards to prove the
unproved Theorem 2.1.1. Unlike the text, this approach does not leave a major theorem
unproved.

Let A be an n × n matrix. Recall that Mij is A with row i and column j removed.
Define M(ik)(jl) to be A with rows i and k and columns k and l removed. Given a matrix
B define Nij and N(ik)(jl) similarly.

Lemma 1 We have

det(A) =
∑

a1ia2j(−1)1+i+j+χ(i>j) det(M(12)(ij)),

where the sum is over all i and j between 1 and n for which i 6= j and

χ(statement) =
{

1, if statement is true,
0, if statement is false.

Proof This is easy to verify for 2 × 2 matrices, so assume n > 2. By definition

det(A) =
∑

i

a1i(−1)1+i det(M1i).

I claim that
det(M1i) =

∑
j

a2j(−1)j+χ(i>j) det(M(12)(ij)),

To see this, note that when i > j, column j of A with the first entry removed is column j
of M1i, but, when i < j, it is column j − 1 of M1,i. This completes the proof.

Lemma 2 Interchanging two rows of A changes the sign of the determinant.

Proof The 2 × 2 case is easy, so assume n > 2. Suppose the rows are i and j > i. Let
A be the original matrix and B the matrix with the rows swapped. If i > 1 we can use
induction on n:

det(B) =
∑

k

b1k(−1)1+k det(N1k).

Since i > 1, b1k = a1k and N1k is M1k with rows i−1 and j−1 interchanged. By induction
det(N1k) = −det(M1k). Thus

det(B) = −
∑

k

a1k(−1)1+k det(M1k) = −det(A).

Now suppose i = 1 and j = 2. Let B be the matrix with rows 1 and 2 switched.
Applying Lemma 1 to B we have

det(B) =
∑

b1ib2j(−1)1+i+j+χ(i>j) det(N(12)(ij))

=
∑

a2ia1j(−1)1+i+j+χ(i>j) det(M(12)(ij))

= −
∑

a1ja2i(−1)1+i+j+χ(j>i) det(M(12)(ij)),
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since (−1)χ(i>j) and (−1)χ(j>i) have opposite signs. (This is because one of them is 1 and
the other is 0.)

Finally, suppose i = 1 and j > 2 We can interchange rows 1 and j by doing 2j − 3
interchanges of adjacent rows:

[1, 2], [2, 3], . . . , [j − 1, j], [j − 2, j − 1], . . . , [1, 2],

where [k,m] means swap rows k and m. Thus there are 2j − 3 sign changes and so we are
done with the proof.

Lemma 3 Multiplying a row by a constant c multiplies the determinant by c.

Proof Let the new matrix be B. Suppose row k is multiplied by c. If k = 1, N1i = M1i

and so
det(B) =

∑
ca1iA1i = c

∑
a1iA1i = det(A).

If k > 1, we use induction on n. In this case N1i is M1i with row k − 1 multiplied by c
and so det(N1i) = cdet(M1i) by induction. Thus

det(B) =
∑

b1i(−1)1+icdet(M1i) = c
∑

a1iA1i = det(A).

We are done with the proof.

Lemma 4 Adding c times row i to row j does not change the determinant.

Proof We can swap rows so that row i becomes the first row and row j becomes the
second row. This requires 0, 1 or 2 swaps depending on i and j. Now do the addition,
and swap the rows back to where they belong. That requires the same number of swaps
as before, so the sign changes cancel by Lemma 2. Thus we can assume i = 1 and j = 2.

Let the matrix after addition be B. Note that N(12)(ij) = M(12)(ij) By Lemma 1,

det(B) =
∑

b1ib2j(−1)1+i+j+χ(i>j) det(N(12)(ij))

=
∑

a1i(a2j + ca1j)(−1)1+i+j+χ(i>j) det(M(12)(ij))

= det(A) + c
∑

a1ia1j(−1)1+i+j+χ(i>j) det(M(12)(ij)).

Look at the last sum. Since i and j are just indices of summation, we can replace them
with whatever we want. Replace i with j and j with i to obtain

∑
a1ia1j(−1)1+i+j+χ(i>j) det(M(12)(ij)) =

∑
a1ja1i(−1)1+j+i+χ(j>i) det(M(12)(ji)).

Since M(12)(ij) = M(12)(ji) and (−1)χ(i>j) and (−1)χ(j>i) have opposite signs, it follows
that the sum on the right is the negative of the sum on the left. Since the only number
that equals its negative is zero, the sums are zero and the proof is complete.

We can now prove our main result:
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Theorem 1 If E1, . . . , Ek are elementary n×n matrices and A is an n×n matrix, then

det(E1 · · ·EkA) = det(E1) · · · det(Ek) det(A).

Proof I claim it suffices to prove that det(EB) = det(E) det(B) whenever E is an
elementary n×n matrix and B is an n×n matrix. This is proved by induction on k: The
case k = 1 is det(EB) = det(E) det(B). For k > 1

det(E1 · · ·EkA) = det(E1) det(E2 · · ·EkA) with B = E2 · · ·EkA,
= det(E1) · · · det(Ek) det(A) by induction.

To prove det(EB) = det(E) det(B), we deal with the three types of elementary matrices
separately.

I. Let E be the elementary matrix that interchanges two rows. By Lemma 2,
det(EB) = −det(B). Using the definition of det, you should be able to show that
det(E) = −1 and so −det(B) = det(E) det(B).

II. Let E be the elementary matrix that multiplies row i by c. Using Lemma 3 and
verifying that det(E) = c, you should be able to proceed as in Case I.

III. Let E be the elementary matrix that multiplies row i by c and adds it to row c Using
Lemma 4 and verifying that det(E) = 1, you should be able to proceed as in Case I.

This completes the proof.

Lemma 5 If A is an n × n matrix, then
(a) det(A) = 0 if and only if A is singular and
(b) det(AT ) = det(A).

Proof Using elementary row operations, we can convert a matrix to reduced row echelon
form. Multiplying by the inverses of the elementary matrices, which are again elementary
matrices, we see that any n × n matrix A can be written in the form

A = E1 · · ·EkR, where R is reduced row echelon.

By Theorem 1, det(A) = det(E1) · · · det(Ek) det(R). Either R is the identity matrix and
you should be able to show that detR = 1, or R has a row that is all zeroes and you should
be able to show that det(R) = 0.

We know from our study of equations that A is singular if and only if R has a row of
zeroes. This proves (a). To prove (b), we consider two cases.

• Suppose A is singular. Then AT must also be singular. (If it were not singular, (AT )−1

would exist and so ((AT )−1)T A = (AT (AT )−1)T = IT = I and so A−1 would exist.)
Thus both A and AT have determinant zero.

• If A is nonsingular, then as noted earlier in the proof, A = E1 · · ·Ek and det(A) =
det(E1) · · · det(Ek) by Theorem 1. Note that AT = Ek · · ·E1. Since the transpose of
an elementary matrix is elementary, det(AT ) = det(ET

k ) · · · det(ET
1 ) by Theorem 1.
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It is left for you to verify that it follows from the definition of determinants that, if E
is an elementary matrix, then det(ET ) = det(E). This completes the proof.

We can now prove what the text does not:

Theorem 2.1.1 If A is an n× n matrix with n ≥ 2, then det(A) can be expressed as a
cofactor expansion using any row or column of A.

Proof Suppose we want to expand about row k. Perform a series of interchanges so
that row k becomes the first row and the other rows are in order. This can be done by
interchanging k and k− 1, then k− 1 and j − 1, and so on for a total of j − 1 interchanges.
By Lemma 2 the determinant is multiplied by (−1)k−1. Call the new matrix B and note
that det(B) = (−1)k−1 det(A). Expand B using the definition of a determinant. The
matrix obtained by deleting row 1 and column j of B is the same as the matrix obtained
by deleting k and column j of A. Hence

B1j = (−1)1+j det(Mkj) = (−1)k+1(−1)k+j det(Mkj) = (−1)k+1 det(Akj).

Thus, expanding A using row k is the same as expanding B using the first row and
multiplying by (−1)k+1 in other words, it is (−1)k+1 det(B). Since (−1)k−1(−1)k+1 = +1,
this completes the proof for row expansion.

Suppose we want to expand A about column k. This is the same as expanding AT

about row k, which we know from the previous paragraph equals det(AT ). Recall that we
proved det(AT ) = det(A). This completes the proof.

This is enough since now the book’s results can all be proved.
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