Chapter 7 A Definite Integral Whose Indefinite Form Cannot be Done

As you know by now, evaluating integrals is harder than computing derivatives. Another complication is that there are functions $f(x)$, written in terms of functions you know, whose integrals cannot be written in terms of functions you know. To complicate things further, even if $\int f(x) d x$ is such a function, it may be possible to evaluate $\int_{a}^{b} f(x) d x$ for some values of a and b. Of course there are trivial cases such as $a=b$ when the integral is zero. What about nontrivial examples?

One of the most popular ones to show students is $\int_{-\infty}^{\infty} e^{-x^{2}} d x$. This is done using multiple integrals, so it can't be done in this course. Here is an example that can be done:

$$
\begin{equation*}
\int_{0}^{\pi / 2} \ln (\sin x) d x \tag{1}
\end{equation*}
$$

You might like to try doing $\int \ln (\sin x) d x$. You'll find that you cannot.
The integral in (1) is improper because the function is infinite at $x=0$. In this paragraph, we show that it converges. Since $\sin x \geq 2 x / \pi$ for $0 \leq x \leq \pi / 2$, we have $\ln (\sin x) \geq \ln (2 x / \pi)$. Thus

$$
0 \leq-\ln (\sin x) \leq-\ln x+\ln (2 / \pi)
$$

Since $\int \ln x d x=x \ln x-1$, you should be able to show that $\int_{0}^{\pi / 2} \ln (\sin x) d x$ converges.
We now evaluate the integral using $\sin x=2 \sin (x / 2) \cos (x / 2)$ and substitution. First

$$
\begin{aligned}
\int_{0}^{\pi / 2} \ln (\sin x) d x & =\int_{0}^{\pi / 2} \ln (2 \sin (x / 2) \cos (x / 2)) d x \\
& =\int_{0}^{\pi / 2} \ln 2 d x+\int_{0}^{\pi / 2} \ln (\sin (x / 2)) d x+\int_{0}^{\pi / 2} \ln (\cos (x / 2) d x
\end{aligned}
$$

Now let $x / 2=u$ in the last two integrals to obtain

$$
\int_{0}^{\pi / 2} \ln (\sin x) d x=(\pi \ln 2) / 2+2 \int_{0}^{\pi / 4} \ln (\sin u) d u+2 \int_{0}^{\pi / 4} \ln (\cos u) d u
$$

Now let $u=\pi / 2-t$ in the last integral to obtain

$$
\int_{0}^{\pi / 4} \ln (\cos u) d u=-\int_{\pi / 2}^{\pi / 4} \ln (\sin t) d t=\int_{\pi / 4}^{\pi / 2} \ln (\sin t) d t
$$

since $\cos (A-B)=\cos A \cos B+\sin A \sin B$. Putting all this together we have

$$
\begin{aligned}
\int_{0}^{\pi / 2} \ln (\sin x) d x & =(\pi \ln 2) / 2+2 \int_{0}^{\pi / 4} \ln (\sin u) d u+2 \int_{\pi / 4}^{\pi / 2} \ln (\sin t) d u \\
& =(\pi \ln 2) / 2+2 \int_{0}^{\pi / 2} \ln (\sin x) d x
\end{aligned}
$$

Hence the value of the integral in (1) is $-(\pi \ln 2) / 2$.

