
Integrating Powers of Quadratics

Only Example 7.4.8 in Stewart (4th edition) requires integrating a rational function
with a repeated quadratic in the denominator. That example does not deal with the full
generality of the problem. For example, after reading Section 7.4 you will still not be able

to evaluate
∫

dx

(x2 + 1)2
. Normally, this would not be a problem since a table of integrals

would help. Unfortunately, the tables in Stewart lack the standard section called “Forms
Involving (ax2 + bx + c)”. Here are two entries from a typical table:

∫
dx

(ax2 + bx + c)n+1
=

2ax + b

nq(ax2 + bx + c)n
+

2(2n − 1)a
nq

∫
dx

(ax2 + bx + c)n
(1)

∫
x dx

(ax2 + bx + c)n+1
=

−(2c + bx)
nq(ax2 + bx + c)n

− (2n − 1)b
nq

∫
dx

(ax2 + bx + c)n
(2)

where n > 0 and q = 4ac − b2. You can verify them by differentiating both sides. The
formulas are valid even if the quadratic factors into a product of two linear factors. You
can also derive them in a couple of ways.

The first approach is through a somewhat complicated integration by parts. Call the
two integrals I0(n + 1) and I1(n + 1) and let Y = ax2 + bx + c. The table entries can then
be written more concisely as

I0(n + 1) =
2ax + b

nqY n
+

2(2n − 1)aI0(n)
qn

and I1(n + 1) =
−(2c + bx)

nqY n
− (2n − 1)bI0(n)

qn
.

First, use integration by parts on I0(n) with u = Y n and dv = dx to obtain

I0(n) =
x

Y n
+

∫
nx(2ax + b) dx

Y n+1
=

x

Y n
+ n

∫
2(ax2 + bx + c) − bx − 2c

Y n+1
dx

=
x

Y n
+

2n

Y n
− bnI1(n + 1) − 2cnI0(n + 1).

Rearranging, we obtain

bnI1(n + 1) + 2cnI0(n + 1) =
x

Y n
+ (2n − 1)I0(n) (3)

Second, note that
2aI1(n + 1) + bI0(n) = −1/nY n (4)

by using the substitution t = ax2 = bx + c. Equations (3) and (4) can be solved for the
two unknowns I0(n + 1) and I1(n + 1).
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The second approach is by a trig substitution, provided the quadratic does not factor.
In that case, one can complete the square to obtain

ax2 + bx + c = a
(
(x + b/2a)2 + r2

)
where r =

√
4ac − b2

2a

and r is real. The substitution x + b/2 = r tan t converts (1) into

∫
sec2 t dt

(ar2)n+1 sec2n+2 t
= (4a/q)n+1

∫
cos2n t dt, (5)

which can be done by the methods in Section 7.2. However, to obtain (1), it’s necessary
to write ∫

cos2n t dt =
∫

cos2n−2 t dt −
∫

cos2n−2 t sin2 t dt (6)

and use integration by parts on the last integral with u = sin t and dv = cos2n−2 t cos t dt
from which we have v = (− cos 2n − 1t)/(2n−1). After some rearranging and substituting
back to eliminate t. In the process, you must remember that (5) is I0(n + 1) so that the
middle integral in (6) differs from I0(n) by factor of (4a/q)n. The details are left to the
reader.

Example We compute
∫

dx
(x2+4)3 . Apply (1) twice, first with n = 2 and then with n = 1:

∫
dx

(x2 + 4)3
=

8x

32(4x2 + 1)2
+

24
32

∫
dx

(4x2 + 1)2

=
x

4(4x2 + 1)2
+

3
4

(
8x

16(4x2 + 1)
+

8
16

∫
dx

4x2 + 1

)

=
x

4(4x2 + 1)2
+

3x

8(x2 + 1)
+

3
8

arctan 2x
2

+ C,

where the last integral was done by pulling out a factor of 4 from the denominator.
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