- Put your name, ID number, and section number (or time) on your blue book.
- You may have TWO PAGES of notes. NO CALCULATORS are allowed.
- You must show your work to receive credit.
- Please start each problem on a new page.
- 1. (15 pts) The equation $z = 4 x^2 y^2$ describes a surface. Write down an *iterated* integral for the area of that part of the surface that lies above the xy-plane. You need not evaluate the integral.
- 2. (20 pts) Change $(1, \sqrt{3}, 2)$ from rectangular coordinates to
 - (a) cylindrical coordinates and
 - (b) spherical coordinates.

Your answers should give all angles exactly in radians and should *not* contain any inverse trig functions (that is, functions such as \cos^{-1}).

3. (20 pts) Here are two skew lines in parametric form:

$$\langle x(t), y(t), z(t) \rangle = \langle 1, 1, 0 \rangle t,$$

$$\langle x(t), y(t), z(t) \rangle = \langle 0, 1, 2 \rangle t + \langle 1, 1, 1 \rangle.$$

- (a) Find a vector \mathbf{v} that is perpendicular to both lines.
- (b) Compute the minimum distance between the lines.
- 4. (20 pts) Use Lagrange multipliers to find the maximum and minimum values of $f(x,y) = x^2 + 2y^2$ subject to the constraint $x^2 + y^2 = 1$. Also find the xy-coordinates of these extreme values.

5. (30 pts) There are two vector functions $\mathbf{f}(t)$ and $\mathbf{g}(t)$ which are defined and differentiable for all values of t. It is known that

$$f(2) = \langle 1, 0, 2 \rangle$$
, $g(2) = \langle 0, 1, 1 \rangle$, $f'(2) = \langle 1, 1, -1 \rangle$, and $g'(2) = \langle 1, -1, 0 \rangle$.

For each of the following, compute a numerical value or explain why there is not enough information to do so. If your answer is a scalar, it should be written as a single number like 2, not $\mathbf{f}(2) \cdot \mathbf{g}(2)$; if a vector, it should be written in a form like $\langle 1, 2, 3 \rangle$.

- (a) $(\mathbf{f}(t) \cdot \mathbf{g}(t))'$ at t = 2.
- (b) $|\mathbf{f}(t)|'$ at t = 2.
- (c) $(\mathbf{f}(t) \times \mathbf{f}(t))'$ at t = 4.
- 6. (20 pts) Sketch the region of integration and change the order of integration in

$$\int_0^2 \int_{x^2}^{2x} f(x, y) \, dy \, dx.$$

- 7. (15 pts) Suppose that f(x,y) and g(x,y) are continuous and differentiable and that $\langle f(x,y), g(x,y) \rangle$ is the gradient of some function h(x,y). Prove that $f_y = g_x$.
- 8. (20 pts) The equation $z = 4 x^2 y^2$ describes a surface. Write down and evaluate a polar coordinate integral for the volume of the region that lies below the surface and above the xy-plane.
- 9. (20 pts) Compute $\iint_R (x+y) e^{xy} dA$ where $R = \{(x,y) \mid 0 \le x \le 1, \ 0 \le y \le 2\}.$