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1. (30 pts.) Recall that Dijkstra’s algorithm finds shortest paths from v1 to all other
vertices by adding edges linking in the closest points. In the graph shown below, each
edge is bidirectional; that is, you can travel in either direction on it. Edges are
labeled with upper case letters. (Two copies of the graph are provided so you
can use one as a “worksheet” if you wish.)

(a) List edges in order chosen by algorithm: A J H B C D L F R

(b) At each vertex, give the length of the shortest path from v1 to the vertex. Indicate
which graph has your answer.
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2. (25 pts.) Consider the following eight complexity categories (remember lg = log2):

Θ(n) Θ(n2) Θ(2n) Θ(3lg n) Θ(nlg n) Θ(n lg n) Θ((
√

n + lnn)2) Θ(2n+lg n).

(a) Which are equal?
Θ(n) = Θ((

√
n + lnn)2)

(b) Arrange the distinct classes in order from slowest growing to fastest growing. In
other words, if Θ(f(n)) is to the left of Θ(g(n)), then f(n) ∈ o(g(n)).

Θ(n) Θ(n lg n) Θ(3lg n) Θ(n2) Θ(nlg n) Θ(2n) Θ(2n+lg n).
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3. (30 pts.) The average running time for an algorithm is a nondecreasing function of
n and satisifies T (4n) = T (2n) + 2T (n) for all n > 0. Furthermore, T (1) = 1 and
T (2) = 3.
(a) Determine T (2k) as a function of the integer k.

Hint: Set tk = T (2k).
Ans. By the hint, tk+2 = tk+1 + 2tk, where t0 = 1 and t1 = 3. Since the roots of

x2 = x + 2 are x = −1 and x = 2, the general solution to the recursion is

tk = A(−1)k + B2k.

With k = 0 1, we have A + B = 1 and −A + 2B = 3. Hence B = 4/3 and
A = −1/3. Thus T (2k) = (2k+2 − (−1)k)/3.

(b) Determine the complexity class of T (n).
Ans. T (n) ∈ Θ(n) by Theorem B.4.

4. (30 pts.) Suppose we have two sorted lists a1, . . . , an and b1, . . . , bn, both of length n,
that we want to merge to obtain a sorted list of length 2n, say c1, . . . , c2n. To do this,
we must decide where the ai’s fit among the bj ’s to produce the c list. The number
of choices for this is

(
2n
n

) ≥ 4n/(2n1/2).
Suppose the merge is done comparisons of keys. Using the above information,

derive a lower bound for the worst case number of key comparisons that are needed.
Explain your reasoning; don’t just give an answer.

Ans. Each comparison allows us the split the possibilities into two parts. The decision
tree will be binary and must have at least

(
2n
n

)
leaves. Since the longest from

root to leaf in such a tree is at least the log base 2 of the number of leaves,
W (n) ≥ dlg (

2n
n

)e. You could leave off the ceiling function. You could also use
the lower bound for the binomial coefficient to get

W (n) ≥ 2n − lg 2 − (lg n)/2.

By the way, this is nearly achieved by the merge process in mergesort: It’s worst
case number of comparisons is 2n − 1.
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5. (30 pts.) Here is an informal description of a routine Proc that is looking for x in a
sorted list S. The parameters are the ends of the list. While it is looking it does some
processing in ProcLow and ProcHigh.

Proc(lo,hi)
If lo > hi we are done.
k = b(lo + hi)/2c.
If S[k] = x, we are done.
If S[k] < x

Call ProcHigh(k,hi) and Proc(k + 1,hi)
Else

Call ProcLow(lo,k) and Proc(lo,k − 1)
Endif.

End

We begin by calling Proc(1,n). Most of the time is spent in ProcLow and ProcHigh.
In fact, ProcLow(a,b) requires lg(b − a + 1) basic operations and ProcHigh(a,b)
requires (b− a+1) basic operations. (You do not need to know what any of this code
is supposed to do.)
(a) Let W (n) be the worst case running time for Proc(1,n). Give a recursion and

initial condition for W (2n). (In the worst case, x is not in the list.)
Ans. When the length of the list is even, the part above k is exactly half of the list.

The part below k is one shorter and also requires less processing time because
of the “lg”. Hence the worst case will be to always take the right half. Thus
W (n) = W (n/2) + n/2. When n = 2k, W (2k) = W (2k−1) + 2k−1.

(b) Let A(n) be the average running time for Proc(1, n). Assuming x is not in the
list and the probability that S[k] < x is 1/2, give a recursion for A(n). You need
not give an initial condition.

Ans. When n is even, the reasoning in the previous answer gives

A(n) =
A(n/2) + n/2

2
+

A(n/2 − 1) + lg(n/2 − 1)
2

.

When n is odd, similar reasoning gives

A(n) =
A((n − 1)/2) + (n − 1)/2

2
+

A((n − 1)/2) + lg((n − 1)/2)
2

.

There’s no need to write this as a single recursion, but you can. One way to do
so is

A(n) =
A(d(n − 1)/2e) + d(n − 1)/2e

2
+

A(b(n − 1)/2c) + lg(b(n − 1)/2c)
2

.
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6. (65 pts.) Indicate whether true or false. Beware of guessing:

correct answer +5pts. incorrect answer −3pts. no answer 0pts

T Θ(2n+2) = Θ(2n).

T Θ((n + 2)2) = Θ(n2).

F Θ(2n+lg n) = Θ(2n).

T Θ((n + lg n)2) = Θ(n2).

T Greedy algorithms are called “greedy” because they make the best choice at the
present time, without concern for the future.

T Dynamic programming algorithms use a bottom up approach.

F Divide and conquer algorithms use a bottom up approach.

T If a divide an conquer algorithm requires recomputing the same quantity many
times, it is a good idea to look for a dynamic programming algorithm.

T No greedy algorithm is known for the 0-1 Knapsack Problem.

F It is usually fairly easy to determine average and worst-case time complexities for
backtracking algorithms.

F There is a search algorithm that uses comparison of keys and is significantly faster
on average and in the worst case than binary search.

F There is a sorting algorithm that uses comparison of keys and is significantly
faster on average and in the worst case than mergesort.

T Quicksort has a good average run time and a poor worst-case run time.

4 END 4


