
Math 166 One Page of Notes Allowed Final 6/9/99 page 1

1. (30 pts.) Answer briefly in English using a minimum of mathematics.
(a) What is the Church-Turing thesis regarding Turing machines?

Ans. Turing machines can do the same things computers can do. In other words, any
computer algorithm can be done on a Turing machine.

(b) How do certificates and verifiers relate the class NP to ordinary Turing machines?
Ans. Various answers are possible. The basic idea is that L is in NP if and only if

there is a Turing machine V (a verifier) such that every w ∈ L has a certificate
c(w) and V accepts the input w, c(w) precisely for those w ∈ L.

(c) What does “M accepts the string w” mean when M is a nondeterministic automaton
or Turing machine?

Ans. It means that there is some way for M to reach an accept state. (For an au-
tomaton, the accept state must be reached at the end of the input; for a Turing
machine, it can be reached anytime.)

2. (30 pts.) Write regular expressions for the following when Σ = {0, 1}.
(a) (Σ∗1) ∩ (1Σ∗).

Hint: First describe the strings in the language without using “not.”
Ans. This is the strings that do not end in 1 and do not start in 1. A regular expression

is ε ∪ 0Σ∗0.

(b) {w | w has an even number of 0’s, or 1’s, or both}.
(For example, ε, 010, 110, and 1010 are in the language, but 01 is not.)

Ans. An even number of 0’s: (1∗01∗01∗)∗ or 1∗(01∗01∗)∗ are possibilities. Interchang-
ing 0 and 1 gives the result for an even number of 1’s. Taking the union gives
both:

(1∗01∗01∗)∗ ∪ (0∗10∗10∗)∗.

1 MORE 1

Math 166 One Page of Notes Allowed Final 6/9/99 page 2

3. (45 pts.) Beware of guessing:

correct answer +5pts. incorrect answer −3pts. no answer 0pts

F A nondeterministic Turing machine can recognize more languages than a standard
Turing machine.

T Context free grammars can generate languages that DFAs cannot recognize.

F Context free grammars can generate languages that Turing machines cannot rec-
ognize.

T {akbk | 0 ≤ k ≤ 5} is a regular language.

F There are polynomial time algorithms for some NP-complete problems.

F If L is an NP-complete language and M is polynomial-time reducible to L, then
M is also an NP-complete language.

T The class of regular languages is closed under complementation.

F The class of context-free languages is closed under complementation.

F The class of Turing-recognizable languages is closed under complementation.

4. (30 pts.) Construct CFGs that generate the following languages when Σ = {0, 1}.
(a) {wwR | w ∈ Σ∗}, where wR is the reverse of the string w.

Ans. S → ε | 0S0 | 1S1.

(b) {0i1j0k | where i + j = k}.
Ans. S → 0S0 | A A → ε | 1A0.

2 MORE 2

Math 166 One Page of Notes Allowed Final 6/9/99 page 3

5. (30 pts.) Construct PDAs that recognize the following languages when Σ = {0, 1}.
(a) {w | w contains at least two 1’s}.

Ans. Here’s a verbal description. This machine doesn’t even need a stack!
• Loop in the start state until a 1 is seen, then move to q1.
• Now loop in q1 until a 1 is seen and then move to q2, which is the only accept

state.
• Loop in q2 until the input is read.

(b) {0i1j0k | where i + k = j}. Warning: This is not the same language as in 4(b).
Ans. Here’s a verbal description. (As usual, if the PDA gets “stuck” in a state, that’s

a reject.)
• Mark the start of the stack with $.
• Push 0’s onto the stack as long as 0’s are read (a single 0 for each 0 read).
• When 1’s start being read, pop 0’s off the stack as long as 0’s are present,

popping a single 0 for each 1.
• Pop a $ off the stack and push it back on.
• Push 1’s on the stack as long as 1’s are read (one for one).
• Pop 1’s off the stack as long as 0’s are read (one for one).
• Pop $ off the stack and move to the accept state.

3 MORE 3

Math 166 One Page of Notes Allowed Final 6/9/99 page 4

6. (30 pts.) NEQCFG is the set of pairs G1, G2 of CFGs such that G1 and G2 generate
different languages. Prove that NEQCFG is Turing-recognizable. That is, prove that
you can build a Turing machine that will take two CFGs and accept them if and only
if they produce different languages.
Remark: To “build a Turing machine,” it is sufficient to give a high level description
of an algorithm — you need not give details such as state transitions and tape read-
ing/writing.
Hint: Since CFGs can be put in Chomsky normal form, assume that G1 and G2 are
in Chomsky normal form.

Ans. Let G1 and G2 be in Chomsky normal form. For each n > 0:
• Generate all possible strings from G1 that involve at most 2n substitutions.
• Discard all strings of length greater than n.
• Discard all strings that contain variables.
• Repeat the above steps for G2.
• If the two sets of strings differ, accept.

(This will work because all strings of length n is a language are derivable in less
than 2n steps when the grammar is in Chomsky normal form.)

7. (30 pts.) Prove that P (the class of languages decidable in polynomial time) is closed
under complementation and union.

Ans. Suppose L is in P. To decide L, run the Turing machine that decides L. It will
either accept or reject in polynomial time. Do the reverse.

Ans. Suppose L1 and L2 are in P. To decide L1 ∪ L2, run the Turing machines that
decide L1 and L2. Since each decides in polynomial time, this takes polynomial
time. If both machines reject, then reject; otherwise, accept.

4 END 4

