1. True: (a) (c) (d) (e) False: (b) (f)

2. If \(t > 2 \), +1 and −1 are zeroes of \(x^2 - 1 \) in integers. Thus we have at least the eight zeroes obtained by the eight possible sign choices in \((±1, ±1, ±1)\).

3. Suppose \(x, y \in A \cap B \) and \(r \in R \). Then \(x, y \in A \) and \(x, y \in B \). Since \(A \) is an ideal, \(x - y \in A \) and also \(rx, xr \in A \). Likewise for \(B \). Hence \(x - y \in A \cap B \) and also \(rx, xr \in A \cap B \). Thus \(A \cap B \) is an ideal.

Variations are possible. For example, one could replace the \(x - y \) statements with:

Since the intersection of subgroups is a subgroup, \(A \cap B \) is a subgroup under addition.

4. I’ll use commutativity in \(D \) without explicitly mentioning it.

(a) We have \(\varphi(ab) = a^2b^2 = \varphi(a)\varphi(b) \) and \(\varphi(a + b) = a^2 + 2ab + b^2 = \varphi(a) + \varphi(b) \) since \(2ab = 0 \) because \(D \) has characteristic 2.

(b) Suppose \(\varphi(a) = \varphi(b) \). Then \(a^2 = b^2 \) and so \((a - b)^2 = a^2 - 2ab - b^2 + 2b^2 = a^2 - b^2 = 0 \) Since \(D \) has no zero divisors and \((a - b)^2 = 0 \), it follows that \(a - b = 0 \) and so \(a = b \).

Variations are possible. For example, \(a^2 = b^2 \) gives us \(0 = a^2 - b^2 = (a + b)(a - b) \) and so the lack of zero divisors gives us \(a = ±b \). However, \(-x = x - 2x = x \) and so \(a = b \).

(c) The degree of \(\varphi(a) \) is always even, hence no polynomials of odd degree are in the image. Aside: In fact the image is precisely \(\mathbb{Z}_2[x^2] \) because, as you should be able to prove), \(\varphi(p(x)) = p(x)^2 = p(x^2) \).