1. (15 pts.) If A is a subset of the complex numbers, let A^* be the nonzero numbers in A. Recall that \mathbb{Z} are the integers and \mathbb{Q} are the rationals. Answer the following TRUE or FALSE. IF FALSE, YOU MUST GIVE A REASON TO RECEIVE CREDIT.

(a) \mathbb{Z}^* with multiplication is a subgroup of \mathbb{Q}^* with multiplication.
(b) \mathbb{Q}^* with multiplication is a subgroup of \mathbb{Q} with addition.
(c) The 2×2 nonsingular matrices over \mathbb{Q} are a group under multiplication.
(d) The odd permutations in S_9 are a subgroup with the same operation as S_9.
(e) If $\alpha \in S_n$, then $|\alpha| \leq n$.

2. (12 pts.) Let $\alpha = (1534)(245)$ be an element of S_5.

(a) Write α as a product of disjoint cycles.
(b) Compute the order of α; that is, compute $|\alpha|$.
 (This can be done without doing (a), but it is easier if you do (a).)
(c) Determine if α is even or odd and give a reason for your answer.

3. (11 pts.) For each subgroup of \mathbb{Z}_{20}, give its order and a generator.

4. (12 pts.) Let G be a group, $a \in G$ and $H \leq G$ (i.e., H is a subgroup of G). Define $aHa^{-1} = \{aha^{-1} | h \in H\}$.

(a) Prove that $aHa^{-1} \leq G$.
(b) Define $\varphi : H \to aHa^{-1}$ by $\varphi(x) = axa^{-1}$.
 Prove that $\varphi(xy) = \varphi(x)\varphi(y)$.

END OF EXAM