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Chromatic homotopy theory Talk 1

Talk 1: Introduction (Mike Hill)

Mike Hill: I’ll write theorems without hypotheses, so be aware that they should be more
like “slogans”.

Formal groups provide a bridge between algebraic topology and number theory. If you’ve
ever seen a Lie group (or if you haven’t seen one, just the circle); it is a smooth (analytic)
manifolds. The fact that it’s analytic means that the multiplication can be written as a power
series in local coordinates (in a really small neighborhood). In the number theory camp,
I would describe it as algebraic groups, and look at what the multiplication is in a small
neighborhood.

Theorem 1.1. I have a functor sending R → {formal group laws/R} (for a commutative
ring R), and a functor sending R→ {isos of f.g.l./R}, and these are representable. There is
a universal formal group law, and the ring is the Lazard ring.

Theorem 1.2. For nice cohomology theories E,

(1) E0CP∞ has a formal group law

(2) We have a theory of Chern classes for complex vector bundles.

The prototype of such a theory is MU : this gives manifolds together with a complex structure
on the normal bundle. MU is nice and carries the univeral formal group law.

In particular, given a formal group law over R, you have a map from L→ R, and so E∗ has a
map to MU∗ = L. All of the big theorems in the field use this connection.

Question: how do we reverse this connection? Given a formal group law over R, can I find a
cohomology theory that has this formal group law?

Theorem 1.3 (Landweber). Given a ring R and a formal group law F over R, there are
purely algebraic conditions which ensure that there is a cohomology theory R that is nice and
whose formal group law is F . (There is a sequence of elements of R naturally associated to
the formal group law, and you have to check that these form a regular sequence.)

Let’s find some formal group laws and see what the associated cohomology theories are. As
you vary the formal group, how do the cohomology theories vary?

There is a couple of examples of Lie groups you might be thinking of: maybe (R,+), or (R×, ·),
or (C,+), or (C×, ·). Examples:

(1) The additive group

(2) The multiplicative group

(3) Elliptic curves (think of this as a torus C/Z2)

When I talk about elliptic curves, I want to remember the embedding. This ends the list of
the 1-dimensional abelian group schemes. An elliptic curve has an associated formal group
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Chromatic homotopy theory Talk 2

in the same way a Lie group has a formal group (what happens infinitesimally around the
origin). We can ask if these satisfy the Landweber exact functor theorem, and when they do,
you get an elliptic cohomology theory.

Look at the ways you can embed Z3 into C; these form an orbifold. I can have an elliptic
curve over a given base, and these might vary. How can I describe the collection of all possible
elliptic curves? How can I describe the functor that assigns to a given base a collection of
elliptic curves? This is a moduli problem, and it gives rise to a stack.

The final question is: how do families of elliptic curves show up in cohomology theories? I.e.
we want an analogue of LEFT for something like projective space, which is only locally built
out of rings. This was a hugely motivating problem that was solved by Hopkins and Miller,
and refined by Hopkins and Goerss.

Theorem 1.4. There is a sheaf of commutative ring spectra on the moduli of elliptic curves.

The only word I used before in saying this is “elliptic curves”. I have to take several jumps
to get here. The first thing to observe is that cohomology theories are hard to get a handle
on because we’re working in a homotopy theory. If I’m woring with gluing, I need to know
about limits, and those are badly behaved in a homotopy category: this is part of why we
like model categories. Spectra help you do this. The other key observation is that if you add
conditions, it becomes harder and harder for this theorem to not hold. There are lots of maps
between spectra. Instead, instead of considering spectra, consider spectra together with a
multiplication which is super coherently defined, and only consider maps that commute with
the structure. This cuts down the collection of maps to something we can understand.

As I said, we’ve exhausted the list of 1-dimensional formal groups that come from 1-dimensional
abelian varieties. This is the end of a story, as it answers the question about families of elliptic
curves. To go further, we need to understand this in other cases.

Theorem 1.5 (Hopkins-Miller). Given a formal group F over a perfect field k of characteristic
p, the set of deformations is representable.

There’s a functor lurking in the background – if we have a deformation of k (a local ring
R that sits over k with nilpotent maximal ideal and quotient R/m = k, e.g. k = Fp and
R = Z/p2), they show we can get a commutative ring spectrum. From the algebraic geometry
perspective, I haven’t gone anywhere – I’m in a tangent direction, so I’ve turned and noticed
that I’m deformed. The limit of all these rings F/pn is the p-adics. The maximal ideal is not
nilpotent, but is topologically nilpotent.

Theorem 1.6 (Hopkins-Miller). There is an essentially unique commutative ring spectrum
associated to the universal deformation of F over k. They look at the category of perfect fields
with deformations, and show that this is functorial.

Lurie proves a vast generalization of this.
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Chromatic homotopy theory Talk 2

Talk 2: Formal group laws 1 (Dileep Menon and Ningchuan Zhang*)

2.1. Definitions and examples. First consider a 1-dimensional real Lie group G with
identity e and multiplication µ. A Lie group is analytic, so pick an analytic coordinate
neighborhood (U,ϕ) with ϕ : U → R such that ϕ(e) = 0. A priori, this is not closed under
multiplication (it never is, unless it is a component). Let U ′ ⊂ U be an open subset such that
the product of elements in U ′ is contained in U . So we have a map µ : ϕ(U ′)×ϕ(U ′)→ ϕ(U).
The source is an open neighborhood of (0, 0) ∈ R2, and the target is an open neighborhood
of 0 ∈ R. Since the group is analytic, µ is equal to its Taylor expansion, i.e. it’s a formal
power series F (x, y). Since F is induced from the group structure on G, it has to satisfy the
following conditions:

(1) (Unital) F (x, 0) = x and F (0, y) = y

(2) (Associative) F (x, F (y, z)) = F (F (x, y), z)

(3) (Symmetric) F (x, y) = F (y, x) (because 1-dimensional Lie groups are commutative)

Definition 2.1. A formal group law F over a ring R is a formal power series F ∈ R[[x, y]]
satisfying the three conditions.

You might object that we should be calling this a commutative formal group law. But when
R has no nonzero nilpotents, the last condition is implied by the first two (this is nontrivial).

Let’s now switch to the language of algebraic geometry by letting (G, e, µ) be a smooth
1-dimensional group variety over a field k. Now we have a map µ : G×k G→ G. Analogously
to the situation for a Lie group, we can take a formal neighborhood by completing G at e.

We get a formal scheme Ĝ. In this case, since this is a smooth 1-dimensional group variety,

we have Ĝ ∼= Spf k[[t]]. Here Spf k[[t]] has underlying space {e}, with ring k[[t]]. This is not
the same as Spec k[[t]], which is different topologically,

We get µ̂ : Ĝ×k Ĝ→ Ĝ. This can be written as a map Spf k[[x, y]]→ Spf k[[t]]. It is induced
by a map f : k[[t]]→ k[[x, y]]; I claim that the power series f(t) is a formal group law.

When k is algebraically closed and G is connected, then G is isomorphic to:

(1) the additive group (A1,+),

(2) the multiplicative group (A1 − {9},×), or

(3) an elliptic curve.

In these three cases, we can apply the above recipe to get three basic examples of formal
group laws:

(1) the additive formal group law Ga(x, y) = x+ y,

(2) the multiplicative formal group law Gm(x, y) = x+ y−xy (this could also be x+ y+xy
but here I will use x+ y − xy), and

(3) the elliptic formal group law.
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Chromatic homotopy theory Talk 2

Remark 2.2. Formal groups and formal group laws are closely related but different. The
slogan is a formal group = a formal group + a local coordinate. For Lie groups, we took
a neighborhood of e, and a choice of coordinate function. For group schemes, I took a

noncanonical isomorphism Ĝ ∼= Spf k[[t]]. Here, t is a coordinate.

2.2. Maps between formal group laws. Let α : G → H be a morphism of group
schemes. This takes eG 7→ eH . If we complete this map at the identity element, we get

α̂ : Ĝ → Ĝ, which is the same as Spf k[[t]] → Spf k[[t]]. Let f := α̂(t). The fact that
α(eG) = eH says that f(0) = 0. From the definition fo morphism of group schemes, we have a
commutative diagram

G×G
µG
//

α×α
��

G

α
��

H ×H
µH

// H

We can complete at the identity and choose local coordinates, which induces

k[[x, y]] k[[t]]
FGoo

k[[x, y]]

f

OO

k[[t]]

FG

OO

FH

oo

This diagram shows that f(FG(x, y)) = FH(f(x), f(y)). This motivates the definition of a
morphism of formal group laws.

Definition 2.3. A map f : FG → FH of formal group laws is a formal power series f(t) ∈ R[[t]]
such that

(1) f(0) = 0

(2) f(FG(x, y)) = FH(f(x), f(y))

Note that f does not have a constant term: you can write f(t) =
∑
bnt

n+1. I claim that
when b0 ∈ R×, there exists another power series g ∈ R[[t]] such that f(g(t)) = g(f(t)) = t.

Definition 2.4. A map f : FG → FH of formal group laws is called an isomorphism if
f ′(0) ∈ R×. This map is called a strict isomorphism if f ′(0) = 1.

This corresponds to a change of coordinates. A strict isomorphism preserves the trivialization
of Lie algebras.

Definition 2.5 (Change of base). Let f be a formal group law over R. Let ϕ be a ring
homomorphism R → SS. Let F (x, y) =

∑
aijx

iyj . Define ϕ∗F (x, y) =
∑
ϕ(aij)x

iyj .
(Despite the notation, really this is pullback in the algebraic geometry sense, since ϕ is a
morphism SpecS → SpecR.)

2.3. Classification over Q. More generally, this is a classification over Q-algebras.
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Chromatic homotopy theory Talk 2

Claim 2.6. Formal group laws over Q (or Q-algebras) are strictly isomorphic to the additive
formal group law.

Proof. Let’s construct a strict isomorphism f : F → Ga. By the definition of strict
isomorphisms, we know:

(1) f ′(0) = 1

(2) f(F (x, y)) = f(x) + f(y)

Now solve for f by taking partial derivates w.r.t. y at y = 0. On the LHS, by chain rule you
get Fy(x, 0)f ′(F (x, 0)) = Fy(x, 0) · f ′(x), and on the RHS you get 1. So f ′(x) = 1

Fy(x,y) and

f(x) =
∫ x

0
dt

Fy(t,0) . Here we are using the fact that we are working over Q to take the integral,

because there might be arbitrary (integer) denominators. Check that f(0) = 0, f ′(t) = Fy(t, 0)

so f(t) =
∫ t

0
d

Fy(x,0) . One can check that f is a strict isomorphism F → Ga. �

For example, the isomorphism Gm → Ga over Q is

f(t) =

∫ t

0

dx

1− x
= − log(1− t) =

∑
n≥1

tn

n

Definition 2.7. The logarithm of F is the formal power series f(t) =
∫ t

0
dx

Fy(x,0) ∈ R⊗Q[[t]].

The integrand dx
Fy(x,0) is called the invariant differential ; note that it is always defined over R.

To justify this I have to introduce elliptic curves, so I’ll leave that to a later talk.

2.4. The universal formal group law. Recall that a formal group law is a formal power
series F (x, y) =

∑
aijx

iyj ∈ R[[x, y]] such that F (x, 0) = x, F (0, y) = y, F (F (x, y), z) =
F (x, F (y, z)), and F (x, y) = F (y, x). From here we see that the formal group law is determined
by the aij , but we can’t randomly pick aij ’s because they have to satisfy these conditions.

Let L = Z[aij ]/ ∼, where the relations are: a0,j = ai,0 = 0 for i, j 6= 0, a0,1 = a1,0 = 1 (the
power series always starts with x+ y + . . . ), ai,j = aj,i, and another condition corresponding

to associativity which is harder to write down. (Set F (F (x, y), z) =
∑
bi,j,kx

iyjzk and

F (x, F (y, z)) =
∑
b′i,j,kx

iyjzk.)

Proposition 2.8. There is a correspondence

HomRing(L,R) = {fgl’s over R}
sending ϕ 7→

∑
ϕ(ai,j)x

iyj. There exists a universal formal group law over L, namely
Funiv(x, y) =

∑
ai,jx

iyj. Note the first map is ϕ 7→ ϕ∗Funiv.

Let W = L[b1, b2, . . . ]. There is a correspondence

HomRing(W,R) = {strict isomorphisms f : F1 → F2 over R}.
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Chromatic homotopy theory Talk 2

Where does this send ϕ? The source is F1 = ϕ∗Funiv =
∑
ϕ(ai,j)x

iyj, and the target satisfies
F2(f(x), f(y)) = fF1(x, y), so F2 = fF1(f−1(x), f−1(y)). The morphism f is given by
f = t+

∑
i≥1 f(bi)t

i+1.

This gives rise to a functor Rings→ Groupoids sending R 7→ (FGL(R),StrictIso(R)) (i.e. the
objects are formal group laws over R, and the morphisms are strict isomorphisms between
them). This functor is represented by a pair (L,W ). This implies (L,W ) is a Hopf algebroid.

L

ηL
$$

ηR

==W
εoo ∆ // W ⊗LW

The left counit ηL is inclusion, the right counit ηR is the coaction, the coaugmentation ε is the
quotient by bi, the antipode c corresponds to inversion of strict isomorphism, and the diagonal
is composition of strict isomorphisms. Furthermore, (L,W ) is a graded Hopf algebroid: if we
write Funiv(x, y) ∈ L[[x, y]], set |x| = |y| = −1 (the reason for this will be explained in a later
talk). We want F to be homogeneous of degree −2, so this forces us to set |ai,j | = 2i+ 2j − 2.
The universal strict isomorphism f(t) =

∑
bit

i+1 should have |t| = −2 and |bi| = 2i.

2.5. Aut(Ga) over Z/p. Strict isomorphisms f(t) : Ga → Ga have f(t) =
∑

i=0 bit
i+1

and b0. Plugging in f(x+ y) = f(x) + f(y) gives
∑
bi(x+ y)i+1 =

∑
bi(x

i+1 + yu+1). Since
we’re working over Fp, we get bi = 0 unless i+ 1 = pk. Let’s relabel the coefficients ck = bpk−1

(so |ck| = 2(pk − 1)). So
AutGa = SpecZ/p[c1, c2, . . . ].

Let f(t) =
∑
ckt

pk and g(t) =
∑
dkt

pk be strict isomorphisms Ga → Ga. The composition
law is given by

f(g(t)) =
∑

ci(
∑

djt
pj )p

i

=
∑
k

∑
i+j=k

cid
pi

j t
pk

∆(ck) =
∑
i+j=k

cp
j

i ⊗ cj

This is the formula for the diagonal on the dual Steenrod algebra!

Remark 2.9. This argument recovers a sub-Hopf algebra of the dual Steenrod algebra
P∗ ⊂ A∗, where

P∗ =

{
P (ξ2

1 , ξ
2
2 , . . . ) when p = 2

P (ξ1, ξ2, . . . ) when p is odd.

(The ξ’s are squared because of the grading.)

Recall L = Z[aij ]/ ∼.

Theorem 2.10 (Lazard). There is an isomorphism L ∼= Z[x1, x2, . . . ] where |xi| = 2i.
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Chromatic homotopy theory Talk 3

Define polynomials Cn(x, y), called symmetric 2-cocycles:

Cn(x, y) = γn((x+ y)n − xn − yn) where γn =

{
p if n = pk

1 otherwise.

The precise statement of Lazard’s theorem is:

Theorem 2.11. Over L′ = Z[x1, x2, . . . ] there exists a formal group law F (x, y) such that

F (x, y) ≡
∑

xnCn+1(x, y) (mod (x1, x2, . . . )
2).

Then the map L→ L′ that classifies this formal group law is an isomorphism.

Talk 3: Stable homotopy theory (Tyler Lawson*)

The goal of stable homotopy theory is to construct and classify maps between topological
spaces. We have homotopy groups πn and (co)homology groups Hn(X). These are designed to
go together: in order to understand maps X → Y up to deformations, if we know information
about πnY and Hn(X) we can put those together to find out information about maps X → Y .
Homology tells you about how something is built, and homotopy tells you about how something
is mapped into.

Ordinary homology starts off in the following way. We have a category of spaces, and a
functor H∗ : Spaces → (graded) abelian groups. Out of a space, we strip out a sequence of
algebraic information. Unfortunately, the abelian groups by themselves are hard to work with
unless you have the information

Chain complexes/Z

��

Spaces
H∗//

55

(Graded) abelian groups

C∗ takes disjoint unions to direct sums, takes pushouts to pushouts (in some derived sense),
and takes Cartesian products of spaces to tensor products of chain complexes. Spaces and
chain complexes have a different notion of equivalence:

Spaces

mod by ∼
��

C∗ // Chain complexes

mod by qis.
��

Homotopy category // Derived category

The derived category D(Z) of chain complexes over Z is abelian-ish.

There are several equivalent ways to get C∗ or something like it. One of them is called the
singular complex (this is what you see in Hatcher’s textbook); it is very robust. There are
also more delicate answers that turn out to be more useful sometimes.

One of the more unusual way to get homology groups is the following. Associated to the space
X, we can construct a new space AG(X), the free topological abelian group on X. Imagine
that we can take formal sums and differences of elements of X, and figure out what topology
to put on this for it to make any sense. This is due to Dold and Thom.
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Chromatic homotopy theory Talk 3

Theorem 3.1. For nice X, Hn(X) ∼= πn(AG(X)).

Think of homology as stripping out the abelian information. We can think of C∗ as an
abelianization functor that lands in an abelian category.

From this chain functor C∗, we can construct new homology theories. For example, we can
take homology with coefficients Hn(X;A) = Hn(C∗(X)⊗A), or cohomology with coefficients
Hn(X;A) = homotopy classes of chain maps C∗(X)→ A[n] = ΣnA (here A[n] is the shift of
A thought of as a complex concentrated in degree n). (Warning: Weibel has the opposite
convention A[−n] for this.)

This makes C∗ universal among these abelian-type homology theories. But there are many
other geometric theories that are not recovered this way. There is K-theory (studying real (or
complex) vector bundles on a space), or looking at different ways a manifold can map to your
space. Many of these are very natural, but you can’t recover them from the singular chain
complex.

Is there a way to capture these other theories by moving to something more refined than just
abelianization? Stable homotopy theory adjusts and captures these others. There is a very
similar picture:

Spaces

mod by ∼
��

Σ∞ // “Spectra”

mod by ∼
��

Homotopy category // Stable homotopy category

Just like the chain functor (which took derived pushouts to derived pushouts, etc.), Σ∞

takes (derived) colimits to (derived) colimits, and it takes a product × in spaces to a product
(called the smash product) in spectra; the target (the stable homotopy category) is a tensor
triangulated category. This has mapping cones, so you get long exact sequences, etc.

If E is any object in the stable homotopy category, you get a new homology and cohomology
theory

En(X) = π∗(E ∧ Σ∞X)

En(X) = MapSHC(Σ∞X,E[n])

If we know about E, this tells us more about E∗ and E∗. For example, there’s a notion
called being a ring spectrum: this means that you have maps in the stable homotopy category
µ : E ∧ E → E and the unit η : S → E (where S is the sphere spectrum, i.e. Σ∞(∗)). One
can ask for it to be associative or commutative by asking for certain diagrams to commute.
This is a notion that exists in the homotopy category of spectra. The corresponding “ring”
notion in just Spectra is a strictly/ coherently commutative ring spectrum. (The meaning of
“ring” depends on what category you’re talking about.)

Aside: there’s always a fold map E t E → E, and there’s always a diagonal E
∆→ E × E, so

you can compose these to compose maps.
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If E is a ring spectrum, then E∗X naturally has a multiplication Ep(X)→ Eq(X)→ Ep+q(X).
If it has an associative property then this map is multiplicative, etc.

Every cohomology theory is represented in the stable homotopy category. This is the “universal”
place where all homology and cohomology theories live. This is good: this gives us legitimate
information about the stable homotopy category (everything else I said would have been
satisfied by a functor to the zero category). We need to get more information, and the way to
do that is by calculating: we need to find what makes the stable homotopy category tick and
what makes it different from other categories like D(Z).

Write [X,Y ] = MapSHC(X,Y ). The first tool developed for this purpose is obstruction theory.
Spectra have homotopy and (co)homology, and there’s a method (spectral sequence) for
putting those together: Hs(X,πt(Y )) =⇒ [X,Σt−sY ]. There are a couple problems: first
you need to calculate π∗Y , which is the information we wanted out; also, this has different
perspectives on the source and target (know X by its homology and Y by its homotopy). We
would like to get a more uniform approach.

The cellular method is a little more sophisticated. If we know a set of building blocks (e.g.
the spheres Sn), and we know all the maps Sn → Sn, all the maps Sn → Y , and we know
how hard it is to build X out of Sn, then we can et information about maps X → Y . The
information of the maps Sn → Sn is completely encapsulated by knowing π∗S, a graded
commutative ring. Knowing maps Sn → Y is completely encapsulated by knowing π∗Y . If
we know these, and know how hard it is to construct a projective resolution over π∗S, then
you can calculate the spectral sequence

Extsπ∗S(π∗X,π∗Y [t]) =⇒ [X,Y [t− s]].
This says that the stable homotopy category looks a lot like the algebraic category D(π∗S-mod).
Problem: even worse, we need to know π∗, and π∗S is, to put it mildly, unpleasant. This
serves as sort of a goal, but it’s not useful for doing calculations.

Homology and cohomology are a lot more calculable than homotopy groups. The “flipped”
cellular method due to Adams starts with a different set of building blocks: we start with HFp
(Eilenberg-Maclane spectrum), which is constructed so that it has only one nonzero homotopy
group. Then we look at possible shifts of this. Instead of knowing maps between spheres,
and maps from spheres into Y , we try to find if we can find all maps HFp[n]→ HFp[m], and
look at how hard it is to build the target Y out of them. This is an algebra, and it’s known:
it’s called the mod p Steenrod algebra A∗. It has certain generators and relations involving
binomial coefficients. We also need to know X → HFp[n] = H∗X as a module over A∗, and
need to know how hard it is to build Y out of HFp[n]’s (resolving H∗(Y ) over A∗). So the
resulting spectral sequence is

ExtsA∗(H
∗Y,H∗X[t]) =⇒ [X,Y [t− s]]

(actually, it only recovers the completion of the RHS). This is called the Adams spectral
sequence. It is very effective. Renee Thom used this to classify manifolds modulo bordism.

One weird thing about this is the variance shift. It tends to turn disjoint unions into products,
which are much bigger and you have to fend off the axiom of choice. We would rather dualize
this: A∗ has a dual A∗, and we can dualize the property of being an A∗-module A∗⊗M →M
by the property of being an A∗-comodule M → A∗ ⊗M . A∗ is a commutative ring (analyzed
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Chromatic homotopy theory Talk 4

by Milnor) that looks like Fp[ξi]⊗Λ[τi] for p > 2 and Fp[ξi] for p = 2, and there’s a coproduct
that we saw in the last talk.

A∗ is some kind of affine group scheme, and H∗X is a representation of A∗. We can instead
recast this:

ExtA∗-rep(H∗X,H∗Y ) =⇒ [X,Y ]

(completed, again). This is a little more uniform, and it generalizes. If E is a ring spectrum
(which this makes E∗ a ring) such that π∗(E ∧E) is a flat right π∗E-module, then the pair
(π∗E, π∗(E ∧E)) form a Hopf algebroid. (Hopf algebroids are a construction opposite to being
a group object in rings.) E∗(X) is a representation of it, and we get the Adams-Novikov
spectral sequence:

Ext(E∗,E∗E)-rep(E∗X,E∗Y [t]) =⇒ [X,Y [t− s]].
This gives us a lot more possibilities: we started with two tools, homology and homotopy.
This says that, actually, there’s a ton of other objects, and each of them provides a lens
into what the stable homotopy category might look at. They also can interpolate between
homotopy, which is hard to compute but contains a lot of information, and homology, which
is easy to compute but loses a lot of information. This is saying that the stable homotopy
category tries to be like the derived category of (E∗, E∗E)-representations, for all E.

Talk 4: Complex orientable cohomology theories (Janis La-
zovskis and Maximilien Holmberg-Peroux*)

Recall: let L be the Lazard ring, and (L,W ) the Hopf algebroid we talked about earlier. The
goal is to give a homotopical description of this. Quillen’s theorem says that L ∼= π∗MU .

4.1. Complex orientation.

Definition 4.1. A spectrum E is a collection (En, σn)n∈Z where En ∈ Top∗ and σn are maps
ΣEn → En+1.

Recall that CP∞ ' BU(1) ' K(Z, 2). This means that H∗(CP∞) ∼= Z generated by the
map S2 ∼= CP1 ↪→ CP∞. This can be regarded as a map Σ∞S2 → Σ∞CP∞, i.e. a map
i : S → Σ∞−2CP∞.

Definition 4.2. A ring spectrum E is complex orientable if the map i∗ : Ẽ2(CP∞) ↪→
Ẽ2(S2) ∼= Ẽ0(S0) = π0(E) = [S,E] is surjective.

Saying that i∗ is surjective means that there is an element xE ∈ Ẽ2(CP∞) such that i∗(xE) =
1 ∈ π0(E). Such a class xE is called a complex orientation.

Recall: Ẽk(X) = colimn[ΣnX,Ek+n].

14
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The element xE ∈ Ẽ2(CP∞) corresponds to a map Σ∞CP∞ → E. There is a diagram

Σ∞CP∞
xE // E

S

i

OO

η

::

For example, suppose E = HZ. In that case, i∗ : H2(CP∞;Z) → H2(S2) ∼= Z is an
isomorphism. Here xE is the first universal Chern class for E.

Example 4.3. Let E = KU , complex K-theory. By Bott periodicity, K̃U
2
(CP∞) ∼=

K̃U
0
(CP∞). Then xKU = [`]− 1C, where ` is the universal complex line bundle.

4.2. Formal group law for xE. Recall H∗(CP∞;Z) ∼= Z[[c1, c2, . . . ]] where ci are the
Chern classes.

Proposition 4.4. E is complex orientable with complex orientation xE = x.

(1) E∗(CP∞) ∼= π∗E[[x]]

(2) E∗(CP∞ × CP∞) ∼= π∗E[[x1, x2]]

Proof. Use the Atiyah-Hirzebruch sequence, which says

Hp(CPn, πq(E)) =⇒ Ep+q(CPn)

for n ≥ 1. This spectral sequence degenerates at page 2. Then use the fact that CPn is a
colimit of CPn’s. �

So there exists a multiplication m for CP∞ × CP∞ → CP∞, given by a map CPn × CPm →
CPn+m+1, which classifies the tensor product of line bundles.

We have
m∗ : π∗E[[x]] ∼= E∗(CP∞)→ E∗(CP∞ × CP∞) ∼= π∗E[[x1, x2]].

Proposition 4.5. Let µE(x1, x2) be the image of x in the map above. Then µE(x1, x2) is a
formal group law over π∗E.

For example, suppose E = HZ. Then µHZ(x1, x2) = m∗(G) = x1 + x2 (the additive formal
group law). If E = KU , then xKU = [`]− 1C. Then m∗(x) + 1 = m∗(x+ 1) = m∗(`) = `1`2 =
(x1 + 1)(x2 + 1). So µKU (x1, x2) = x1 + x2 + x1x2, the multiplicative formal group law.

4.3. Thom spaces.

Definition 4.6. Let p : E → B be a real vector bundle of rank r. Then the Thom space
Thom(p) = D(E)/S(E) where D(E) is the disc bundle (on each fiber take the vectors of

15
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length ≤ 1) and S(E) is the sphere bundle (on each fiber take the vectors of length = 1). You
need a metric to do this; it works for paracompact E.

You can think of the Thom space as being a twisted suspension of the space B, just as a
vector bundle is a twist of the product.

Let p : B × Rr → B be the trivial projection. Then Thom(P ) = B ×Dr/B × Sr−1 = ΣrB+.
If you don’t believe this, take the case where r = 1: this is just the cylinder on B modulo
the caps. But in general, p is not simply a projection, which is why I said this is the twisted
suspension.

Finally, Thom is functorial: it is a functor from R-vector bundles to Top∗.

4.4. Constructing MU . Define MU(n) = Thom(ξn), where ξn : l→ BU(n)E(n) is the
universal vector bundle of rank r. (You can think of this as an R-vector bundle by using the
fact that C ∼= R2.) There is a canonical map BU(n)→ BU(n+ 1), which is induced by the
inclusion Cn ↪→ Cn+1 sending x 7→ (x, 0), which gives rise to a map U(n)→ U(n+ 1).

Consider the pullback

E(n)⊕ C //

ξn⊕1

��

E(n+ 1)

n+1
��

BU(n) // BU(n+ 1)

This is because nothing happens on the (n+1)st coordinate. So Thom Thom(ξn) = Thom(ξn⊕
12
R)→ Thom(ξn+1) = MU(n+ 1). Since MU(n) = Thom(ξn), this gives a map Σ2MU(n)→
MU(n+ 1).

We want to define the spaces in the spectrum MU as MUn = MU(n), but this isn’t quite the
right thing to do, because our suspension maps suspend by 2, not 1.

Definition 4.7. Define (MU)2n = MU(n) and (MU)2n+1 = ΣMU(n).

Remark 4.8. Originally, when Thom studied this spectrum, it had a very deep geometrical
meaning: π∗MU = ΩU

∗ (∗) where Ω∗ is the cobordism ring.

This is a ring spectrum: we have maps MU ∧MU →MU induced by BU(n)×BU(m)→
BU(n+m) (take an n× n matrix and an m×m matrix and put them together in a block

diagonal to get a (n+m)× (n+m) matrix). We also have S
η→MU induced by S0 →MU(0).

Note that Thom(ξ0) = ∗+ = S0, so S0 →MU(0) is the identity.

Why is it complex orientable? This is because MU(n) ' BU(n)/BU(n− 1) for n ≥ 1.

We want xMU ∈ M̃U
2
(CP∞) = colim[ΣnCP∞, (MU)2n+1]. This is induced by a map CP∞ →

(MU)2 = MU(1). But MU(1) = BU(1)/BU(0) ' BU(1), and CP∞ ' BU(1)
'→MU(1) is

our complex orientation. I still have to check that i∗(xMU ) = 1 ∈ π0(MU).

16
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To see this, note that Σ2S0 = Σ2MU(0) → MU(1) = CP∞ is just i. So you get a formal
group law µMU (x1, x2) on π∗(MU).

It turns out that MU is the universal complex orientable cohomology theory: there is a
correspondence between complex orientations xE of E and maps MU → E, where xMU 7→ xE .

Given g : MU → E, define xE : Σ∞−2CP∞
xMU

→ MU
g→ E.

Theorem 4.9 (Quillen). The ring homomorphism L→ π∗MU is an isomorphism.

Recall: a pair of rings (A,Γ) is a Hopf algebroid if (SpecA,Spec Γ) is a groupoid object in
affine schemes.

Proposition 4.10. If E is a commutative ring spectrum such that π∗(E ∧ E) is a flat left
π∗E-module, (π∗E, π∗(E ∧ E)) is a Hopf algebroid.

The Hopf algebroid structure is

π∗E
))

55
π∗(E ∧ E) // π∗(E ∧ E)⊗ π∗(E ∧ E)

The two unit maps π∗E → π∗E ∧ E are given by S ∧ E → E ∧ E and E ∧ S → E ∧ E. The
others are described in the problem set.

By Quillen’s theorem, there is an isomorphism of Hopf algebroids (L,W ) ∼= (π∗MU,MU∗MU).

First, we need to understand π∗(MU ∧MU).

Proposition 4.11. Let {bi} be the top dual basis of E∞(CP∞) ∼= π∗E[[x]]. Then π∗(E ∧
MU) = π∗E[b1, b2, . . . ] and π∗(MU ∧MU) ∼= L⊗ Z[b1, b2, . . . ], where bi are the classes with
|bi| = 2 from the earlier talk.

Let E be any complex oriented cohomology theory. Then E ∧MU is also a complex oriented
cohomology theory in two ways, via the maps Σ∞−2CP∞ →MU ∼ S ∧MU → E ∧MU and
Σ∞−2CP∞ → E ∼ E ∧S → E ∧MU . Call these xMU and xE , respectively (even though this
is sort of abuse of notation).

Let R = π∗(E ∧MU) = π∗E[b1, b2, . . . ]. Then R[[xMU ]] ∼= (E ∧MU)∗(CP∞) ∼= R[[xE ]]. You
can write xMU = f(xE) for some power series f , where f(1) = t + b1t

2 + b2t
3 + . . . . Then

m∗(xE) = µE(xE1 , x
E
2 ), m∗(xMU ) = µMU (xMU

1 , xMU
2 ). This also implies that µMU (x, y) =

fµE(f−1(x), f−1(y)). This gives the two unit maps L⇒W .

Talk 5: Elliptic curves (Cody Gunton* and Chris Kapulkin)

5.1. Elliptic curves over C. Given Λ ⊂ C a free abelian rank 2 subgroup, I can form
the quotient C/Λ. Someone else will talk about how to parametrize the Λ’s, but for now we
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only consider one Λ at a time. Associated to a given Λ is

℘Λ(z) =
1

z2
+
∑

06=λ∈Λ

(
1

(z − λ)2
+

1

λ2

)
.

This determines an embedding C/Λ ↪→ P2(C), which sends z 7→ (℘(x) : ℘′(x) : 1). There is a
differential equation the ℘ satisfies:

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.

As you vary the lattice, Gi are functions; but for now, they’re just constants. Conversely, if I
start with a genus 1 surface, the universal cover is C, and that gives rise to a lattice.

I have to add a point: the image compactifies to a curve E containing a special point
O = (0 : 1 : 0). There’s a group law on C/Λ, and that transfers to a group law on the image
curve, which we describe in different terms. Let P,Q ∈ E, and let L be the line in P2 through
P and Q (if P = Q this is the tangent line). Let R be a third point on L ∩E. Let L′ be the
line through O and R. Define P +Q to be the third point on L′ ∩ E.

Proposition 5.1. This defines a group structure on E.

5.2. Elliptic curves over an arbitrary field K. Let R be a (commutative, unital)
ring. A Weierstrass polynomial over R is defined to be a polynomial of the form

f(x, y) = y2 + c1xy + c3y − x3 + c2x
2 + c4x+ c6 ∈ R[x, y].

(Beware: there is no c5, and c1, . . . , c6 means without c5.)

Definition 5.2. The universal Weierstrass polynomial is the polynomial f(x, y) = y2 +c1xy+
. . . in Z[c1, . . . , c6][x, y].

Definition 5.3. Let K be a field. A Weierstrass curve will be the projective curve determined
by a Weierstrass polynomial over K. It still contains the point O = [0 : 1 : 0].

Definition 5.4. An elliptic curve over K is a smooth Weierstrass curve over K.

The composition law in terms of lines can be described in terms of a formula, and that formula
makes sense on the smooth locus on a Weierstrass curve. This is a little less standard.

Fact 5.5. Let Creg(K) be the smooth locus of a curve C over K. If C is a Weierstrass curve
over K, then Creg(K) is a group.

Theorem 5.6 (Bézout). Two curves X,Y in P2
K with no common irreducible component

intersect in degX deg Y points (with multiplicity).

The degree is a property of how the curves are embedded (given by polynomials).
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Fact 5.7. Let C be a geometrically irreducible1 plane curve. Then every line in P2 intersects
a singular point of C with multiplicity ≥ 2.

Corollary 5.8.

(1) There is at most one singular point on a Weierstrass curve over K.

(2) The chord-and-tangent law restricts to Creg(K).

Proof. (1) Suppose there are two singular points P and P ′. Then the line between them
contradicts Bézout’s theorem.

(2) If P +Q is singular, the line from O to P +Q contradicts Bézout’s theorem. �

The discriminant ∆ is a polynomial in the coefficients of the Weierstrass form that detects
the singularity type of the curve. It comes from some general fact about resultants.

If you’re not in characteristic 2 or 3, then there is a change of coordinates that gets the
Weierstrass form into a polynomial of the form y2 = x3 + c4x+ c6. References for everything
so far: Silverman’s book. In this case, there is a simple formula for the discriminant.

Proposition 5.9. Let C be a Weierstrass curve over K. Then one of the following hold:

(1) C is smooth, ∆ 6= 0, and Creg = C is an elliptic curve;

(2) C is singular, ∆ = 0, c4 6= 0, and Creg

K
∼= Gm,K ; or

(3) C is singular, ∆ = 0, c4 = 0, and Creg

K
∼= Ga,K .

Proposition 5.10. A curve C is elliptic iff it is genus 1, smooth, projective, and geometrically
integral2, with a K-rational point O.

5.3. Weierstrass curves over any ring R. Let S = SpecR. Given a Weierstrass
polynomial f over R, you can form SpecR[x, y]/f . This will compactify to a projective

S-scheme C
π→ S. This can be recorded as a family of Weierstrass curves over fields: for every

s ∈ S, the fiber is Cs = Spec(ks[x, y]/f) where ks = Rs/sRs. (The fiber can also be written
as a tensor product (R[x, y]/f)⊗R Rs/sRs.)

Definition 5.11. A relative curve of genus 1 is an S-scheme that is finitely presented, proper,
and flat such that every fiber has arithmetic genus3 1.

A relative elliptic curve is the same thing, where you replace flat with smooth, and with a
section S → C.

1A curve is geometrically irreducible if, when you tensor up to an algebraically closed extension, it’s irreducible
2I think geometrically integral means it’s integral when you tensor up to K.
3The arithmetic genus of a curve C is Pa := h1(OCS ).
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This is in Deligne’s article “. . . Formulaire” in the Atwerp 1972(?) conference proceedings
(eds. Birche, Kuye).

There exists an S-scheme4 Creg → S such that (Creg)S = (CS)reg. One has:

Proposition 5.12 (Deligne-Rapoport, 2.7). Creg → S is a group.

5.4. Deriving the formal group law associated to Creg π→ S. The identity section
e : S → Creg is a closed embedding 0→ I → OCreg → e∗OS → 0. Take the formal completion
to have topological space the underlying space of S, and sheaf of rings limn e

−1(OCreg)).

Suppose we have an elliptic curve E over K defined by a Weierstrass polynomial f . We have
a map O : SpecK → E picking out the origin O = (0 : 1 : 0). Change coordinates to O:
send (x, y) 7→ (z, w) = (xy ,

1
−y ). Assume I have the Weierstrass curve in the following form

(although you can still do this with the more complicated form):

y2 = x3 + c4x+ c6.

Now x = z/w and y = −1/w, so this turns into 1
w2 = z3

w3 + c4
z
w + c6, or

w = z3 + c4z + c6w
3.

You can recursively plug this into itself: w = w(z, w). The idea is that it starts to stabilize:
the w’s appearing in higher iterations start to appear further and further out. Eventually,
you get w = z3(1 +A1z +A2z

2 + . . . ).

Work in the formal (z, w)-plane. Use the chord-and-tangent rules formally; I will produce
a formal group law. Connect (z1, w(z1)) and (z2, w(z2)) to get a line of slope λ(z1, z2) :=
w(z2)−w(z1)

z2−z1 . I can expand this as a formal power series. You get a line W = λZ − ν. Now
substitute this W into my Weierstrass equation, and divide formal power series to get a third
point. I just have to get a formal reflection law. The z-coordinate of the third point is

z3 = −z1 − z2 +
c1λ+ c3λ

2 − c2y − 2c$λν − 3c6λ
2ν

1 + a2λ+ a4λ2 + a6λ3
.

The formal group law is
F (z1, z2) = i(z3(z1, z2))

where i is the reflection rule i(z) = x(z)
y(z)+a1x(z)+a3

.

Talk 6: Recap (Kyle Ormsby*)

In 2.1, we’ll talk about Lubin-Tate deformation theory. We define the height of a formal
group law (some invariant), and find the universal deformation of a height n formal group law
F over a perfect field k. We’ll then see how End(F ) act on deformations.

In 2.2, we’ll hear about local class field theory. This classifies abelian extensions of a local
field F , and classifies these in terms of the subgroups of F×. This can all be phrased in terms
of an Artin reciprocity map recF : F× → Gal(F ab/F ).

4An S-scheme is a scheme with a map to S
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In 2.3, we’ll get to the Landweber exact functor theorem. This answers the following question:
suppose F is a graded formal group law over a graded ring R. By the Quillen theorem, this is
then classified by a map L = MU∗ → R. This gives R an L-module structure. Then we can
ask the question: when is X 7→MU∗X ⊗MU∗ R a generalized homology theory? We need this
to preserve exact sequences, so flatness (of R over MU∗) is a natural condition to ask for, but
the Landweber exact functor theorem gives a weaker condition than flatness.

Finally, we’ll get to modular forms in 2.4. We’ll learn that these are functions on the set of
elliptic curves satisfying some sort of modularity condition. Depending on what you think
of when I say “set of elliptic curves”, this could mean various things – it could be the set of
elliptic curves over C, or the stack of elliptic curves.

Talk 7: More fun with formal groups (Padma Srinivasan* and
Isabel Vogt*)

Yesterday, we fixed a commutative ring R and studied the set of formal group over R:

FGL(R) = {F ∈ R[[x, y]] : F satisfies . . . }
for some conditions.

Alternatively, any power series F ∈ R[[x, y]] gives rise to a functor FF : commutative R-algebras→
Sets with a binary operation taking S 7→ (NS ,⊕) where NS is the set of nilpotent elements
of S and n1 ⊕ n2 = F (n1, n2). Then a power series F is a formal group law iff FF factors
through abelian groups. Furthermore, FF is “representable” by (Spf R[[t]], F ).

We want to understand the functor commutative rings→ sets sending R 7→ FGL(R). Yester-
day, we said this is representable by the Lazard ring. This is way too big. We want to cut
this down so we’re studying an object of finite type. So we study formal group laws up to
strict isomorphism.

Proposition 7.1. If R is a Q-algebra, then FGL(R) is a single point.

This prompts us to ask whether this is a single point for all rings R. The answer is “no”. Fix
a perfect field of characteristic p > 0. We want to understand FGL(k)/ ∼. We will also be
more brave and study formal group laws over other rings – deformations of this field.

Notation:

• O is a nilpotent thickening of k (this is an Artinian local ring with O/m = k)

• m is a maximal ideal which is nilpotent

• k = O/m is a perfect field of characteristic p > 0

To show that FGL does not always give a single isomorphism class, we will define an invariant
and show that it can take on different values.

Fix F ∈ FGL(k) and n ∈ Z. You get a natural transformation

FF
[n]→ FF
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induced by the “multiplication-by-n” on groups. This gives rise to a map Spf R[[t]]
[n]→ Spf R[[t]];

in the opposite direction, it sends t to [n](t) = F (t, [n− 1]t) = F (t, F (t, [n− 2]t)) = . . . . This
is a power series of the form nt+ higher order terms.

Claim 7.2. Either [p](t) ≡ 0, or [p](t) = g(tp
h
) for some integer h ≥ 1 and some other power

series g(t) such that g(0) = 0 and g′(0) 6= 0.

Assuming the claim, make the definition:

Definition 7.3. The height of F is ∞ if [p](t) ≡ 0, and h otherwise.

This height is invariant under isomorphisms.

Example 7.4.

(1) Ga: this is the formal group law F (x, y) = x+ y, so [n] is just normal addition, and [p]
is 0 mod p. So this has infinite height.

(2) Gm: this is the formal group law F (x, y) = (1 + x)(1 + y) − 1. You can check that
[p]t = (1 + t)p − 1 ≡ tp (mod p). So ht(Gm) = 1.

Proof of Claim. Apply ∂
∂y |y=0 to

F ([p](x), [p](y)) = [p](F (x, y))

and expand using the chain rule to get

F2([p](x), 0)[p]′(0) = [p]′(F (x, 0))F2(x, 0)

= [p]′(x) · (invertible power series)

using the fact that F (x, y) = x + y+ higher order terms. Also recall [p](x) = px+ higher
order terms, so this is 0 modulo terms of degree ≥ 2. Since [p]′(0) = 0 and [p](x) =

∑
i≥1 aix

i,

we have [p]′(x) = 0. So [p](x) = g(xp). Now repeat this argument with g in place of [p]. �

Theorem 7.5 (Lazard). The map

h : FGL(k)/ ∼=→ Z>0 ∪ {∞}
is a bijection if k is separably closed.

Theorem 7.6. The fiber of h over n ∈ Z>0 is in bijection with H1(Gal(ksep/k),Autksep (F ))
for any F ∈ FGL(k) of height n.

So, if k is separably closed, the height completely classifies formal group laws, and if not, we
still have a classification.
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Definition 7.7. Given Φ ∈ FGL(k), F,G ∈ FGL(O) such that red(F ) = red(G) = Φ, a
?-isomorphism between F and G is f ∈ Hom(F,G) such that

F //

red
��

G

red
��

Φ Φ

commutes.

Definition 7.8. DefΦ(O) = red(Φ) I think this should be DefΦ(O) = the set of fgl’s over O
that reduce to Φ

Here is the main theorem:

Theorem 7.9. Fix Φ ∈ FGL(k) of height h. The functor Def : nilpotent thickenings of k →
Sets sending O 7→ DefΦ(O) is “representable” by a formal scheme (R := Spf W (k)[[t1, . . . , tn−1]],Γ).
That is, for every nilpotent thickening (O,m), the map

mn−1 = Homcts(R,O)→ DefΦ(O)

sending ϕ 7→ ϕ∗(Γ) is a bijection.

Corollary 7.10. Autk Φ acts on DefΦ(−).

Key steps of proof of Theorem 7.9. Step 1: construct a specific element in FGL(k).

Step 2: classify infinitesimal deformation of Φ. These are in bijection with H2
k(Φ) (this should

be thought of as a tangent space).

Step 3: Show H2
k(Φ) ∼= kh−1.

Step 4: show Γ is universal. �

7.1. More on the proof: There is only one way to build this universal deformation,
which is to build it degree-by-degree. This is because J = (x, y) ⊂ R[[x, y]] = limR[[x, y]]/Jn

(this is just saying it’s complete).

Definition 7.11. F is an r-bud if it satisfies the axioms of a formal group law mod degree
r + 1.

Fact 7.12. If you have an r-bud Fr, then there always exists an (r + 1)-bud Fr+1 extending
it, and given any two such, say Fr+1 and F ′r+1, we have (F ′r+1 − Fr+1) = aCr+1(x, y) mod
degree r + 2, where C∗ is the 2-cocycle defined previously.

Because Φ has height h <∞, Φ can be put in the form x+ y + aCph(x, y) mod degree ph+1.
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Proposition 7.13. There exists a power series Γ(t)(x, y) ∈ R[[x, y]], where R = Spf W (k)[[t1, . . . , tn−1]],
satisfying:

(1) Γ?(0, . . . , 0)(x, y) = Φ(x, y)

(2) for all i, Γ(0, . . . , 0, ti, . . . , tn−1)(x, y) = x+ y + tiCpi(x, y) mod degree pi+1.

Look at the series of liftings k = O/m← O/m2 ← O/m3 ← . . . . In general, we can look at
square-zero extensions k ↪→ k[ε]/ε2.

Φ is a lift of itself. If F (x, y) is any other lift, it has the form F (x, y) = Φ(Φ(x, y) + εG(x, y))
for some power series G. From now on, + and − mean + and − in the group law. This
simplifies some of the calculations in Lubin and Tate’s paper. So F (x, y) = x+ y + εG(x, y)
(with this new notation). Definitions of formal group laws say:

(1) G(x, 0) = G(0, y) = 0

(2) G(x, y) = G(y, x)

(3) F (F (x, y), z) = F (x, F (y, z))

In (3), the LHS (mod ε2) is x+ y + εG(x, y) + z + εG(x+ y, z) and the RHS is x+ y + z +
εG(y, z) + εG(x, y + z). Now subtract these in the group law. Cancel x+ y + z on both sides,
and get

ε(G(y, z)−G(x+ y, z) +G(x, y + z)−G(x, y)) = 0

This is now true with the normal + and −. This is what is called a symmetric 2-cocycle.

A map f : F → F ′ looks like f(x) = x + εg(x) with g(0) = 0 is a homomorphism if
f(F (x, y)) = F ′(f(x), f(y)). This expands to ε(G(x, y)−G′(x, y)) = ε(g(x+ y)− g(x)− g(y))
(addition in the group law). This is what we call a symmetric 2-coboundary.

So these lifts k ↪→ k[ε]/ε2 are classified by 2-cocycles modulo 2-coboundaries. This is the
definition of H2

k(Φ).

Talk 8: Introduction to local class field theory (Rachel
Davis* and Jize Yu)

References: Milne’s CFT notes, Jared Weinstein’s notes on the geometry of Lubin-Tate spaces

8.1. Definitions and notation.

Definition 8.1. A field K is called a local field if it is locally compact w.r.t. the nontrivial
valuation.

Our main examples will be finite extensions of Qp, finite extensions of Laurent series rings
Fp((T )), and the archimedean cases (R or C). We’ll focus on the non-archimedean cases. Let
K be a finite extension of Qp, and let OK be the ring of integers of K, mK the maximal,
and O×K = UK the units in OK . Take π to be a prime generator of mK . Every nonzero
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element a ∈ K× can be written as a = uπn for some unit u. Define the order ordK(a) := n.
We also have a residue field k = OK/mK of degree q = pf . We have a valuation defined by
|a| := q−rdK(a). Let Kal be the separable algebraic closure of K, and Kab the union of all
abelian extensions of K.5

Goals:

(1) Classify all finite degree abelian extensions

(2) Study the structure of Kab

(3) Construct a subfield Kπ of Kab

Let L/K be a finite Galois extension of local fields, with Galois group G = Gal(L/K). Define

Gi = {τ ∈ G : ordL(τ(x)− x) ≥ i+ 1 ∀x ∈ O}.
Then there are inclusions G ⊃ G0 ⊃ G1 ⊃ . . . , and G0 = 1 iff L/K is unramified. (Topological
intuition: compare a ramified (branched) cover with an unramified cover (looks trivial). The
ramified point is the branch point. Arithmetically, take the uniformizer π and look at how it
factors in L into prime ideals. You can write πK = uπeL for some unit u and exponent e. If
e > 1, it’s ramified; if e = 1, it’s unramified.)

8.2. Main theorems of local class field theory. Let K be a local field, and L a finite
unramified extension of K. Then L/K is Galois. There is an element σ ∈ Gal(L/K) such
that σx ≡ xq for all x ∈ OL.

We will call σ the Frobenius element of Gal(L/K).

Theorem 8.2 (Local reciprocity law). For any non-archimedean local field, there is a homo-
morphism ϕK : K× → Gal(Kab/K) such that:

(1) For any prime π ∈ mK and any finite, unramified extension L/K, ϕK(π) acts on L as
FrobL/K .

(2) For any finite abelian extension L/K, N(L×) ⊂ ker(ϕK |L).

Combining these, ϕK induces an isomorphism

ϕ
L/K : K×/NL/K(L×)→ Gal(L/K).

Call both ϕK and ϕ
L/K local Artin maps.

Theorem 8.3 (Local existence theorem). A subgroup N of K× is of the form NL/K(L×) for

some finite, abelian extension L iff it is a finite index open subgroup of K×.

Taking inverse limits over abelian extensions L ⊃ K, we get

ϕ̂K
i

: K̂× → Gal(Kab/K)

5An extension L/K is called abelian if Gal(L/K) is an abelian group.
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sending π 7→ FrobL/K(π). Note that K× ∼= O×K ×Z, so K̂× = O×K × Ẑ. Let Kπ be the subfield

of Kab fixed by ϕ̂K(π). Let Kun be the subfield of Kab fixed by ϕK(O∗K). So Kab = Kπ ·Kun.

For example, when K has characteristic p, Kun is generated by all roots of unity of order
prime to p.

8.3. Lubin-Tate formal group laws and formal OK-modules. The Lubin-Tate
construction is in 1965. Let K be a non-archimedean local field, and A be an OK-algebra
with L : OK → A (not presumed injective).

Definition 8.4. A formal OK-module law over A is:

(1) a formal group law G over A

(2) a family of power series [a]G for every a ∈ OK

such that

(1) the collection of [a]G’s represent a homomorphism OK → End(G) sending a 7→ [a]G,
and

(2) [a]G(x) = π(a)x+O(x2).

Examples:

(1) Ga is an OK-module over the OK-algebra A

(2) For K = Qp, Gm becomes a formal OK = Zp-module, because for a ∈ Z/p, [a]Gm(x) =
(1 + x)a − 1 = Σ∞n=1

(
a
n

)
xn ∈ Zp[[x]].

Lubin-Tate start with a choice [π]G, and construct G from this. Let f ∈ OK [[x]] be any power
series satisfying

(a) f(x) = πx+O(x2)

(b) f(x) = xq (mod π)

Theorem 8.5 (in Weinstein’s notes). there exists a unique formal OK-module law Gf over
OK for which [π]Gf (x) = f(x). Furthermore, if g is a power series satisfying (a) and (b),
then Gf and Gg are isomorphic.

Theorem 8.6 (Weinstein, Lubin-Tate). There is a map

C : Gal(Kπ/K)→ Aut(Tπ(G)) ' O×K
which is an isomorphism KπK

un = Kab. The Artin reciprocity map

ϕ
Kπ/K : K× → Gal(Kab/K)

is the unique map which sends π to 1 and a ∈ OK to C−1(α−1).

26



Chromatic homotopy theory Talk 9

Talk 9: Landweber Exact Functor Theorem (John Berman* and
Danny Shi*)

I’m going to start with a bit of history.

Theorem 9.1 (Conner-Floyd, 1966). For X ∈ Top,

K∗X ∼= MU∗X ⊗MU∗ K∗.

(There is a complex orientation MU → K and MU∗ → K∗ is the multiplicative formal group
law.)

Question: Say F is a formal group law over R, given by a map MU∗ → R. Is MU∗(−)⊗MU∗R
a homology theory? If so, it has a cup product ∪ which comes from the fact that it comes
from a commutative ring, and is complex oriented with formal group law F .

So we’ve got a formal group law, and are asking if it comes from a homology theory.

We need to check the axioms of a homology theory:

(1) Homotopy functor (this is fine, as base change preserves isomorphisms)

(2) Excision (also OK because base change preserves isomorphisms)

(3) Additivity (also OK, same)

(4) LES of a pair (possibly not OK: true if R is flat but that’s unlikely because L is so big)

What we need is a weaker “flatness” condition that still makes this satisfy the LES axiom.
This is the Landweber exact functor theorem (LEFT):

Theorem 9.2 (Landweber, 1976). Say M is an L-module (e.g. a commutative algebra over
L, or equivalently a formal group law). If (p, v1, v2, . . . ) ∈ L is a regular sequence for M for
all p, then MU∗(−)⊗LM is a homology theory.

Remark 9.3. Recall MU∗ = L = Z[x1, x2, . . . ], and vn = xpn−1 (so there’s a vi for every pair
of i, p). A sequence (x1, x2, . . . ) ∈ R is regular for an R-module M if, for all n, the action of
xn on M/(x1, x2, . . . , xn−1) has no kernel.

I haven’t told you how to compute vn in practice. Say F is a formal group law, [p]x is the
p-series. Then vn is the coefficient of xp

n
. Note that vn is not invariant under coordinate

change, but it is invariant modulo (p, v1, v2, . . . , vn−1), which is all we care about. If M was a
commutative algebra over L, we get a complex orientable homology theory. (If you plug in
CP∞, you get a first Chern class.)

If M satisfies the condition in the theorem statement then call it (or the formal group law, or
the resulting homology theory) “Landweber exact”.

Example 9.4. Consider the additive formal group law over R = Z = HZ∗. The p-series is
[p]x = px. We want to check whether (p, 0, 0, . . . ) is a regular sequence in Z. It is not, because
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0 does not act injectively on Z! So there is a homology theory with this formal group law
(ordinary homology), but it doesn’t come out of MU∗.

Example 9.5. Let R = Z[β±] and consider the formal group law x + y + β−1xy = β((1 +
β−1x)(1 + β−1y)− 1). What’s the point of the extra parameter β? You want the formal group
law to be homogeneous, so if you set |β| = 2 then this works out. (Or maybe −2? I forget.)
Then the p-series is

[p]x = β((1 + β−1x)p − 1) ≡ β(β−1x)p = β1−pxp.

Check that (p, β1−p, 0, . . . ) is a regular sequence in Z[β±], so you recover K-theory, and the
Conner-Floyd theorem.

Example 9.6. BP∗ = Z(p)[v1, v2, . . . ] is a quotient of L(p), where vn = xpn−1. There is a
map L→ BP∗, and we want to check that (p, v1, v2, . . . ) is a regular sequence – this is true
when the p’s are the same, because they are polynomial generators. We could also check
(q, v1, v2, . . . ) for q 6= p. Landweber exactness then gives BP as a homology theory.

Proof steps for LEFT. (1) Work one prime at a time, and consider a BP∗-module
M . Then we have a regular sequence (p, v1, v2, . . . ) which we want to show gives rise to
a homology theory.

(2) Landweber invariant prime ideal theorem (key part): all prime ideals of BP∗ that are
fixed by coaction of BP∗BP are (p, v1, . . . , vn) for 0 ≤ n ≤ ∞.

�

I’m going to give an application of this theorem and construct the main players we need for
chromatic homotopy theory:

(1) Johnson-Wilson theory E(n)

(2) Morava K-theory K(n)

(3) Lubin-Tate theories (a.k.a. Morava E-theories) En

(1) To start, I need to specify a formal group law over a ring. Fix p. The ring I start with
is Z(p)[v1, v2, . . . , vn−1, v

±
n ]. There is an obvious map BP∗ → Z(p)[v1, . . . , vn−1, v

±
n ] (sending

vi 7→ vi if 1 ≤ i ≤ n and vi 7→ 0 otherwise). This classifies a p-typical formal group law.

I claim that the criterion in LEFT is obvious in this case. First, we send p to something
non-zero. Now we mod out by p, which turns Z(p) to Fp, and we check whether v1 goes to
a non-zero divisor. You kill v1 and check for v2, and keep doing this. At the last step, you
mod out by v1, . . . , vn−1 and check whether vn is a non-zero divisor – indeed, it’s even a unit.
After this, there is nothing more to check. So LEFT gives a homology theory which we call
Johnson-Wilson theory E(n).

Since vn is inverted, this means that the height of the associated formal group law can be no
larger than n. So intuitively, E(n) encodes information of height ≤ n. Later on, we’ll see that
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localizing at E(n) corresponds to restricting to the open substack of height ≤ n formal group
laws.

(2) What about height exactly n? You have to invert vn, and also get rid of v1, . . . , vn−1

(otherwise vi for i < n could be the (first) invertible v∗, and then it would be height i). So we
have a map BP∗ → Fp[v±n ] classifying these. Sadly, this doesn’t satisfy Landweber exactness.
The answer is that you can construct Morava K-theories out of Johnson-Wilson E-theories.
Analyze the coefficient rings: π∗E(n) = Z(p)[v1, . . . , vn−1, v

±
n ], so you have to make sense of

quotienting out the regular sequence (p, v1, . . . , vn−1) to get K(n)∗.

The idea is to take iterative cofibers. Suppose I want to kill vi. This lives in π2(pi−1)E(n),

and so it corresponds to a map S2(pi−1) → E(n). To mod out by vi, make this construction:

S2(pi−1) ∧ E(n)
vi∧1→ E(n) ∧ E(n)

µ→ E(n)
cofiber→ E(n)/vi.

There are a few more details you need. . . This is a pretty general construction, but things like
complex orientations are usually destroyed by this.

K(n)’s are really important! Here is a list of facts and important properties.

• When n = 1, K(1)∗ = Fp[v±1 ], where |v1| = 2(p− 1). It turns out that K(1) is one of the
(p− 1) summands of mod p complex K-theory.

• There is a Künneth isomorphism

K(n)∗(X × Y ) ∼= K(n)∗(X)⊗K(n)∗ K(n)∗Y

and moreover, these and ordinary cohomology theories with coefficients in a field are the
only cohomology theories that have a Künneth isomorphism. In this sense, K(n)’s behave
like fields, and this is part of why they’re so important.

• For p ≥ 3, K(n) (for all n) are homotopy commutative. But for p = 2, the K(n)’s are no
longer homotopy commutative (but they’re homotopy associative). In 1989, Robinson
used THH to show that, for all p, K(n)’s are A∞ ring spectra.

(3) Start with a perfect field k. We saw earlier that E(k,Γ) = W (k)[[u1, u2, . . . , un−1]][u±]
has the universal deformation. (The extra u± here is again to make things homogeneous.)
There is a map BP∗ → E(k,Γ) which gives rise to a homology theory E(k,Γ). If k = Fpn and Γ

is the Honda formal group law (defined to have the p-series [p]x = xp
n
), then call the resulting

spectrum En.

E(n) and En are complex orientable. K(n) is not in the traditional sense because it’s only
homotopy associative, but if you plug nice spaces in you still get something commutative.

Talk 10: Modular forms (Carolyn Yarnall* and Don Larson*)

If you quotient the complex plane by a lattice Λ you get an elliptic curve using the Weierstrass
℘ function. Write Λ = Z{ω1, ω2} where ωi ∈ C. Quotienting by this identifies the sides of the
parallelogram given by 0, ω1, ω2, ω1 + ω2 in the complex plane, and you get a torus.
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Let τ = ω2/ω1 ∈ H (where H is the upper half plane). Write Λτ = Z{1, τ}, and Cτ = C/Λτ .
There is an action of SL2(Z) on C, given by(

a b
c d

)
τ =

aτ + b

cτ + d
.

When is there an isomorphism Cτ
∼=→ Cτ ′ as Riemann surfaces? This happens exactly when

there is some γ ∈ SL2(Z) such that γτ = τ ′.

If we want to study collections of elliptic curves modulo isomorphisms, we just need to study
the upper half plane modulo this action of SL2(Z). Defining some function on H is the same
as defining some function on elliptic curves. But this definition is not easy to generalize to
the context we care about, and hard to keep track of topological data.

The quotient map C→ Cτ can be thought of as a map Cτ → SpecC, where now Cτ means a
scheme. There is a sheaf Ω of 1-forms, and that is the trivial 1-dimensional line bundle. But
if you want to think of all elliptic curves, then you get a nontrivial bundle ω of all ΩCτ over
H/SL2(Z). A section e : H/SL2(Z)→ ω is what we think of as a modular form. Warning: I
was being a little glib; this should probably be over the universal elliptic curve.

Definition 10.1. A modular form of weight k over C is a section of ω⊗k.

For example, in C, z is the natural coordinate, and dz is the corresponding differential.

A modular form g of weight k takes (Cτ , dz) to f(τ) ∈ C. So g(Cτ ) = f(τ)(dz)k. So if you
scale z by λ, it scales the modular form by λk. If I know what it’s doing to Cτ , and I want to
know how to pull this back along Cτ → Cτ ′ given by (cτ + d)−1,

g(Cτ ′) = f(τ)

(
dz

(cτ + d)

)k
= (cτ + d)−kf(τ)(dz)k.

10.1. Modular forms over Z and the Weierstrass Hopf algebroid.

Definition 10.2. A Weierstrass curve is a scheme WC over a base scheme S with projection
p : WC → S with a section e : S → WC corresponding to the identity, where WC is a
collection of elliptic curves whose affine equations look like y2+a1xy+a3y = x3+a2x

2+a4x+a6.
I want to think of the ai’s as depending on where you are in the base scheme, i.e. ai ∈ OS .
Actually, the elliptic curves I work with only look like this locally; they are patched together
from things like this.

A generalized elliptic curve is a scheme C with projection p : C → S and unit e : S → C,
where S is covered by open subsets Si such that Ci = C ×S Si is isomorphic to a Weierstrass
curve.

I will look at Weierstrass curves up to Weierstrass equivalence (how we can toy around with
the Weierstrass equation and not change anything), and strict isomorphisms – isomorphisms
between these curves where the morphism on the formal groups is a strict isomorphism in the
way we saw yesterday.
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If we allow ourselves to play around with these wigglings, what do they look like? Let
r, s, t ∈ R. Strict isos allow you to make the following changes of coordinates:

a1 7→ a1 + 2s

a2 7→ a2 − a1s+ 3r − s2

. . .

a6 7→ . . .

Weierstrass manipulation allows you to make the change of coordinates

x 7→ x+ r1

y 7→ y + sx+ t

Form a pair of commutative rings whose job is to keep track of these:

A = Z[a1, . . . , a6] where |ai| = 2i

Γ = A[r, s, t] where |r| = 4, |s| = 2, |t| = 6

This makes all the expressions in the list homogeneous. The pair (A,Γ) is called the Weierstrass
Hopf algebroid.

We have left and right units ηL, ηR : A ⇒ Γ, where ηL is the inclusion, and ηR is the map
that performs the coordinate changes indicated above on a1, . . . , a6. What is in the equalizer
of this diagram, written Eq(ηL, ηR)? Here is one element in here:

c4 = a4
1 + 8a2

1a2 + 16a2
2 − 48a4 − 24a1a3

Given a generalized elliptic curve C → S, let ωC/S be the cotangent space of C along S.
(Think of S as embedded in C by virtue of the zero section; look at the cotangent space
at each point of S.) Let π denote a section of ωC/S . We saw that one way to think of a
modular form is as something that scales the invariant differential. Here, π is playing the role
of the invariant differential, except we’re varying in families, so we’re picking a 1-form for
each location in S.

Given that c4 ∈ Eq(ηL, ηR), the section c4 · π⊗4 of ω⊗4
C/S does not depend on x, y, or π.

Definition 10.3. A modular form over Z of weight k is a rule that associates to each C → S
a section g(C/S) of ω⊗kC/S compatible with base change.

Let MF∗ denote the graded ring of modular forms over Z. This says that MF∗ = Eq(ηR, ηL).

Theorem 10.4 (Deligne, Antwerp 1972 (Lecture notes in math 476)). The equalizer can be
identified as follows:

Z[c4, c6,∆]/(123∆ = c3
4 − c2

6) // A //
//

��

Γ

��

Q[c4, c6] // A⊗Q //
//
Γ⊗Q
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Note that the relation is the same relation that turns up in the classical theory of modular
forms. If you tensor with Q, 2 and 3 are both invertible and you get a much simpler version
of the Weierstrass mechanics. (You could have also just tensored with Z[1

6 ].)

There is a map
(MU∗,MU∗MU)→ (A,Γ)

because you can complete at the identity to get a formal group. Take both of these and localize
or complete at a prime; the LHS is the input for the ANSS converging to p-primary stable
homotopy groups of spheres. On the RHS, create the cobar complex and take cohomology,
and that is the input for a machine that approximates the p-primary stable stems.

Talk 11: Recap (Agnès Beaudry*)

Padma and Isabel talked about deformations of formal group laws. They had a formal group
Φ of height n over k = Fpn . This means that [p]Φ(x) = xp

n
+ . . . , and it turns out that you

can find one where [p](x) = xp
n
. This is called the Honda formal group law. They also explain

why there is another formal group law Γ over a bigger ring, R (which in this example is
W (Fpn)[[u1, . . . , un−1]]) which represents deformations (lifts) of Φ. This has residue field Fpn .

In this case, W (Fpn) is the ring of integers in an unramified extension L/Qp of degree n
(adjoin a pn−1th root of unity). The pair (Γ, R) represents deformations of (Φ, k), i.e. for every
formal group law G over a deformation B of k that reduces to Φ/k, there is a ?-isomorphism
f∗ → G for a map f : R→ B.

Suppose you have an automorphism u : Φ→ Φ. Suppose you have a deformation Γ. Given an
automorphism u ∈ Aut(Φ), this gives rise to fu ∈ Aut(R), and Aut(Φ) acts on R in this way.

Γ

��

u // uΓu−1

��

// f∗uΓ

��

Φ
u
∼=

// Φ Φ

Today, we’ll talk about Sn = Aut(Φ). In number theory, this is defined as Sn ∼= O×D where D

is a central division algebra over Qp of Hasse invariant 1
n . In homotopy theory, Sn is called

the Morava stabilizer group.

We saw that if you have a complex oriented cohomology theory, you get a formal group law.
The Honda formal group law comes from a spectrum En called Morava E-theory (which is
Landweber exact). Its coefficient ring is (En)∗ = W (Rpn)[[u1, . . . , un−1]][u±1].

Using a slightly different choice than we’ve made before, K(n) is Morava K-theory with
K(n)∗ ∼= Fpn [u±1]. The universal deformation sends Γ (the formal group law of En) to Φ (the
formal group law of K(n)).

Write R = (En)0 = W (Fpn)[[u1, . . . , un−1]]. Today, Mingcong and Irina will show that the
action of Aut(Φ) on (En)0 can be upgraded to an action of Aut(Φ) on (En)∗, or even on the
whole spectrum En.

32



Chromatic homotopy theory Talk 12

A spectrum X is built from other “simpler” spectra, which people denote LK(n)X. The L
means localization. These spaces LK(n)X interpolate between X ⊗Q (rationalization) and

Xp̂ (p-completion). If you want to understand certain spectra, you want to understand these
building blocks.

Because of what Mingcong and Irina tell us about, we will be able to make a certain construction.
Recall Sn = Aut(Φ). We can enhance it: we can create a group Gn

∼= Sn o Gal(Fpn/Fp).

Theorem 11.1 (Hopkins-Devinatz). LK(n)S ' EhGnn

Here EhGnn is like taking Gn fixed points, but in a “good” homotopy-theoretic way. This is
like the Golden Gate Bridge between number theory and homotopy theory. This tool gives a
spectral sequence H∗(Gn, (En)∗) =⇒ π∗LK(n)S.

11.1. Elliptic curves and elliptic cohomology theories. Let E be a complex ori-
ented ring spectrum. From this you get a formal group law FE . Let C be an elliptic curve
over E∗. It also has a formal group law, and if that coincides with FE , say that E is an elliptic
cohomology theory. For example, E2 and K(2) are elliptic cohomology theories.

Don yesterday told us about a Hopf algebroid (A,Γ) related to elliptic curves. It turns out
that if you do things well enough, there’s a map

H∗(G2, (E2)∗) +3

��

π∗LK(2)S

��

H∗(A,Γ)[∆−1 ]̂??
+3 π∗LK(2)tmf

Talk 12: Local chromatic homotopy theory (Leanne Merrill*
and Jens Jakob Kjaer)

Topologists want to know about π∗X. We have a tool, called the Adams spectral sequence,
which is an algebraic tool whose inputs are (co)homology and whose output is (something
about) π∗X. You could use ordinary cohomology (what is traditionally called ASS), or some
extraordinary cohomology theory. If you use BP∗X, this picks out the “p part” of π∗X.
(So BP∗ has a prime p that is always floating around.) The hope is that BP∗X will be
more computable, and you can use this to glue all the primes together. By gluing all that
information, you have a better understanding of π∗X.

ExtBP∗BP (BP∗, BP∗X) is the origin of the Adams Novikov spectral sequence. There are
several ways to compute this. The chromatic spectral sequence is a tool that computes
ExtBP∗BP (BP∗, BP∗X), and it does so by breaking up X into “chromatic layers”. These are
determined by families of periodic self-maps. It turns out that these periodic self-maps are
related to these K(n)’s. So as a topologist, I care about modular forms and elliptic curves
because the theory around them will help me compute the ANSS E2 term.
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12.1. Bousfield localization. One way all of this gets tied together is through a tool
called Bousfield localization.

Definition 12.1. Let X be a spectrum. Let E∗ be a homology theory. We say X is E∗-local
if “maps out of an E-acyclic thing to X are zero” – more precisely, for any W such that
E∗W = 0, we have [W,X] = 0.

(If X is a space, not a spectrum, you have to make a slight modification of this, but it’s not a
big deal.)

Example 12.2. If X is any spectrum, and E is a ring spectrum, then I will show that E ∧X
is E-local. Let W be such that E∗W = 0. I need to pick f : W → E ∧X, and I want to show
that this is nullhomotopic. I claim the following diagram is commutative:

S0 ∧W = W
f
//

η∧1
��

E ∧X
η∧1E∧X

��

1 // E ∧X

E ∧W
1E∧f

// E ∧ E ∧X
µ∧1

88

E ∧W in the bottom left corner has π∗(E ∧W ) = 0 by assumption. So the top composition
1 ◦ f is the same as the bottom composition, which factors through ∗. This shows that f is
nullhomotopic.

Definition 12.3. An E∗-localization of a spectrum X is an E∗-local spectrum LEX and a
map λ : X → LEX so that E∗λ is an isomorphism.

Theorem 12.4 (Bousfield localization). For E and X, LEX exists and is unique.

Example 12.5. Set E = K (ordinary complex K-theory). Set X = S0. Then π−2(LKS
0) =

Q/Z. In fact, it is really non-connective: π−i(LKS
0) 6= 0 for infinitely many i. Ravenel has a

paper from 1984 in which he actually computes these.

Definition 12.6. E and F are Bousfield equivalent if, for any X, E ∧X ' ∗ iff E ∧X ' ∗.
This is an equivalence relation; denote the Bousfield equivalence class by 〈E〉.

Exercise 12.7. LE = LF ⇐⇒ 〈E〉 = 〈F 〉

There are two binary operations:

• 〈E〉 ∧ 〈F 〉 = 〈E ∧ F 〉
• 〈E〉 ∨ 〈F 〉 = 〈E〉 ∨ 〈F 〉

Define a partial ordering: 〈E〉 ≥ 〈F 〉 if acyclicity w.r.t. E (E ∧X ' ∗) implies acyclicity w.r.t.
F (F ∧X ' ∗). This means that “F has more acyclics than E”, and hence is detecting less
information.

Theorem 12.8. If 〈E〉 ≥ 〈F 〉, we have LFLE = LF and we have a map LE → LF .
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12.2. “Classical” chromatic homotopy theory.

Definition/ Theorem 12.9. There exist homology theories K(n)∗ such that:

(1) K(0)∗X = H∗(X;Q)

(2) K(1) is one of the summands of mod p complex K-theory

(3) K(0)∗(∗) = Q and K(n)∗ = K(n)∗(∗) = Fp[v±n ] where |vn| = 2(pn − 1).

(4) (Künneth) K(n)∗X = K(n)∗X ⊗K(n)∗ K(n)∗Y

(5) Any graded module over K(n)∗ is free

These are “graded fields” in the category of cohomology theories.

K(n) is a complex oriented cohomology theory, so it has a formal group law. So [p](x) = xp
n

(the Honda formal group law).

Definition 12.10. A finite spectrum is called p-local if H∗(X;Z) ∼= H∗(X;Z)⊗ Z(p).

Alternatively: it’s the result of doing LHZ(p)
; or, it’s a suspension spectrum of something built

out of p-local spheres. For example, I’ll tell you how to construct a 5-local sphere:

S0 2−→ S0 2·3−→ S0 2·3·7−→ S0 2·3·5·7·11−→ S0 → . . .

(where you do all the primes except 5) and form the mapping telescope to form S(5).

Theorem 12.11. K(n)∗ has the following detection property. Let X be a finite p-local
spectrum. If K(n)∗X = 0, then K(n− 1)∗X = 0.

Definition 12.12. The type of a finite p-local spectrum is the minimal n for which K(n)∗X 6=
0.

For example, S has type 0 and S/p = cofib(S
p→ S) has type 1.

“Bousfield equivalence classes detect type”:

Theorem 12.13 (Class invariance theorem). Let X and Y be finite p-local spectra, with type
n and m, respectively. Then 〈X〉 = 〈Y 〉 iff m = n, and 〈X〉 < 〈Y 〉 iff m > n.

The proof of this is basically the thick subcategory theorem.

12.3. The chromatic tower. Recall: E(n)∗ = Z(p)[v1, v2, . . . , vn, v
−1
n ]. This was really

nice – it was Landweber exact, and some quotienting process gave us the K(n)’s.

Definition 12.14. Write LnX := LE(n)X.
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We want to “glue” information together about Ln and Ln−1. The chromatic approximates X
using “chromatic layers” LnX.

I want to show that there are maps Ln → Ln−1.

Fact 12.15. 〈E(n)〉 =
∨n
i=0 〈K(i)〉

So LE(n) = LK(0)∨···∨K(n). If K(n)∗X vanishes, so does K(n− i). So if something is acyclic for
E(n), it is acyclic for E(n− 1), and it is another fact about the poset of Bousfield localization
classes that this means there is a map LE(n) → LE(n−1) (a.k.a. Ln → Ln−1).

The chromatic tower is

· · · → LnX → Ln−1X → · · · → L1X → L0X.

Theorem 12.16 (Chromatic convergence). X = lim←−LnX.

In practice, let’s say X is type 0 (e.g. S0
(p)). Then p−1S0

(p) is the mapping telescope S0
(p)

p→
S0

(p)

p→ S0
(p) → . . . , which is ∼= L0(S0

(p)).

Example 12.17. The mod-p Moore spectrum is M(p) = cofib(S0 p→ S0). It turns out (by
the nilpotence theorem) that there exists a map Σ?M(p)→M(p), which we call v1 because it

is multiplication by v1 in BP∗ homology. So we can form the telescope M(p)
v1→M(p)

v1→ . . .
(really, there should be suspensions there), which is v−1

1 M(p). It turns out that this is L1M(p).
Sadly, this pattern doesn’t hold in general.

Definition 12.18. The chromatic filtration is given by FnX = ker(π∗X → π∗LnX). This is
a decreasing filtration.

Comment: Ln+1LnX = LnX.

The chromatic fracture square is a pullback square

LnX

��

// LK(n)X

��

Ln−1X // Ln−1LK(n)X

The maps are induced by the Bousfield localization classes. So, what can we say about
LK(n)X? If X is type n, there is an Adams Novikov spectral sequence

ExtBP∗BP (BP∗, BP∗LK(n)X) =⇒ π∗LK(n)X.

By Magic (a.k.a. “Morava change of rings”), the LHS is ∼= H()Gn; (En)∗X). The reason for
this program is that this group cohomology is easier to compute.

Talk 13: Lubin-Tate cohomology (Mingcong Zeng* and Irina Bobkova*)
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Let C = Top.

Definition 13.1. An operad C in Top is a collection of spaces {C(n)}n≥0 equipped with:

• a right action of the symmetric group Σn on C(n)

• a distinguished element 1 ∈ C(1)

• maps
C(k)× C(i1)× . . .× C(ik)→ C(i1 + · · ·+ ik)

Example 13.2 (Endomorphism operad of X ∈ Top). Define the operad called End(X)
by End(X)(n) = Map(Xn, X). The structure maps Map(Xk, X) × Map(Xi1 , X) × . . . ×
Map(Xik , X)→ Map(Xi1+···+ik , X) are given by taking (g, fi1 , . . . , fik) and plugging the fij ’s
into g.

Example 13.3 (Associative operad). Define the operad As by As(n) = Σn.

Example 13.4 (A∞ operad). A is an A∞ operad if π0A(n) = Σn, each component of A(n)
is contractible, and the action of Σn on AN(n) is free.

Example 13.5 (Commutative operad). The operad Com is defined by Com(n) = ∗.

Example 13.6 (E∞ operad). E is an E∞ operad if each E(n) is contractible and the action
of Σn on En is free.

For every operad C, you can associate a functor C : Top→ Top C(X) =
⊔
n≥0C(n)×Σn X

n

which is a monad (a monoid object in the category of endofunctors).

Definition 13.7. A topological space X is a C-algebra if it is equipped with a map λ :
C(X)→ X and diagrams encoding unit and associativity. Equivalently, X is equipped with a
collection C(n)×Σn X

n → X (along with those diagrams).

The idea is that C acts on X.

Remark 13.8. Spectra is a category over spaces: there is a “module structure” Spaces ×
Spectra → Spectra. If C is an operad in spaces and X is a spectrum, X can be a C-algebra.

Example 13.9. Here are some examples of C-algebras:

(1) The free C-algebra out of X

C(X) =
⊔
n≥0

C(n)×Σn X
n.

(2) X is an algebra over Com if there is exactly one map X × . . .×X → X, i.e. if X is a
commutative ring object.
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(3) X is an algebra over an E∞ operad C if there is a map C(n)×Σn X
n → X, so there is

a contractible space of maps Xn → X.

Topologists don’t like strict commutativity.

Topology Algebra

E∞ ring spectrum commutative rings

A∞ ring spectra associative rings

spectra abelian groups

We would really like to define EhGnn where Gm = Aut(Γn) o Gal and we would like it to be
an E∞-ring spectrum. We can prove that En is E∞ and A∞, and Gn acts on En by E∞ and
A∞ maps. The A∞ part is technical (but Mingcong will talk about it), and the E∞ part is
really technical.

For the rest of the talk, C is an A∞ operad. Here’s the plan for proving that En is A∞:

(1) Assuming X is a C-algebra, we show

HomC-alg(En, En) ' FG((Fpn ,Γ), (Fpn ,Γ))

where Gn acts.

(2) Check that En is a C-algebra.

Let k = Fpn , Γn the Honda formal group law of height n. We see that Aut(Γn) acts on (En)∗
on an algebra level. The automorphisms act on the spectrum up to homotopy. But we what
we really want is to talk about fixed points, and for that we need a better action – we need
it to happen in a category where we can take limits. So we’re going to lift En to a better
category by using operads.

We need:

(1) a theory to show why En is A∞ or E∞

(2) a theory to show MapA∞ or E∞(En, En)

We will start with (2) and look at (1). Suppose C is an A∞-operad. Assume both E and
F are C-algebras. We want to look at the mapping space C-alg(F,E). We want to know
π∗(this). Classically, we can do some manipulation on F and E if we only care about π∗. To
study Map(X,Y ), we can replace X by a simplicial complex and make use of the filtration
on the simplicial complex. Recall F is a C-algebra; that means you have a map CF → F ,
and moreover you have a diagram F ← CF ⇔ CCF from associativity, and you can continue
this to the right to make a simplicial spectrum C•+1F := CF ⇔ CCF oooo

oo
. . . (a simplicial

object in the category of spectra). This object is a good approximation to F : if C and F are

“good”, |C•+1F | '→ F so C-alg(F,E)
'→ C-alg(|C•+1F |, E)

(Comment: A∞ corresponds to having a sheaf of algebras on the stack, and E∞ corresponds
to having a sheaf of commutative algebras.)
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Without geometric realization, C-alg(C•+1F,E) is a cosimplicial object. There is a standard
tool to attack such objects, called the Bousfield-Kan spectral sequence, and there is an
obstruction theory associated to it.

Let X• be a cosimplicial space. I can define the totalization in a dual fashion to geometric
realization:

TotX• = lim←−X
∆op

n .

Theorem 13.10.

(a) If X• has a base point f (the spaces are pointed and all the maps preserve the base
point), then there is a spectral sequence

Es,t2 = πsπt(X•, f) =⇒ πt−s TotX•.

(b) If [f ] is in the equalizer of π∗X0 ⇒ π∗X1, plus some technical condition, then πsπt(X•, [f ])
is well-defined. There are obstructions in πsπs−1(X•, [f ]) to lifting [f ] to Tot•X.

Here πs is cohomology of the associated chain complex to the simplicial abelian group πt(. . . ).

Theorem 13.11. The spectral sequence/ obstruction has

E0,0
2
∼= HomE∗-alg(E∗F,E∗)

Es,t2
∼= DersE∗(E∗F,E∗+t)

I need to explain what this Der means. Start with a comutative ring R. Let A be an R-algebra
and M an R-module. Then

DersR(A.M) := Hs(DerR(P•,M))

where P• → A is a cofibrant replacement in simplicial associated R-algebras.

We’re interested in πt(C-alg(CnF,E), f). You want to find a dotted arrow

∗

��

f

%%

St
g
// C-alg(. . . )

Apply E∗ homology to

Est

��

CnF

g
;;

f
// E

to get

E∗E
st

��

// E∗[εt]/εt
2?

��

E∗(C
nF )

E∗f
//

99

E∗E
µ

// E∗

πt(C-alg(CnF,E), f)→ HomE∗-alg(E∗(C
nF ), E∗[εt]/εt

2) ∼= DerE(E∗(C
nF ), E∗+t)
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Let E = E(k1,Γ1) and F = E(k2,Γ2).

Theorem 13.12.

HomE∗-alg(E∗F,E∗) ∼= FG((k1,Γ1), (k2,Γ2)) = {(j, ϕ) : j : k2 → k1, ϕ : Γ1
∼→ j∗Γ2}

and DersE∗(E∗F,E∗+t) = 0. We have π0(C-alg(F,E)) ∼= FG(Γ1,Γ2) and πi for i > 0 are trivial.

Now we can build the A∞-structure. A map in Oper(C,End(E)) will make E a C-algebra.
we want to know if the set of such maps is empty. Resolve C into a simplicial operad and
use the Bousfield-Kan spectral sequence or the obstruction theory. It turns out that we get a
similar spectral sequence

E0,0
2 = Oper(π0C, π0 End(E))

E0,t
2 = [ΣtE,E]

Es,t2 = Ders+tE∗
(E∗E,E∗+t)

See Es,s−1
2 = 0 when E is Lubin-Tate. So there is no obstruction to constructing a single

point in the space, so the space is nonempty.

Talk 14: Recap (Vesna Stojanoska)

Yesterday, we saw that localization plays an important role. Let me make a basic analogy.
Suppose you were studying abelian groups, maybe starting with finitely generated abelian
groups. Any such A can be written as Afree ⊕

⊕
pAp where Ap is the p-power torsion. If you

want to understand an arbitrary abelian group, you can split up the work and study it “one
prime at a time”. A has a map to SpecZ, where the free part lives over the prime (0), and
Ap lives over p. If you invert away from p and then mod out by it, you get Fp. Doing the
same thing for 0 produces Q instead.

A submodule is Q-acyclic if, when you tensor with Q, you get zero (this is the same as torsion).
It is Q-local if it is free. It is Fp-acyclic if it consists of prime-to-p torsion, and Fp-local if it
consists of p-power torsion.
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You can do the same thing for (finite) spectra: break them up into the K(n)-acyclic vs.
K(n)-local part, for every n. Recall K(0) = HQ, K(1) = K(1, p) = K/p, K(∞) = HFp.

HF2 HF3 . . . HFp . . .

...
...

...

K(2, 2) K(2, 3) . . . K(2)

K(1, 2) K(1, 3) . . . K(1) := K(1, p)

HQ
So you can think of finite spectra as decomposing into this picture. You can also think of the
vertical dimension here as heights of associated formal groups.

Rationally, π∗S ⊗Q is really simple. We saw yesterday that the K(1)-local and Q-local parts
piece together into something fully understood in concrete terms (how divisible are some
numbers by p). The K(2)-local sphere is more complicated, but it is in the process of being
understood in the last 10-15 years. This relates to the mysterious patterns (lightning flashes)
in the Adams spectral sequence.

(We have a localization map Spp
LK(n)→ SpK(n) from p-local spectra to K(n)-local spectra.

These assemble in a more complicated way than in algebra: you need to use the fracture
squares.)

To study all formal groups at the same time is a moduli problem. Moduli of elliptic curves is
going to tell us about formal groups of height ≤ 2 so we can isolate the bottom of the picture.
If we just want to study one prime, we can study “formal neighborhoods” of K(n), which are
governed by Morava E-theories En (which is acted on by Gn = O×D o Gal(Fpn/Fp)). These
formal neighborhoods are called Lubin-Tate spaces.

Once you’ve done the hard work of putting fancy multiplicative structures on these guys, you
can do actual algebras with these, not just vague analogies with algebra. For example, the
category of modules over a ring spectrum means something specific here.

The Gross-Hopkins period map: the Lubin-Tate space is like an open disc, and they construct
an étale cover of projective space by an open disc. It only happens in p-adic geometry (usually,
projective spaces don’t have nontrivial covers).

Today we’ll study moduli of things; we’ve chosen those moduli problems because they describe
parts of the diagram above.
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Talk 15: Moduli problems and stacks (Artur Jackson* and Yuri
Sulyma*)

Slogan: groupoids + sites = stacks.

Let a group G act on a set X. We define the category X//G so the objects are x ∈ X, and the
morphisms are Hom(x, y) = {g ∈ G : g · x = yy}. We have π0(X//G) = X/G (here π0 is the
set of isomorphism classes), and π1(X//G, x) (automorphisms of the element in this category)
is the stabilizer of x. For example, if X 6= ∅ is transitive, then this says that π0(X//G) = 0.
If X is a free G-set, then π1(X//G, x) = 0 for all x. So this doesn’t just remember that two
things are isomorphic, but why they’re isomorphic.

I claim X = lim−→
X//G

(Greg) where Greg means a regular representation. (Recall that a map

Greg → X is the same as an element of X.) This groupoid has the property that the objects
are X and the arrows are G×X. Ravenel calls this a “split” groupoid (i.e. the morphisms is
objects × something). For example, we had Γ = A⊗Z something.

Any time I have G acting on X (e.g. a group scheme acting on a scheme), I can form the
groupoid G×X ⇒ X.

Example 15.1. We saw how to get the moduli space of elliptic curves as H/SL(2,Z).
Instead, I could take the stacky quotient H//SL(2,Z) = (H× SL(2,Z) ⇒ H). This will be
Mell ×SpecZ SpecC, the moduli stack of elliptic curves base-changed to Z.

15.1. Pullback of categories. Let X,Y, Z be categories. I want to define the pullback

P = X ×Z Y //

��

Y

��

X
f

// Z

For sets, I would say P = {x ∈ X, y ∈ Y : fx = gy}. But what does it mean for two things
in a category to be equal? It means that there is an isomorphism between them. So for

categories, P = {x ∈ X, y ∈ Y, ϕ : fx
∼=→ gy}. (The objects of P are “what they’re supposed

to be”.)

For example, if c, d ∈ C the following is a pullback

{isos c ∼= d} //

��

∗

d
��

∗ c // C

If C = BG (one object with morphisms in bijection with elements of G), then the pullback is
just G.

15.2. Sites. Eventually, we want to talk about sheaves on categories, not just on spaces.
It is easy to generalize the notion of a presheaf on a space X to a presheaf on a category C. A
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presheaf on X is a functor O(X)op → Set, where O(X) is the category of open subsets (with
inclusion). So a presheaf on C should just be a functor Cop → Set.

Now we generalize the notion of open cover. If {Ui ⊂ X} is an open cover, think of this as
a family of morphisms {Ui → X} in Top. So for an object c ∈ C, we can consider families
{Ui → c} of morphisms in C. When is such a family a cover of C?

Definition 15.2. A Grothendieck topology J on C assigns to each c ∈ C a collection of
covers {{ui → c}}.

In topology, we have the trivial cover {X} of X. Analogously, a trivial cover of c ∈ C is {f},
where f : d→ c is an isomorphism. Call this axiom 1.

In topology: if {Ui} covers X, then {Ui ∩ V } covers V for any V ⊂ X. Analogously, if
{Ui → c} is a cover, then {Ui ×c d→ d} is a cover of d:

Ui ×c d //

��

d

f

��
Ui // c

This is axiom 2 of covers.

In practice, you often show something is a cover by using the fact that “a cover of a cover is a
cover”: if {Ui → c} covers c and {Vi,j → Ui} covers Ui for all i, then {Vi,j → c} covers c.

If I have a cover, I can throw in more arrows and still get a cover. So when I say what the
covers are, I mean that the covers contain those things.

Example 15.3.

• Let C = O(X), then {Ui → U} covers U if
⋃
Ui = U .

• Let C = Top. Then {Ui → X} covers X if each Ui ↪→ X is the inclusion of an open
subspace, and

⋃
Ui = X. (This is a global version of the previous example.)

• Let C be the opposite of the category of finitely presented Z-algebras. A cover of SpecR
is {SpecR[f−1

i ]→ SpecR} such that the fi generate the unit ideal of R. This is the big
Zariski site. (A small Zariski site would be the Zariski analogue of the first example.)

• If C = Top, I could also ask for covers {Ui → X} where Ui → X has open image where
Ui is a covering space of its image. This is a topological analogue of the étale site.

• Say that (X,OX)
f→ (Y,OY ) is flat if OX,x is flat over OY,f(x) for all x. It is faithfully

flat if it is flat and surjective. Define a map between locally ringed space to be a cover if
it is flat. This gives the flat topology. In algebraic geometry, there are two versions: fppf
and fpqc. These are the same for affine things, so we can just say “flat topology”.

The point of defining a site is to be able to say what it means for a presheaf to be a sheaf.
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Definition 15.4. A presheaf F : Cop → Set is a sheaf if the following diagram

F (X) //
∏
i F (Ui) //

// ∏
i,j F (Ui ×X Uj

Uij

)

is an equalizer for all X ∈ C, and for all covers {Ui → X} of X.

Definition 15.5. A prestack is a functor M : Cop → Gpd. It is a stack if

M(X) //
∏
iM(Ui) //

// ∏
i,jM(Ui ×X Uj

Uij

) //
//

//

∏
i,j,kM(Uijk)

is an equalizer for all X ∈ C and all covers {Ui → X}.

This is part of a bar complex; if you want to talk about ∞-stacks, you’d need to write down
the entire bar complex.

For example, let M = Vect(−), where Vect(X) is the category with objects = collections

of vector bundles ξi on each Ui along with isomorphisms ξ|Ui∩Uj
αi,j→ ξj |Ui∩Uj satisfying

αjkαij = αik.

For example, let (B0, B1) be a Hopf algebroid. Then I have a prestack

Hom(X1, B0) // Hom(X,B1)
oo

oo

which I can stackify. This is what is meant by a stack associated to a Hopf algebroid.

Now specialize to C as the category of affine schemes with the flat topology. We have

Zariski open inclusions ⊂ Étale morphisms ⊂ Flat morphisms.

Étale means flat + unramified (this coincides with our earlier definition of unramified).

An example of something that isn’t a Zariski open inclusion is the n-fold open cover of Gm by
itself.

15.3. Descent.

Theorem 15.6 (Grothendieck, fpqc descent for quasicoherent sheaves). Let U = {fi : Ui →
X} be an fpqc cover of X. Let Fi be quasicoherent sheaves over every Ui. Descent data is
isomorphisms σ : Fi|Ui∩Uj ∼= Fj |Ui∩Uj . Then there exists a quasicoherent sheaf F on X such
that f∗i F → Fi is an isomorphism.

Definition 15.7. Let QCoh(−) be the prestack X : Affoppf → Gpd sending T to the category

whose objects are quasicoherent sheaves over T and morphisms are isomorphisms.

15.4. Morphisms. Let ϕ : F → F ′ be a morphism of stacks. A scheme S gives rise to a
discrete stack S via the Yoneda embedding (it only has identity isomorphisms).
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Definition 15.8. We say that ϕ is schematic (a.k.a. representable) if, for all maps f : S → F ′,
the left vertical arrow in the pullback

F ×ϕ S //

��

F
ϕ

��

S
f

// F ′

is a morphism of schemes.

(Sometimes this is called relatively representable.)

15.5. Algebraic stacks.

Definition 15.9. Let T ∈ Aff. Let a1, a2 ∈ F(T ). Then IsomT (a1, a2) is a functor Affop /T →
Ens (where Ens means “ensembles” (possibly just Set modulo technicalities)) sending (α : S →
T ) to Hom(α∗(a1), α∗(a2)).

For example, if E1, E2 are two curves over T = SpecR and α : S → T , I’m looking at the

isomorphisms α∗E1
∼=→ α∗E2 over S.

This theorem is not very hard.

Theorem 15.10. Let F be a stack. TFAE:

(1) The diagonal morphism F ∆→ F ×F is representable.

(2) All isoms are representable.

(3) Every map S → F is representable. Note that this representable is not the fancy stacky
“representable” – it’s a functor into sets!

This theorem is important for actually making definitions.

Let x ∈ {étale, flat smooth, . . . }. We say that a representable morphism ϕ : F → G is x if f
in the following pullback diagram is x.

c, aF ×G S //

f

��

F

��

S // G

Definition 15.11. A stack X is algebraic if the hypotheses of Theorem 15.10 hold, and there
is a smooth atlas U =

⋃
Ui → X where U is affine and U → X is smooth.

For example, ∗//G is covered by the atlas which is just the point.

Given a Hopf algebroid (A,Γ), you can produce an algebraic stack XA,Γ with an atlas. (You
can go backwards if you have an affine cover SpecA of X, and then you look at the pullback
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SpecA×X SpecA = Spec Γ.) If you put enough conditions on both sides, this is an equivalence.
You need the stacks to be rigidified (a stack with a chosen affine cover), and the Hopf algebroids
to be flat.

Talk 16: Stacky homotopy theory (Gabe Angelini-Knoll* and Eva
Belmont*)

I can’t liveTEX my own talk!

Talk 17: Moduli of elliptic curves (Allen Yuan* and Dimitar Kod-
jabachev*)

References: TMF book, compiled by Mike Hill and others.

Fix a prime p.

Theorem 17.1 (Landweber, Ravenel, Stong). Let C be an elliptic curve given by Weierstrass

equation y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6. This lives over Ã = Z[a1, . . . , a6,∆

−1]. This

curve completes to give a formal curve Ĉ. There is also a formal group law, which corresponds

to a map L→ Ã.

Then Ĉ is Landweber exact.

Proof. Step 0: v0 = p. OK.

Step 1: want to show that v1 ∈ Ã/pÃ = Fp[a1, . . . , a6,∆
−1] is nonzero. As long as there exist

non-supersingular curves, this is OK.

Step 2: Claim that v2 ∈ Ã/(p, v1)Ã is a unit. If not, Ã/(p, v1, v2)→ K would give an elliptic
curve of height 3, which doesn’t exist. �

So we get a cohomology theory EWeier satisfying

EWeier(X) = Ã⊗LMU∗X.

In some worlds, you might want to periodify this.

{Elliptic coh. thry.} //

��

{Cplx. orient. coh. thry.}

Spf E∗(CP∞)
��

{Elliptic curve} Ĉ // {formal groups}
Landweber exactness gives a partial section on the right vertical map.

Definition 17.2. An elliptic cohomology theory over a commutative ring R is:
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(1) an elliptic curve C/R,

(2) a spectrum E (weakly even periodic),

(3) isomorphisms π0E ∼= R and Spf(E∗(CP∞)) ∼= Ĉ.

For the rest of the talk, I’ll be taking apart the diagram above and taking it a little more
seriously with stacks.

The first moduli we want to understand is Mell, the moduli of elliptic curves. Over C, we’ve
seen that it looks like H/SL2(Z) =Mell×SpecC. One way to picture this is by a fundamental
domain in the upper half plane. Alternatively, there is a map j :Mell × SpecC→ C called
the j-homomorphism that classifies elliptic curves up to isomorphism.

First, suppose we’re working in nonzero characteristic. We want to study [p] : C → C. The
differential of this map at the origin is p. If p is invertible, the p-torsion is C[p] = (Z/p)2. In
characteristic zero, the p-torsion could either look like Z/p with formal height 1, or ∗ with
formal height 2. The first case is called the ordinary case, and the second case is called the
supersingular case.

Most curves are ordinary, but there is a supersingular locus Mss
ell.

Let Ã = Z[a1, . . . , a6,∆
−1], where Spec Ã is the moduli of smooth Weierstrass equations, and

Γ̃ = Ã[u±, r, s, t] be the moduli of isomorphisms. We have three related moduli spaces:

Mell →Mell →Mell
+

where

• Mell =M
(Ã,Γ̃)

• Mell is the compactification, which also parametrizes curves with nodal singularities

• Mell
+

=:MA,Γ parametrizes curves with cusps and nodes

The map assigning a formal group to an elliptic curve (i.e. C 7→ Ĉ) gives rise to a map of

stacks Mell
Φ→Mfg.

Theorem 17.3. Φ is flat.

Proof. Take the pullback

PB //

��

Mell

��

SpecR //Mfg
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Add the faithfully flat cover Spec Ã→Mell and take another pullback:

PB′ //

��

Spec Ã

��

PB //

��

Mell

��

SpecR //Mfg

We had a faithfully flat cover Spec Ã→Mell, which shows that PB′ → PB is faithfully flat.

By Landweber, Spec Ã→Mfg is flat, which shows that PB′ → SpecR is flat. �

Corollary 17.4. Given a flat map f : SpecR→Mell, you get an elliptic cohomology theory
Ef :

SpecR
f
//

$$

Mell

��

Mfg

In other words, there’s a presheaf Ohom of homology theories on Mell.

Look at the geometric fibers of Φ. Fix an algebraically closed field k. We want to study the
pullback

PB //

��

Mell

Φ
��

Spec k //Mfg

In characteristic p, let’s focus on height 2. What this looks like is one point with the action
of the Morava stabilizer group Sn. This can be called BSn. Living over this is the stack of
supersingular elliptic curves. We want to take the pullback

“Mss
ell × Sn” //

��

Mss
ell

��

Spec k // BSn

In general, what we’re doing is

Geometric point //

))

Stack or scheme

Formal nbd.
flat

55

E.g. if the stack is Mfg, then this is a way to engineer something that is Landweber flat.
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Geometric point Formal neighborhood Stack or scheme

SpecR/m Spf Rm̂ SpecR

K(2)∗ = Fp[v±2 ] E2 Mfg

Elliptic curve/k Elliptic curve/R Mell

If K is a field with characteristic p and R is a nilpotent thickening, we want to study the
square

{Supersingular ell. curves/R} //

��

{formal groups/R}

��

{Ss. ell. curves/k} // {formal groups/k}

Theorem 17.5 (Serre-Tate). The above square is a pullback.

Let ω be the module of invariant differentials ω over Mfg. You can pull this back over

Mell
Φ→Mfg to get ωell = Φ∗ω. Recall, a modular form of weight n is a global section of ω⊗nell ,

i.e. H0(Mell, ω
⊗n).

Along the map Ms
fg →Mfg, a tangent vector on Ms

fg goes to a Gm-torsor on Mfg. From the
viewpoint of topology, a Gm-torsor is a “grading sheaf”. It’s like a Serre twist on projective
space. Recall:

Ext(MU∗,MU∗X) = RHom(OMs
fg
,FX)

= H∗(Ms
fg,FX)

H∗(Mell;ω
⊗q) = H∗(Mfg;F ⊗ ω⊗q) =⇒ π∗TMF

Recall stacky Landweber flatness says that Φ :Mell →Mfg is flat. There is a functor

Ohom : (Aff /Mell)
op → {elliptic cohomology theories}

taking C/R 7→ EllC /R. We want a universal elliptic cohomology theory.

Theorem 17.6 (Goerss-Hopkins-Miller). There exists a sheaf

Otop : (Aff /Mell)
op
ét → {E∞-rings}

whose associated presheaf is Ohom the sheaf sending SpecR to the Landweber flat cohomology
theory associated to the formal group classified by SpecR →Mell →Mfg (note étale =⇒
flat which is why this is Landweber flat). This satisfies:

• Otop(f) is even and weakly periodic

• if f : SpecR→Mell then π∗(Otop(f)) ∼= R

• ΓOtop(f)
∼= Ĉ I think this means that Ĉ is the formal group associated to the spectrum

Otop(f)
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Construction of Otop. (1) Assemble Otop from an arithmetic square

Otop //

��

∏
p ip,∗O

top
p

��

iQ,∗ ×Otop
Q

// (
∏
p ip,∗O

top
p )Q

where Otop
p is a sheaf over (Mell)p and Otop

Q is a sheaf over (Mell)Q.

We have morphisms

Mord
ell

iord→ (Mell)p
iss←Mss

ell.

(2) Constructing Otop
Q is easy. Otop

p is subtle. It is assembled from a Hasse square

Otop
p

//

��

iss,∗Otop
K(2)

��

iord,*O
top
K(1)

β
// (iss,∗Otop

K(2))K(1)

The idea is that this is supposed to come from a fracture square. �

Now we can believe in the existence of Otop.

Definition 17.7 (“The mother of all elliptic cohomology theories”). TakeMell, do something
mysterious involving Φ(Otop,−), and get TMF (topological modular forms).

There are variations:

• Tmf = Γ(Otop,Mell) is nonperiodic

• tmf = τ≥0Tmf (connective version)

The intuition is that Otop is a topological analogue of ω⊗∗. Define MF∗ = Γ(ω⊗∗Mell).

Question: what is π∗TMF?

Claim 17.8. There is a spectral sequence with E2-term

Ep,q2 = Hq(Mell, π
†
p(Otop))

strong
=⇒ πp−q(TMF ).

(Here † means sheafification.) Using the sheaf of invariant differentials, you can rewrite this
as

Hq(Mell, ω
⊗p) =⇒ π2p−q(TMF ).

To construct the spectral sequence, takeM to be a site with coproducts, a sheafO :Mop → Sp,
and C = {Ui → U}i∈I a covering. Define U• : ∆op → M taking [n] 7→

⊔
i0,...,in

Ui0,...,in .

Applying O, O(U•) : ∆ → Sp, X ∈ Sp∆, get TotX = the equalizer of
∏

[n](X
n)∆(−,[n]) ⇒∏

ϕ:[m]→[n](X
m)∆(−,[m]). Claims:
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• We get a tower of spectra

· · · → Totn(X)→ Totn−1(X)→ . . .

where Totn(X) = Tot(n-coskeleton of X).

• Tot(X) = limi Toti(X)

• You can put a model structure on this model category. If F is fibrant in the Reedy
model structure, this tower · · · → Totn(X)→ . . . is a tower of fibrations. Now take the
homotopy fiber at each stage, take π∗, take the LES in homotopy, wrap these around to
get an exact couple and hence a spectral sequence.

Rationally, π∗(TMF ) = MF∗ = Z[c4, c6,∆
−1]/(c3

4 − c2
6 − 1728∆) where MF∗ is the classical

ring of modular forms. There is something similar for π∗Tmf = mf ∗, where mf ∗ is the ring
of meromorphic integral modular forms.

Talk 18: Gross-Hopkins period map (Sean Howe* and Paul VanK-
oughnett)

Notation:

• k = Fpn

• W = W (k) (Witt vectors)

• K = Frac(W ).

• G0/k is the Honda formal group law of height n (so [p]x = xp
n
)

• LT is the Lubin-Tate space over Spf W . (Think of this as non-canonically a unit ball.)

LT (R) = {(G, i) : G a formal group/R, i : Gk
∼=→ G0} where Gk is the special fiber.

• LTK is the rigid analytic fiber on LT . Think of it as an open unit disc with “more
functions”.

• Gn = Aut(G0)oGal(Fpn/Fp). This acts on the formal group by changing the trivialization
of the special fiber.

Theorem 18.1 (Gross-Hopkins). There is an étale surjective map πGH : LTK → Pn−1
K .

Functions on LTK are elements of K[[t1, . . . , tn−1]] that converge for all |ti| < 1, ti ∈ K. I
think functions on LT aren’t allowed to have denominators – i.e. coefficients in the Witt ring.

Gn acts by i, and Gal acts because I base-changed my Honda formal group. The Gn action is
an explicit linear action by matrices on Pn(?).

The important part is that this gives a tool for studying equivariant sheaves on Lubin-Tate
space LT (or at least on the generic fiber).

Topologist question:

• Why should P1 have connected étale covers? This doesn’t happen in the archimedean
topology; it is a phenomenon in rigid analytic geometry.

• Why do we have to pass to LTK?
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• Why is this a period map?

• What does πGH(X) remember about X? (I.e. what are the fibers?)

How does this show up in topology? We want to compute stable homotopy groups of a finite
CW complex X. Chromatic homotopy theory breaks it into chunks: isolate some of the
periodicity. There’s also a way to glue the chunks back together. The chunks are Bousfield
localizations LK(n)X. This is still a triangulated symmetric monoidal category with unit
given by localizing S. If you ask for symmetries of all spectra, you get a group Z generated
by suspension. (By symmetries, I mean automorphisms preserving the triangulation and the
symmetric monoidal structure.)

The symmetries we’re looking for are all given by tensoring with an invertible object. In general,
the symmetries in the K(n)-local category are given by tensoring with an invertible object
in the K(n)-local category. That is, the symmetries are the Picard group Pic (isomorphism
classes of invertible objects). From this, you can ask about Pic of Gn-equivariant line bundles
on LT .

18.1. Archimedean analogue. Let E/C be an elliptic curve. I can look at de Rham
cohomology H1

dR(E(C)) (this has C-coefficients). Inside, I get a 1-dimensional sub-vector
space ωE spanned by holomorphic differential forms (closed and harmonic);

0→ ωE → H1
dR(E(C))→ LieE∨ → 0

There is a classical isomorphism H1(E(C),C) ∼= H1
dR(E(C)) gotten by integrating topological

forms across cycles.

This works in families, like S/C or E/S.

0→ ωE/S → H1
dR(E)→ LieE/S → 0

ωE/S comes from the Hodge filtration and H1 is a vector bundle on S. I can push forward to

get Rif∗C⊗OS . I have a canonical way to identify nearby fibers in this local system. (The
singular cohomology only depends on the topological structure of E, and locally this is a fiber
bundle in the topological category.)

H1
dR is a filtered vector bundle with integrable (can locally find a basis of sections, called flat

sections) connection (a way to differentiate sections along a vector field). The flat sections are
R1F∗C.

Suppose S is simply connected. Then I can choose a basis of this local system – I can choose
a flat basis. This gives an isomorphism; in particular, after applying the comparison theorem
(the previous isomorphism with H1

dR), I get H1
dR(E) ∼= OnS . The vector bundle still has a

filtration, and this transfers it to OnS . (Actually, n = 2.) This map depended on my choice of
flat basis; a different choice corresponds to an action by GL2(C).

S could be something that parametrizes elliptic curves (plus a basis for their integral Betti
cohomology), say the upper half plane. Integral Betti cohomology is a flat basis; if I use that
to construct this map, I get the standard identification of this with P1(C)− P1(R). I have an
action of GL2(C) just by changing the trivialization of Betti cohomology. The connection is
visibly equivariant w.r.t. that action – you’re not changing the curve; you’re just changing
the identification of the fiber. GL2 acts also on the universal elliptic curve over this moduli
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space. Because of this, your action of GL2 on the moduli space is equivariant on the linear
action on P1(C)− P1(R).

Suppose [a1, a2] ∈ P1 are coordinates for the Hodge filtration WS ⊂ H1
dR(ES) w.r.t. a flat

basis.

The goal is to construct a filtered vector bundle on LTK with integrable connection. Let’s
simply and ask for this to be Aut(G0)-equivariant. What does “integrable connection” mean
in the non-archimedean world? We want to be able to give a basis of flat sections.

Take the map that sent a point to the filtration expressed in this flat basis. Why should this
map be equivariant for the linear action on Pn−1? That’s because the connection is equivariant;
the actions preserves flat sections, which gives the linear action on the flat sections.

We can do all of this except the basis of flat sections on the formal scheme – that is the only
time you have to pass to the rigid analytic generic fiber.

First we talk about how to produce this filtered vector bundle. I’m going to produce it
on Lubin-Tate space (without passing to the generic fiber). Start with a formal group G
over a complete local Noetherian ring over Zp. I have to produce something like de Rham
cohomology in this setting. I’m going to do something näıve: I have a de Rham complex

R[[x]]
d→ R[[x]]dx for my formal group (formal differentiation). Now take H1 of this. This

isn’t enough: I haven’t used the formal group structure, and also this turns out to be generally
quite large. Let’s take translation-invariant classes, and call that H1

TI .

Inside of here are translation-invariant differentials, which gives a closed form.

0→ ωG → H1
TI → LieG∨ → 0

H1
TI is n-dimensional, and ωG is a 1-dimensional filtration inside. This gives me my vector

bundle with filtration. H1
TI is the Dieudonné module (to be defined later, for a formal group

over a field of characteristic p).

Aside: the Dieudonné module D for a formal group G0/k (where k is of characteristic p) is
H1
TI(G) for any lift of G0 to W (R). When looking at the Witt vectors, you’re only taking

points in a disc of radius 1
p . You can’t take an arbitrary lift to OK because you have no

canonical way to identify these.

I want to say this is a vector bundle with connection. If you have a connection on a vector

bundle in this setting, you can’t extend sections beyond a ball of radius p
1
p . Fix two points in

formal Lubin-Tate space (over an extension now – some OK-point). There are disjoint balls
around them. The connection will give a basis of flat sections over these disjoint balls. You
can cover your space by open balls where you can give flat sections, but I can’t give them
over the whole thing. The reason is I have to solve some differential equation. Fix a basis
of sections over the whole thing. Write down ∇ = 0. Because the connection is integrable,
I can formally solve this in power series, but I need to divide by n!’s, and when doing that
you have a 1

p in there (which is really big, in non-archimedean topology). So the 1
p ’s are only

cancelled out when you take something sufficiently close to your point.
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So giving a connection gives a way to identify fibers that are close enough, and the converse
also holds. You want to think of it as a connection when you’re doing rigid analytic geometry.
You can’t put the balls together, so you can’t get flat sections over the whole thing. If you
take flat sections, you need to prove the coefficients aren’t growing too fast. You have a map
t 7→ tp on the coordinate for your ball (to P1). You get some Frobenius-equivariant structure.
If you have a basis of flat sections of P1, you can pull them back to get rigid analytic sections.
Somehow claim that you can extend these, and iterate this to show that you can extend to
the whole unit ball.

Why is this map étale? In archimedean settings, things are completely determined by the
Hodge structure. This is why the period map is an isomorphism. If I work on one of these small
neighborhoods, then the same thing is true here. You get surjectivity from the equivariant
action.

The fibers are almost isogeny classes.

Talk 19: Recap (Jared Weinstein)

Let k be a field of characteristic p. Let OK = W (k) and K = OK [1
p ]. We have a functor from

(some) formal schemes over Spf OK to rigid spaces, sending X 7→ XK . XK is a functor from
K-affinoid algebras to sets. An important class of K-affinoid algebras is valued fields L/K.
For example, (Spf A)K(L) = Hom cts

OK -linear
(A,L).

If X = Spf OK [[u]], then XK(L) = Homcts. This is determined by where u goes. Say
u 7→ u0; this has to be a place that makes all integral power series in u0 converge. Powers
of u0 have to tend towards 0, so the condition on u0 is |u0| < 1. So, this shows that
XK(L) = {u0 ∈ L : |u0| < 1}.

Suppose G = Gm = Spf Zp[[x]]. There is a logarithm log : GQp → A1
Qp . Evaluated on a field

L, this is mOL = GQp(L)→ Q1
Qp(L) = L, and x ∈ mOL gets sent to

∑∞
n=1

xn

n . Since there are

denominators, you have to pass to the generic fiber.

The exponential doesn’t converge everywhere, but if you multiply something in A1
Qp by a

large enough power of p, it lands somewhere where exp converges. ker log is the roots of unity,
so the fibers of this map are µp∞ . This is an ∞-to-1 étale surjective map. This shows that
the affine line is not simply connected as a rigid analytic space.

Is it surjective on L-points? No, but you can find an étale extension of L, such that that has
a preimage. It’s surjective on the level of étale sheaves.

Let’s move to Mfg. Suppose G0 is a formal group over k = k. Declare it’s dimension 1, and
the height is n (e.g. the Honda formal group). I have LT , the deformation space for G0.
There is a noncanonical isomorphism Spf OK [[u1, . . . , un−1]]. As a functor, LT (OL) is the set

of pairs (G, i) up to isomorphism, where G is a formal group over OL, and i : G⊗OL k
∼=→ G0.

54



Chromatic homotopy theory Talk 20

Let Γ = AutG0. It acts on the set of pairs (G, i). Therefore it acts on Spf OK [[u1, . . . , un−1]],
and hence on the ring. This is rather mysterious.

If L/K is a field extension, LTK(L) is the set of homomorphisms out of OK [[u1, . . . , un−1]] that
send the ui’s somewhere where the power series can converge. So LTK(L) = {(u1, . . . , un−1) :
ui ∈ mL} = LT (OL).

What is the Gross-Hopkins map? There is a map, kind of like the logarithm, but that only

appears on the generic fiber. It takes LTK
πGH→ Pn−1

K , so on L, it’s LT (OL)→ Pn−1(L).

H1
dR(G) = coker(d : OL[[x]] → OL[[u]]dx). This is not going to be surjective: undoing it

involves denominators. Inside of this, there is a space D(G) of translation-invariant differentials
(or, translation-invariant modulo exact differentials). This D(G) has a special name: it’s
called the Dieudonné module of G. There are many constructions of the Dieudonné module.
When L = K, the morphism F 7→ D(G) from formal groups over OK to OK = W (k)-modules
with some extra structure factors through formal groups over k.

The true reason this works is that pn

n! is in Z(p).

Now I can define the Gross-Hopkins period map. I have an isomorphism i : G0
∼=→ G⊗k. That

means that there is an isomorphism D(G0) ∼= D(G). Inside D(G) (dimension h = height of
G0) is the line ω consisting of holomorphic 1-forms on G. The Gross-Hopkins period map
takes LTK → P(D(G0))K . This is linear w.r.t. the action of Γ; it acts on LTK by definition
and on the projective space because Dieudonné modules are functorial.

Talk 20: p-divisible groups 1 (Tony Feng* and Alexander Bertoloni
Meli*)

As number theorists, we’re interested in studying objects like an elliptic curve E over K.
This is a 1-dimensional proper group variety. We’re also interested in the higher dimensional
analogues (abelian varieties A/K). If K is a number field, then there is a construction that
gives a linear algebraic object that contains a lot of information about these objects. Take
the geometric points of the pn torsion and take the inverse limit: TpA := lim←−

n

A[pn](K).

Theorem 20.1. HomK(A,B) ⊗ Zp ∼= HomGK (TpA, TpB) where GK is the absolute Galois
group of K.

Work over characteristic p.

ordinary elliptic curves supersingular elliptic curves

# p-torsion points p 1
formal group height 1 height 2

Maybe we can patch up these missing p-torsion points with the formal group. Now look at
lim−→A[pn] (so not just geometric points – also get nilpotence).
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Theorem 20.2 (Serre-Tate). Def(G(A)) ∼= Def(A)

Here Def means lifts to a nilpotent thickening.

Theorem 20.3. Let R be a ring. A p-divisible group of height n is a system (Gv, iv) indexed
by v ∈ N≥0, where Gv is a finite flat group scheme over R of order pnv, and iv is a map in an

exact sequence Gv
iv→ Gv+1

[pv ]→ Gv+1. (This exact sequence is part of the data.)

Example 20.4. Let G be a finite group. Take the R-algebra R[eg] for eg ∈ G. This has |G|
copies of R, where the idempotent for each copy is eg and egeh = 0. The comultiplication is
given by eg 7→

∑
σγ=g eσ ⊗ eγ . This is called the constant group scheme G. Note that there

are natural inclusions Z/pnZ in
↪→ Z/pn+1Z. Then (Qp/Zp, in) is a p-divisible group.

Example 20.5. ker([pn] : Gm → Gm) = SpecR[x]/xp
n − 1. Then there is a p-divisible group

µp∞ = (µpn , in) where in is the natural inclusion.

Example 20.6. If [pn] : A→ A then (A[pn], in) is a p-divisible group of height 2 dimA.

Suppose G = SpecA comes with operations N : A → A ⊗ A and m : A ⊗ A → A. Look at
Spec HomR-mod(A,R) =: G∗. Claim that the operation (−)∗ is nice: (G∗)∗ = G.

Take a p-divisible group (Gv, iv). I claim that Gv+1
[pv ]→ Gv+1

[p]→ Gv+1 is exact, and so the
second map factors through Gv:

Gv+1
[pv ]
// Gv+1

jv
//

[p]

##

Gv //

��

0

Gv+1

and so, taking duals, there is an exact sequence 0→ G∗v
j∗v→ G∗v+1

[pv ]→ G∗v+1. Checking that the
dual of multiplication by pv is multiplication by pv, the upshot is that there is a p-divisible
group (G∗v, j

∗
v).

Example 20.7.

• (Qp/Zp)∗ = Np∞

• G(A)∗ ∼= G(A∗)

• Elliptic curves are self-dual

I’m going to say more about the structure theory of p-divisible groups, mostly bootstrapped
off the theory of finite type group schemes.

Let R be a ring with p = 0, and X = SpecA over R. I want to define a “Frobenius map”.
The starting point is that FA : A → A sending a 7→ ap is a ring homomorphism (because
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p = 0). However, it’s not an R-algebra homomorphism. So it won’t respect the structure map
to R, so we need to modify this. Instead, define some twist of the R-algebra structure on A.

Define A(p) := A⊗R,FR R (I’m viewing R as an algebra over itself, not by the identity, but by

this Frobenius map). There is a map FA/R : A(p) → A sending a⊗λ 7→ apλ for a ∈ A, λ ∈ R.

Geometrically, we have a map X → R, and SpecA(p) is just the base-change

X

((

��

FX/R

!!

X(p) //

��

X

��

R
FR // R

Definition 20.8. FX/R = SpecFA/R

This is sometimes called the “relative Frobenius”.

If X is a group scheme G, then G(p) is a group scheme as well. I can take all the diagrams
defining the group structure on X, and base-change them.

Example 20.9. Suppose R = Fq and A = Fq[t1, . . . , tn]/(f1, . . . , fm). Think of SpecA as

{(x1, . . . , xn) : fi(x) = 0}; then F (x1, . . . , xn) = (xp1, . . . , x
p
n) satisfy f

(p)
i = 0.

Dualize FG∗/R : G∗ → G∗(p) = G(p)∗ to get a map V : G(p) → G which is called the
Verschiebung.

Fact 20.10. The composition G
F→ G(p) V→ G is [p]. Similarly, G(p) V→ G

F→ G(p) is also
multiplication by p.

If G = (Gv, iv) is a p-divisible group, I get F : G→ G(p) and V : G(p) → G corresponding to
the Frobenius and Verschiebung. These also satisfy FV = p = V F just because it’s true at
each layer.

Let R be a henselian local ring (the slogan for this is “field or complete DVR”). There is an
exact sequence 0→ G0 → G→ Gét → 0, where G0 is connected and Gét is étale. You have
to show that the connected component is a subgroup, which is not obvious and not true in
general.

Let G = SpecA over a ring R. Assume A is a finite flat R-module.

Example 20.11. IfR = Fp, consider the scheme µp of pth roots of unity. This is SpecFp[x]/(xp−
1) = Fp[x]/(x− 1)p. This has only one geometric point, but it’s a non-reduced point – it has
a nontrivial tangent space.
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Example 20.12. αp := ker(F : Ga,Fp → Ga,Fp) = Spec k[x]/xp

A connected group scheme is a group scheme that is connected as a scheme. An étale group
scheme G = SpecA is a group scheme such that A is étale over R. (Equivalently, Ω1

A/R = 0.)

Slogan: think of a finite étale map as a covering map.

Example 20.13. The constant group schemes are étale.

Over a field of characteristic 0, all finite flat group schemes are étale. This is the class of
group schemes that correspond to your traditional geometric intuition.

Proposition 20.14. G is étale iff F : G→ G(p) is a monomorphism. This is equivalent to it
being an isomorphism.

That F exists implies we’re working over a ring with p = 0.

Proof sketch. d(xp) = pxp−1 = 0, so dF = 0 on Ω1. If it’s a monomorphism, then dF
is injective, so Ω1 is already zero (remember this implies étale-ness). The other direction is
easy. �

Remember the SES 0→ G0 → G→ Gét → 0. There is an equivalence between étale group
schemes and group schemes with a π1-action, which helps us understand Gét. The connected
part G0 is more mysterious, but if G = (Gv, iv) is a p-divisible group, then you get G0 = (G0

v).
Also Gét = (Gét

v ).

We can understand G0 in terms of formal groups. A formal Lie group is Γ = Spf R[[x1, . . . , xd]]
along with a power series F (x1, . . . , xd, y1, . . . , yd) satisfying the axioms of formal group laws.
This is different from a group object in the category of formal schemes, which doesn’t have to
have this form.

Given such a Γ, I can form a p-divisible group Γ(p) = (Γ[pv], iv).

Theorem 20.15 (Tate). This induces an equivalence

{divisible formal Lie groups} ←→ {connected p-divisible groups}
when R is complete, Noetherian, and local, with residue field of characteristic p.

Definition 20.16. Define dimG to be the dimension of the formal Lie group Γ associated to
G0; this dimension is just the number of power series variables (d).

Remark 20.17. If X is an abelian variety and G = (X[pv], iv), then G0 = X̂.

Example 20.18.
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p-div. group height dimension

µp∞ 1 1

Qp/Zp 1 0

X[p∞] 2d d

Proposition 20.19. Let G be a p-divisible group of height h and dimension d, such that
dimG∗ = d′. Then h = d+ d′.

Proof. We know that G
F→ G(p) V→ G is multiplication by p. That gives a SES 0 →

kerF → ker[p] → kerV → 0. So we will calculate the dimension of each of these pieces.
By the definition of height, | ker[p]| = ph. Recall we have 0 → G0 → G → Gét → 0.
The Frobenius is injective on étale group schemes, so kerF = ker(F |G0). But G0 comes
from Spf R[[x1, . . . , xd]] and I know that Frobenius on this just takes xi 7→ xpi . So kerF =

SpecR[[x1, . . . , xd]]/(x
p
1, . . . , x

p
d), which implies | kerF | = pd. Dually, | kerV | = pd

′
. �

Talk 21: p-divisible groups and Dieudonné modules (Serin
Hong* and Zijian Yao*)

Title: {p-divisible groups} D→ {“Diedonné modules”}.

References: Tate, “p-divisible groups” and “Classes d’isogénie de variet]’es abeliannes”; Mann,
“Theory of formal groups over finite characteristic”; Demazane, “Lectures on p-divisible
groups”.

21.1. Motivation. The generic fiber is related to Tate modules. The idea is that the
Tate module determines arithmetic properties. If A,B are abelian varieties,

HomK(A,B) ∼= HomG(Tp(A), Tp(B))

where Tp(−) is the Tate module. This was conjectured by Tate and proven by Faltings. It
says that if you want to understand abelian varieties, all you have to know is data about the
linear algebraic object TpA. Faltings’ proof uses p-divisible groups extensively.

There is also a correspondence between deformations of abelian varieties and deformations
of p-divisible groups. The latter is slightly easier; we can use about the functor D, where
Dieudonné modules are essentially linear algebra, which is much easier than the geometry of
p-divisible groups.

Topologists care aboutMfgp; geometric points correspond to the height of formal groups, and

there is a chain of inclusions of neighborhoods. There is a map Mellp →Mfgp. Mell has a

supersingular locus that maps to a point, and the other locus that maps to another point.
This is flat but not étale. Serre’s theorem says that Mellp →Mfgp factors through another

stack Mp-div with a formally étale map from Mellp.
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The idea is that Dieudonné modules are like W (k)-modules with Frobenius and Verschiebung
maps. We will make this precise.

The map D factors through p-divisible groups over R/p. We will actually be talking about
the diagonal map “D”:

{p-divisible groups/R = W (k)} D //

++

{linear algebra}

{p-divisible groups/(R/k)}
“D”

44

21.2. p-divisible groups over a perfect field k of characteristic p. A p-typical
group is a system {Gv, iv : Gv → Gv+1} satisfying several conditions. Each of these is a finite
flat group scheme of p-power order over the field. If G is a finite flat group scheme over k, we
have the connected étale sequence 0→ G0 → G→ Gét → 0.

Lemma 21.1. If k is perfect, then this sequence splits: G = G0 ×Gét.

By considering the Cartier dual, G = G0,0 × G0,ét × Gét,0 × Gét,ét. (µp and Z/pZ are
Cartier duals.) These factors are αp, µp,Z/pZ,Z/`Z, respectively, where (`, p) = 1. Recall
µp = Spec k[x]/xp − 1. The relative Frobenius is the dotted map in

µp

((
  

µ
(p)
p

//

��

µp

��

Fp // Fp

Here is what F, V do to the various pieces:

αp µp Z/pZ Z/`Z

F 0 0 ∼= ∼=

V N ∼= N ∼=

If I restrict attention to p-power group schemes, I can ignore the last column. The upshot is
that F and V remember structure of G.

Theorem 21.2. There is a functor

D :

{
finite flat groups

of p-power order over K

}op
−→

{
W (k)-modules with action of

F and V s.t. (*)

}
where the conditions (*) are:

• Fx = σ(x)F
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• V x = σ−1(x)V

• FV = V F = p

where σ is a Frobenius lift. Then D is an equivalence of categories.

Properties of D:

• It is stable under perfect extensions

• G has order ph iff the length of D(G) is h

• µp 7→ K where F acts by p and V acts by 1

• Z/p 7→ K, where F acts by 1 and V acts by p

• α/p 7→ K, where F acts by p and V acts by p

This behaves well w.r.t. limits.

Passing to the limit, you get an equivalence of categories

D : {p-divisibles/k} −→ {Dieudonné modules

free W (k)-modules of finite rank}
This sends µp∞ 7→ Zp with F acting by p and V acting as the identity.

For example, an elliptic curve E/k could be supersingular or ordinary. In both cases,

E(p∞) 7→ Z2
p. In the supersingular case, the Frobenius action is given by

(
p

1
2 0

0 p
1
2

)
and in

the ordinary case, it acts by

(
p 0
0 1

)
.

21.3. Classification of Dieudonné modules up to isogeny.

Definition 21.3. A map f : G1 → G2 of p-divisible groups is an isogeny if it is surjective
with finite kernel.

Because there is a notion of isogeny on p-divisible groups, via D there is also a notion of
isogeny on Dieudonné modules.

Theorem 21.4. Let f : G1 → G2. TFAE:

(1) f is an isogeny

(2) D(f) : D(G2)→ D(G1) is injective

(3) After tensoring with Qp, D(f)⊗Zp Qp : D(G2)⊗Qp → D(G1)⊗Qp is an isomorphism.

That is, D(G2)[1
p ] ∼= D(G1)[1

p ].

Definition 21.5. A morphism of Dieudonné modules g : M → N is an isogeny if g ⊗Qp is
an isogeny.

Remark 21.6. If f : G1 → G2 is an isogeny, rank(G1) = rank(G2) and dim(G1) = dim(G2).
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Let A := W (k)[1
p ][F ]. Then D(G)⊗Qp becomes a finitely generated A-modules.

Theorem 21.7 (Manin). The category of finitely generated A-modules is semisimple. The
simple objects are

Ed/n = W (k)[
1

p
][F ]/(F h − pd) where (d, h) = 1.

21.4. Newton polygons. Define the slope of Eλ to be λ.

Given a collection of slopes λ1 ≤ · · · ≤ λn, this gives an A-module Eλ1 ⊕ Eλ2 ⊕ . . . ⊕ Eλn ,
which gives the isogeny class of some Dieudonné module.

Define its Newton polygon to be (0, 0) → (h1, d1) → (h1 + h1, d1 + d2) → · · · → (h1 + · · ·+
hn, d1 + · · ·+ dn). So it’s a bunch of line segments of slopes λ1, . . . , λn. If k 6= k, pass to k.

Remark 21.8. If G is a p-divisible group such that D(G)⊗Qp = Ed/n, then h = ht(G) and
d = dim(G).

There are maps

{abelian varieties} −→ {p-divisible groups} → {Newton polygons}
sending X 7→ X[p∞] 7→ its Newton polygon.

Remark 21.9. The Newton polygon has the following properties:

(1) the break points are integer points

(2) the slope is a rational number

Theorem 21.10. A Newton polygon arises from an abelian variety if:

(1) 0 ≤ λ ≤ 1 for all slopes λ

(2) It is symmetric in the following sense: the slopes λ and 1 − λ appear with the same
multiplicity.

Recall that λ = d/h, where d = dim(G) + dim(G∨). The symmetric part is also easy,
because the polarization gives a map X → X∗ which induces a map on p-divisible groups
X[p∞]→ X∗[p∞]. This sends Eλ 7→ Eλ∗ .

Definition 21.11. Let ν1 and ν2 be two Newton polygons. Say ν1 ≤ ν2 if ν1 lies above ν2.

By the theorem, there is a unique maximal Newton polygon, and a unique minimal Newton
polygon. The maximal one is (0, 0)→ (g, 0)→ (2g, g), and the minimal one is the single line
(0, 0)→ (2g, g). The maximal one is called the “ordinary” Newton polygon, and the minimal
one is called the “supersingular” Newton polygon.
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Definition 21.12. An abelian variety is ordinary [supersingular] if X[p∞] has the ordinary
[supersingular] Newton polygon.

Example 21.13. Go back to the example of supersingular or ordinary elliptic curves. The
coefficients in the matrix defining F determine the Newton polygon slopes.

Remark 21.14. Let k = Fpn , and G a p-divisible group over k. The Newton polygon of G is
the Newton polygon of char(F ).

Talk 22: Building cohomology theoreis from p-divisible groups
(Charmaine Sia* and Callan McGill*)

Throughout the talk, I will be using even periodic theories instead of complex oriented.

Suppose we have a flat map X →Mfg and choose some topology (étale topology).

Question 22.1. Can we construct a sheaf of E∞ and/or A∞ rings such that for any affine
flat map Γ : SpecR→ X →Mfg such that Otop(R) = E(R,Γ), we have

• E(R,Γ)0 = R

• Spf E(R,Γ)0(CP∞) = Γ

• E(R,Γ)2n = ω⊗n

For example, X = LTΓ →Mfg.

If you could upgrade the structure sheaf from (X,OX) to (X,Otop), you would get a descent
spectral sequence

Hs(X,ω⊗t) =⇒ πt−2s(Γ(Otop)).

If you could do this for the identity map Mfg → Mfg, you would get the Adams Novikov
spectral sequence Hs(Mfg, ω

⊗t) =⇒ π∗(S
0) (but this doesn’t quite work).

Theorem 22.2 (Lurie’s machine). Let (A,m) be a local ring, where A/m = k is a character-
istic p perfect ring. Let X/A be a stack such that

• X is locally noetherian,

• X is separated,

• X is Deligne-Mumford (think of this as a quotient of something by a group),

• the map f : X →Mfg factors as

X
ϕ
//

f
""

Mp(n)

��

Mfg

such that ϕ : X →Mp(n) to be formally étale (for any point x ∈ X with p-divisible group
ϕ(x), we want Defx ∼= Defϕ(x))
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then there is a canonical and functorial way to upgrade (X,OX) to (X,Otop).

Example 22.3. If X = Spf Zp = LT1 (height 1 Lubin-Tate space), then the machine

associates to this KUp̂ .

Mp(n) is the moduli stack of height n, dimension 1 p-divisible groups. It has n geometric

points Gh,n := Γh × (Qp/Zp)n−h. We have Aut(Gh,n) = Gn ×GLn−h(Zp).

The deformation space DefGh,n is noncanonically isomorphic to Spf Zp[[u1, . . . , un−1]]. There is

a SES 0→ Hfor → H → (Qp/Zp)n−h → 0 which corresponds to an element of Ext1(Hfor, (Qp/Zp)n−h)
(this has (n− 1)− (h− 1) coordinates).

Mp(n) is not representable: the pullback in this diagram is not affine.

∗//GLn−h(Zp) //

��

Mp(n)

��

Spec k //Mfg

Serre-Tate theory says that deforming abelian varieties is the same as deforming p-divisible
groups. Serre-Tate theory + Lurie gives

Mp(2)

��

Mell

;;

//Mfg

The tmf story is for heights ≤ 2. We want to construct a version for heights n ≥ 3. We want
to apply Lurie’s theorem. One of the inputs you need is moduli problems with 1-dimensional
p-divisible groups of height n.

Attempt 1: elliptic curves. The problem is that they have height ≤ 2.

Attempt 2: We want some kind of generalization of elliptic curves, so we try abelian varieties
of dimension 2. The problem is that dimA[p∞] ≥ 2. We want to cut this down to a p-divisible
group of dimension 1.

Attempt 3: Try abelian varieties that have a 1-dimensional summand of A[p∞]. In order to
use the Serre-Tate theorem, we need some condition that guarantees that the 1-dimensional
summand controls the entire p-divisible group.

There is a solution from number theory: Shimura varieties associated to the unitary group
U(1, n− 1). A Shimura variety is essentially a higher-dimensional analogue of a moduli curve.
We are classifying abelian varieties of dimension n with complex multiplication OF ↪→ End(A)
(where F is quadratic imaginary extension of Q), plus additional data in the form of a
compatible polarization and a level structure. The upshot of specifying all this information
is the following: if p splits in F as uu, then A[p∞] ∼= A[p∞]1 ⊕ A[p∞]n−1, where the first
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summand has dimension 1 and height n (so the formal group has height ≤ n) and the second
summand has dimension n− 1 and height n.

Denote this moduli by Sh. Then dim Sh = n− 1.

Example 22.4. For n = 1, U(1, 0) corresponds to the Shimura set, the moduli of complex
multiplication elliptic curves.

For n = 2, U(1, 1) corresponds to a Shimura curve, a generalization of Mell.

For n = 3, U(1, 2) corresponds to a Picard surface, which is related to plane quartics.

For general n, U(1, n− 1) correspond to Shimura varieties of Harris-Taylor type. These were
used to prove local Langlands for GLn.

By Serre-Tate and Lurie, you get a sheaf Otop of E∞-ring specra over Sh = Sh1
p (a formal

stack). This sheaf spits out the corresponding R and formal group.

Definition 22.5. TAF is defined to be the global sections Otop(Sh). You can think of this
as being some sort of derived p-adic automorphic forms.

You get a descent spectral sequence

Es,t2 = Hs(Sh, ω⊗t) =⇒ π2t−sTAF

where ω is the line bundle of invertible 1-forms over Gfor.

The idea is that TAF and Sh capture information about chromatic levels ≤ n.

Fact: TAF is E(n)-local. Let Sh[n] be the substack of Sh where (A[p∞])for has height n.

Theorem 22.6 (Harris-Taylor). Sh[n] is 0-dimensional.

Theorem 22.7 (Behrens, Lawson).

TAFFp,K(n)
∼=

∏
x∈Sh[n](Fp)

EhAut(x)
n

Example 22.8. When n = 1, TAFFp and TAF are E(1)-local, and (along with everything

this machinery returns) p-complete. So it’s already K(1)-local, and we don’t need to localize
again.

TAFFp
∼=

∏
x∈Sh(Fp)

E
hAut(x)
1

∼=
∏

Cl(F )

KU
hO×F
p

Here Cl(F ) is the class group.
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Example 22.9. When n = 2, ⊔
Cl(F )

Mell ,Zp → Sh

is a Galois cover of degree |O×F /{±1}|.

TAF '
∏

Cl(F )

TMF
h(O×F /{±1})
p

F Cl(F ) |O×F /{±1}|

Q[i] 1 2

Q[ω3] 1 3

else 1

TMFFp,K(2)
∼=
∏
x

E
hAut(x)
2

where the indexing set is isomorphism classes of supersingular elliptic curves.

Talk 23: The relation between formal and rigid geometry
(Brian Hwang* and Tobias Barthel*)

Let K be a complete and non-archimedean field. Assume that it is discretely valued, e.g. Qp

(but this isn’t necessary).

Let R = {z ∈ K : |z| ≤ 1} ⊃ m = {|z| < 1}. Let k = R/m.

Goal:

(1) What are rigid analytic spaces?

(2) What is the way to go from formal schemes over R to rigid spaces over K? This is a
process called “passing to the generic fiber of a formal scheme”. This is not literally
true, but there is an easy enough way of interpreting this.

The primary problem is that the natural analytic topology induced by the non-archimedean
valuation results in a space that is totally disconnected: every point is an open and closed set.
This causes a lot of problems, e.g. for integration or anything else that requires continuity. The
solution is to redefined what “connected” means, i.e. redefine open sets. We use C-analytic
geometry as a guide.

Tate first came up with a notion of a wobbly analytic space, and then considered rigid analytic
spaces, and the name stuck.

Definition 23.1. The Tate algebra is

Tn(K) = K 〈Z1, . . . , Zn〉 = {
∑
k∈Nn

akT
k : lim

k1+···+kn→∞
|ak| = 0}
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= “holomorphic” functions on {(z1, . . . , zn) ∈ Kn : |zi| ≤ 1}

Let I ⊂ Tn(K) be an ideal, and A = Tn/I. Define Sp(A) = (MaxSpec(A), “O”), where you
need a different Grothendieck topology, and lots of other details to define this properly. This
is called a K-affinoid space.

A rigid analytic space is a pair (X,O), where X is a (G-top) space, and O is a sheaf of
K-algebras such that there exists an “admissible” open cover {Xi} of X such that (Xi,O|X)
are affinoids. The idea is that you can make a rigid analytic space by gluing affinoids together.

An admissible open cover is something that admits a finite refinement by affinoids. Obviously
you want the unit ball to be connected. An example of a non-admissible cover is something
that’s just the boundary of the unit circle together with the open unit ball. An admissible
open cover would be the union of an annulus and a smaller disc. The second one can be
refined into a smaller cover by affinoids, but the first one can’t.

Facts 23.2.

• If A is K-affinoid and has no idempotents, then Sp(A) is connected.

• You can “analytify” varieties. There are formal GAGA theorems.

The slogan is that the “generic fibers” of formal schemes are rigid analytic. For example, let
P = R[Z1, . . . , Zn] and let m ⊂ R denote the maximal ideal. Taking the formal completion
(endowing with the m-adic topology) is:

Pm̂ = lim←−
m

P/mmP = Tn.

In more accessible language,

Tn = {
∑
k∈Nm

akZk : ak ∈ R, ∀m > 0, #{k : ak /∈ mmR} <∞}

= elements of Tn with R-coefficients.

The associated formal scheme is:

Spf(Tn) = (R/m[Z1, . . . , Zn], Tn)

which we call the “formal n-ball”.

What do we mean by “take the generic fiber”? Since K ⊗R Tn = Tn, the generic fiber of
Spf(Tn) is

Sp(K ⊗R Tn) = Sp(Tn).

Theorem 23.3 (Raynaud, 1̃970). There is an equivalence of categories

{qcqs rigid spaces/R} ←→ {qc “adm.” formal schemes R}
[

1

adm. formal blowups

]
.

My aim is to make the Gross-Hopkins map more accessible and intuitive.

Let G0 be a height h dimension 1 formal group over k, a perfect field of characteristic p. Let
W = W (k), K = W (k)[1

p ], G a deformation of G0 to W .
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You can look at these as sheaves of groups on various things. It makes sense to look at
extensions

0→ V → E → G→ 0

where V is a vector bundle. This theorem isn’t very hard:

Theorem 23.4. There exists an extension

0→ VG→ EG→ G→ 0

that is universal, i.e. any extension comes with a map from this one. This is called the
universal vector extension.

Proof. You can show that VG ∼= Ext1(G,Ga)
∨ (where Ga is the additive group). VG is

also isomorphic to the bundle of invariant 1-forms ωG∨ . This has dimension h− 1, and G has
dimension 1, so EG has dimension h. There is a SES

0→ ωG∨ → Lie(EG) ∼= M(G0)→ Lie(G)→ 0

There’s an extension (p) → W (k) → k, and you need pn

n! to live in the kernel (p). If p = 2,
this is not true, but there’s some other way to make this work out(?). All the problems go
away when you invert p.

Dualize:
0→ ωG → Lie(EG)∨ ∼= H1

TI(G)→ Lie(G∨)→ 0.

Since we’re over W ⊂ K, any of these 1-forms has an integral over K. So we can identify
ωG = {f ∈ XK[[x]] : df ∈ W [[X]]}. (We’ve normalized by saying that the constant term
is 0.) Define ∂f(X,Y ) = f(X +G Y ) − f(X) − f(Y ). This is the condition for df to be a
translation-invariant 1-form.

Lie(G∨) consists of {∂f : . . . } and

H1
TI(G) ∼= {f ∈ XK[[X]] : df = 0, ∂f ∈W [[X]]}/{f ∈ XW [[X]]}

You get an exact sequence

0 // ωG∨ //

��

EG

��

// G //

log

��

0

0 // ωG∨ [1
p ] // Lie(EG)

=(MG0)[ 1
p

]∼=Kh

[1
p ] // Lie(G)[1

p ] // 0

The image of the log map is a hyperplane, a (h− 1)-dimensional vector space. Next you need
to use rigid analytic geometry.

If you replace G with something d-dimensional you can do something similar. �

Let me say what this has to do with level structures. There is a moduli space LT which
parametrizes deformations of G0. Recall LT (R) is the set of deformations of G0 to R. We can
cover this by moduli of deformations with level structure: LTn(R) is the set of deformations

of G0 to R with α : (Z/pn)h
∼→ G(R⊗K)[pn]. If we take the limit of all these things, you get
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LT∞(R), the set of deformations of G0 to R together with a map Qh
p
∼= (limG[pn])⊗Q. (It’s

not Qp/Zp because I’m taking a limit, not a colimit.) I also get a map Zhp → limG[pn].

We can use this stack to describe the Gross-Hopkins period map more precisely. Essentially it’s
giving coordinates on this hyperplane MG0[1

p ]. There is a map from the basis Zhp → limG[pn],

and there’s a map from that to EG.

Why should topologists care about perfectoid spaces?

The observation is that moduli spaces “with infinite level structure” at p are perfectoid.
Examples include LT∞ and modular curves XΓ(p∞) (take the inverse limit over the pn

structures). These all have a natural perfectoid structure.

Here’s a 1-minute cartoon of what a perfectoid space is. You have a space X over K = Qp(p
1
p∞ )

and you’re relating this to a tilted thing X[ over K[ = Fp((t))[t
1
p∞ ]. Idea: the way you

describe Zp is like Fp, except you have carrying Zp but not in Fp. Then H∗(Xét,F) is “sort

of isomorphic to” H∗(X[,F [). (“Sort of isomorphic” has something to do with the kernel and
cokernel being killed by powers of p(?).)

Consequences: the ∞-level is simple. Also, perfectoid spaces satisfy strong cohomological
vanishing statements. Using the cartoon, if X is affinoid perfectoid, then H∗(X,Fp) = 0 for
i > 0.

Proof: pass to the tilt. In characteristic p, we have a Frobenius, and so we have a sequence
0 → Fp → OX[ → OX[ → 0, and H i(X[,OX[) = 0 for i > 0. Use the LES to get this
vanishing almost immediately.

Here’s a result that seems to be begging for a homotopical application:

Theorem 23.5 (Scholze). There exists a GL2(Qp)-equivariant map, called the Hodge-Tate
period map:

πHT : Xp,∞ → P1.

This is very close to what we’ve done with the Gross-Hopkins map. We have an analogue of

the Hodge filtration on varieties over p-adic fields. If A is an elliptic curve over C = Q̂p, we
have the sequence

0→ (LieA)(1)→ TpA⊗Zp C → (LieA∗)∗ → 0.

I think the (1) is a twisting. We have a characterization of the image of this map using the
following fact:

Fact 23.6 (Scholze-Weinstein). (LieA)(1) → TpA ⊗Zp C is Qp-rational iff A is ordinary.

P1(C) is in bijection with the p-primary(?) p-divisible groups over OC plus a trivialization of
the Tate module.
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Corollary 23.7. The Hodge-Tate period map has restrictions

πHT |Xord → P1(Qp)

πHT |Xss ∼=
⊔
Dr∞ → P1 − P1(Qp) = Ω2

The story generalizes to all Hodge-type Shimura varieties.

Talk 24: Further directions (Organizers)

Mike Hill: Question: why are we doing this? Why would I, as a topologist, spend a lot of
time focusing on the number theory here?

Given a finite CW complex X, I can associate a sheaf X over Mfg, which is described by the
fact that MU∗X is a MU∗MU -comodule. This gives a functor from finite spectra to sheaves
on Mfg. How good an approximation is this functor? I never send a finite spectrum to the
zero sheaf. Let’s call this condition “injective”. But what happens on maps? Is it full or
faithful? This is where this starts to break down. But it is also where you start to see the
ANSS coming in. The set of maps [X,Y ] corresponds to Hom(X ,Y), but a better thing to do
is work in the derived category, so you worry about Ext(X ,Y). The ANSS is precisely the
spectral sequence that takes that algebraic data and tries to recover [X,Y ].

Rationally,Mfg is kind of boring – everything is additive – but rational spectra are also pretty
boring – it’s the category of graded abelian groups. There is a height stratification of Mfg

that can be pulled back to a stratification (the chromatic filtration) of spectra.

You also try to build sheaves of spectra on Mfg or replacements like Mell to get better
approximations of the topology.

The slogan is “keep calm and compute on”.

Tyler Lawson: The origin of all this is an invariant e : π∗S → Q/Z. Elements here detect
the 1-line of the ANSS. Bernoulli numbers show up in this which was unclear. Later work
was about the f -invariant, which tells information in terms of modular forms which detects
the 2-line of the ANSS.

There have been other attempts to “algebraize” things, but this one has stuck because it gives
a vision of where the subject should be going.
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