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Disclaimer
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Elliptic curves Lecture 1

Lecture 1: January 18

Chapter 1: Introduction

References: Silverman – Arithmetic of Elliptic Curves; Cassels – Lectures on Elliptic
Curves; see Milne’s graduate lecture notes.

Fermat’s method of descent.

Definition 1.1 (Rational, primitive triangles). A right triangle ∆ is rational if it has
rational side lengths a, b, c ∈ Q. ∆ is primitive if a, b, c ∈ Z are coprime.

Lemma 1.2. (1.1) Every primitive triangle has side lengths of the form (u2− v2, 2uv, u2 +
v2) for u, v ∈ Z with u > v > 0.

Proof. Let (a, b, c) be a primitive Pythagorean triple (so a2 + b2 = c2). a and b can’t both
be even, because then c would be. If they were both odd, then a2 +b2 ≡ 2 (mod 4), which
isn’t a square. Without loss of generality assume a is odd and b is even; then c is odd.
Write b2 = c2 − a2. Then (

b

2

)2

=
c+ a

2
· c− a

2

(where both terms on the right are integers).

I claim that c+a
2 and c−a

2 are coprime: otherwise p | c+a2 + c−a
2 = c and p | c+a2 −

c−a
2 = a,

which contradicts our assumption that (a, b, c) is primitive. Suppose p2 |
(
b
2

)2
. Then p

divides exactly one of c+a
2 and c−a

2 , since they are coprime. So either p2 | c+a2 or p2 | c−a2 .

Repeating this for every factor p of
(
b
2

)2
, we find that both c+a

2 and c−a
2 are squares, say,

u2 and v2 respectively. Then a = u2 − v2, b = 2uv, and c = u2 + v2. #

Definition 1.3. D ∈ Q>0 is congruent if there is a rational triangle ∆ with area D.

Note it suffices to consider square-free D ∈ Z>0. For example, D = 5, 6 are congruent.

Lemma 1.4. (1.2) D ∈ Q>0 is congruent iff Dy2 = x3 − x for some x, y ∈ Q with y 6= 0.

Proof. By Lemma 1.1, the area of a primitive right triangle has the form

1

2
ab =

1

2
(u2 − v2) · 2uv = uv(u2 − v2)

so D is congruent iff Dw2 = uv(u2−v2) for some u, v, w ∈ Q with w 6= 0. Set x = u
v , y = w

v2

to get the desired formula. #

Theorem 1.5 (Fermat). (1.3) There is no solution to

w2 = uv(u− v)(u+ v) (1.1)

in Z with w 6= 0.
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Elliptic curves Lecture 1

Proof. Divide through by common factors to ensure that u, v are coprime. We can assume
u > 0 (otherwise (−u,−v, w) is a solution), w > 0, and v > 0 (otherwise (−v, u, w) is a
solution). If u ≡ v (mod 2) then replace (u, v, w) by (u+v

2 , u−v2 , w2 ). Now u and v have
opposite parity. By now, I can assume that u, v, u−v, u+v are positive, pairwise-coprime
integers. (The only place to go wrong, coprime-wise, is with u− v, u+ v; but if p divides
both, then p divides their sum 2u and their difference −2v. The only prime to worry
about is 2, and we just arranged for u+ v and u− v both to be odd.)

Since the four factors on the RHS of (1.1) are all coprime and their product is a square,
they are all squares. Write u = a2, v = b2, u+ v = c2, u− v = d2 for some a, b, c, d ∈ Z>0.
Since we’re assuming u 6≡ v (mod 2), c and d are both odd. So c+d

2 and c−d
2 are integers.(

c+ d

2

)2

+

(
c− d

2

)2

=
c2 + d2

2

c2 +d2 = 2u so this expression is u = a2. So the triple ( c+d2 , c−d2 , a) is a primitive triangle,
since any prime factor of the first two would divide their sum c and difference d, and we

know that c2 and d2 are coprime. This triangle has area c2−d2
8 = v

4 =
(
b
2

)2
.

Let w1 = b
2 . By Lemma 1.1, w2

1 = u1v1(u2
1 − v2

1) for some u1, v1 ∈ Z. So we have
a new solution to (1.1). I claim this is a smaller solution than what we started with.
4w2

1 = b2 = v | w2. So w1 ≤ 1
2w is strictly smaller than w, and is still positive.

Keep repeating this; we get a sequence of strictly decreasing positive integers, which is a
contradiction. So there can be no solutions to 1.1.

(A more modern way to phrase this is to assume the first solution you picked is the smallest
one, so when you find a smaller one, that’s a contradiction.) #

1.1. A variant for polynomials. Let K be a field of characteristic 6= 2. Let K be
the algebraic closure.

Lemma 1.6. (1.4) Let u, v ∈ K[t] be coprime. If αu + βv is a square for four distinct
points [α;β] ∈ P1, then u, v ∈ K.

Proof. We may assume that K = K. Using Möbius transformations, we may change
coordinates on P1 and assume that the four ratios in question are [α;β] = [1 : 0], [0 :
1], [1,−1], [1;−λ] for some λ ∈ K\{0, 1}. Then

u = a2, v = b2, u− v = (a+ b)(a− b), u− λv = (a+ µb)(a− µb)
for µ =

√
λ. We know that (a + b), (a − b) are coprime, since a, b are assumed to be

coprime. By unique factorization in K[t], a+ b, a− b, a+ µb, a− µb are squares.

But max(deg a,deg b) < max(deg u,deg v), unless u, v are constant. We got a new solution
from the old one, and the degree has gone down. By Fermat’s method of descent, this
can’t happen unless the original polynomials were constant. #
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Elliptic curves Lecture 2

Definition 1.7 (elliptic curve, E(L)). An elliptic curve E/K is the projective closure of
a plane affine curve

y2 = f(x)

where f ∈ K[x] is a monic cubic polynomial with distinct roots in K.

Let L/K be any field extension. Then E(L) = {(x, y) : x, y ∈ L, y2 = f(x)} ∪ {0} where
0 is the point at infinity.

The reason we call the point at infinity “0” is that E(L) is naturally an abelian group and
this is the identity. In this course we study E(L) when L is a finite field, local field, or
number field.

Lemma 1.2 and Theorem 1.3 show that the only rational solutions to y2 = x3− x happen
when y = 0, so E(Q) = {0, (0, 0), (±1, 0)}.

Corollary 1.8. (1.5) Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Without loss of generality assume K = K. By a change of coordinates we may
assume

E : y2 = x(x− 1)(x− λ)

for some λ 6= 0, 1 in K. Suppose (x, y) ∈ E(K(t)). Write x = u
v for coprime polynomials

u, v ∈ K[t]. Then
w2 = uv(u− v)(u− λv)

for some w ∈ K[t]. By the usual trick, the four factors on the right are coprime since
u, v are coprime. By unique factorization in K[t], all four factors on the right are squares.
Now apply Lemma 1.4, which implies that u and v are constants, and hence x = u

v is
constant too. #

Lecture 2: January 21

Chapter 2: Some remarks on plane curves

In this section we work over an algebraically closed field K = K with char(K) 6= 2.

Definition 2.1 (rational algebraic curve, rational parametrization). An algebraic curve
is rational if it is birational to P1 (i.e. there is a rational map to P1 that has a rational
inverse).

For example, C = {f(x, y) = 0} ⊂ A2 is rational if you can find ϕ(t), ψ(t) ∈ K(t) such
that

(1) f(ϕ(t), ψ(t)) = 0, and
(2) the map A1 → A2 given by t 7→ (ϕ(t), ψ(t)) is injective on A1\ finite set.

7



Elliptic curves Lecture 2

The pair (ϕ,ψ) with the above properties is called a rational parametrization of f .

(Note that there is an unproved assertion here, namely that this definition guarantees the
existence of a rational inverse.)

Example 2.2 (circle). Let C = {x2 + y2 = 1} ⊂ A2. To get a parametrization, draw a
line through P = (−1, 0) with slope t. This line intersects the circle in exactly one other
point, the coordinates of which are given by a rational function.

y = t(x+ 1)

x2 + t2(x+ 1)2 = 1

(x+ 1)(x− 1 + t2(x+ 1)) = 0

x = −1 or x =
1− t2

1 + t2

(x, y) =

(
1− t2

1 + t2
,

2t

1 + t2

)
The same method works for any conic, as long as you can find a rational point.

Proposition 2.3. Any singular plane cubic is rational.

Proof. Consider a line of slope t through the singular point. Normally, a line would
intersect the cubic three times, but the singular point “counts double”, so there is just one
more intersection point. Now we can use the above method to obtain a parametrization.

#

For example, y2 = x3 (cubic with a cusp) has a parametrization (x, y) = (t2, t3).

Exercise: find a rational parametrization of y2 = x2(x+ 1) (cubic with a node).

Theorem 2.4. (2.1) Let C ⊂ P2 be a smooth plane cubic. Then we can change coordinates
such that

C : Y 2Z = X(X − Z)(X − λZ)

for some λ ∈ K\{0, 1}.

This is called Legendre form.

Remark 2.5. Putting x = X
Z and y = Y

Z this is y2 = x(x− 1)(x− λ) (i.e. the definition
of an elliptic curve).

Remark 2.6. Saying “a cubic with distinct roots” is the same as “a cubic with roots
0, 1, λ (for λ 6= 0, 1)” (up to change of coordinates).

By Corollary 1.5, elliptic curves are not rational.

By Theorem 2.1 we deduce

Corollary 2.7. (2.2) No smooth plane cubic is rational.
8



Elliptic curves Lecture 2

To prove Theorem 2.1, we need to quote the following result:

Theorem 2.8 (Bezout’s Theorem). Let C,D ⊂ P2 be plane curves of degrees of m,n with
no common components (i.e. there are only finitely many points of intersection), then
they meet in exactly mn points when counted with multiplicity. Write this as:

mn =
∑

P∈C∩D
(C.D)P .

Lots of the work of the proof involves defining the intersection multiplicity (C.D) properly.
But we can quote some properties:

Proposition 2.9 (Properties of intersection multiplicity).

(1) If P ∈ C ∩D then (C . D)P ≥ 1 with equality iff the curves meet transversely at P
(i.e. P is a smooth point on both curves C and D, and TPC 6= TPD, where TPC is
the tangent line to C through P ).

(2) If C = {F = 0} ⊂ P2 for some homogeneous polynomial F and D is the line through
P and P ′, then

(C . D)P = ordt=0 F (P + tP ′)

where ord is the order of vanishing.

(Note the abuse of notation in (2), since P, P ′ are projective points and P + tP ′ is only a
polynomial up to scalar multiples. But this doesn’t affect the order.)

Definition 2.10 (Flex/ point of inflection). A smooth point P ∈ C is a flex (point of
inflection) if (C . TPC)P ≥ 3.

Definition 2.11. Let C = {F (X1, X2, X3) = 0} ⊂ P2 be a smooth plane curve of degree
d. The Hessian is the polynomial

H(X1, X2, X3) = det

(
∂2F

∂Xi∂Xj

)
i,j=1,2,3

.

Note that this has degree 3(d− 2) in the variables X1, X2, X3.

Lemma 2.12. (2.3) Assume char(K) - 2(d − 1). Let P ∈ C. Then P is a flex point iff
H(P ) = 0.

Proof. Let P = (P1, P2, P3) be a point on the curve, and also write X = (X1, X2, X3). Do
a Taylor series expansion at the point P :

F (P +X) = F (P ) +
3∑
i=1

∂F

∂Xi
(P )Xi +

1

2

3∑
i,j=1

∂2F

∂Xi∂Xj
(P )XiXj + · · ·

The first term is zero because P is on the curve. Name the first- and second-degree parts:

L =

{
3∑
i=1

∂F

∂Xi
(P )Xi = 0

}
= TPC

9



Elliptic curves Lecture 2

Q =

{ 3∑
i,j=1

∂2F

∂Xi∂Xj
(P )XiXj

G

= 0

}

Then L is the tangent line, and Q is a conic. If P is an inflection point, then Q vanishes.
So

P ∈ C is a flex ⇐⇒ L ⊂ Q
In the rank 3 case you get a smooth curve (does not contain any lines). So L ⊂ Q means
that Q is singular, which is equivalent to H(P ) = 0. That is,

P ∈ C is a flex ⇐⇒ L ⊂ Q =⇒ Q singular ⇐⇒ H(P ) = 0

We need to turn the =⇒ into an ⇐⇒ .

Claim 2.13. P is a smooth point on Q and TPQ = L.

This suffices: given the claim, if Q is singular, then it’s a pair of lines and P is not the
singular point. So the line it’s on is just L.

Proof of claim. If F is homogeneous of degree d, then F (λX) = λdF (X). Differentiate
with respect to λ:

3∑
i=1

∂F

∂Xi
(λX)Xi = dλd−1F (X).

Put λ = 1:
3∑
i=1

Xi
∂F

∂Xi
= dF (X) (Euler’s identity)

Applying the same result to partial derivatives, if ∂F
∂Xi

is homogeneous of degree d−1 then

3∑
j=1

Xj
∂2F

∂Xi∂Xj
= (d− 1)

∂F

∂Xi
. (2.1)

To prove the claim, notice that (Euler’s identity) implies P ∈ L and (2.1) implies P ∈ Q.

Recall we’ve defined G =
∑3

i,j=1
∂2F

∂Xi∂Xj
(P )XiXj (the expression in Q).

∂G

∂Xi
(P ) = 2

3∑
j=1

∂2F

∂Xi∂Xj
(P )Pj

= 2(d− 1)
∂F

∂Xi
(P ) by Euler’s identity

TPQ =

{ 3∑
i=1

∂G

∂Xi
(P )Xi = 0

}
10



Elliptic curves Lecture 3

Since we assumed 2(d− 1) 6= 0:

= {
3∑
i=1

∂F

∂Xi
(P )Xi = 0}

= TPC = L. #

Proof of Theorem 2.1. Let

C = {F (X,Y, Z) = 0} ⊂ P2.

Lemma 2.3 and Bezout’s theorem show that there is a flex P ∈ C. By a linear change of
coordinates in P2 we may arrange that P = [0; 1; 0], and TPC = {Z = 0}. Since P s a
flex, F (t, 1, 0) has roots where the tangent line meets the curve. t = 0 has to be a triple
root, and since we only have degree 3, F (t, 1, 0) = c · t3 for some nonzero constant c. So
there are no terms of the form X2Y,XY 2, Y 3. So

F =
〈
Y 2Z,XY Z, Y Z2, X3, X2Z,XZ2, Z3

〉
.

The coefficient of Y 2Z is nonzero, since otherwise P would be singular. X3 also has
a nonzero coefficient because otherwise the line {Z = 0} would be in C, contradicting
smoothness. We are free to rescale the coordinates X,Y, Z, so assume the coefficients of
Y 2Z and X3 are 1. So

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

Next lecture: put this in the form stated. #

Lecture 3: January 23

We were proving Theorem 2.1; we showed that we could put C in Weierstrass form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6.

Now we want to put it in Legendre form

Y 2Z = X(X − Z)(X − λZ).

Substituting Y ← Y − 1
2a1X − 1

2a3Z (i.e. completing the square), we may assume a1 =

a3 = 0. We get C : Y 2Z = Z3f
(
X
2

)
for some cubic f . Since C is smooth, the cubic f has

distinct roots; if we’re over an algebraically closed field, we can factor f completely. After
making some substitutions in X and Z we may assume that the roots are 0, 1, λ. Then

C : Y 2Z = X(X − Z)(X − λZ).

The genus g(C) ∈ Z≥0 is an invariant of a smooth projective curve C. We won’t define it,
but here are some facts:

• If K = C, then the genus is just the genus of the Riemann surface.
11



Elliptic curves Lecture 3

• A smooth plane curve C ⊂ P2 of degree d has genus

g(C) =
(d− 1)(d− 2)

2
.

So for d ≥ 3, the genus is positive, and C 6∼= P1. If we’re dealing with smooth
projective curves, birational implies isomorphic. So this implies Corollary 2.2.

Remark 3.1. If ϕ : C1 → C2 is a non-constant morphism of smooth projective curves,
then g(C1) ≥ g(C2). This is a special case of the Riemann-Hurwitz formula.

Example 3.2 (FLT for n = 4).

C = {U4 + V 4 = W 4} ⊂ P2

has genus 3, and
E = {Y 2Z = X3 −XZ2} ⊂ P2

has genus 1. There is a map ϕ : C → E given by

(U : V : W ) 7→ (UW 2 : V 2W : U3).

Any rational point on C maps under ϕ to a rational point on E. In lecture 1, we showed
that the only rational points on E were {(0 : 1 : 0), (0 : 0 : 1), (±1 : 0 : 1)}. We deduce

C(Q) = {(±1 : 0 : 1), (0 : ±1 : 1)}
This is Fermat’s Last Theorem for exponent n = 4.

3.1. Orders of vanishing. Let C be an algebraic curve with function field K(C).
Let P ∈ C be a smooth point. Write ordP (f) to be the order of vanishing of f ∈ K(C)
at P . This is negative if f has a pole at P , and positive if it has a zero.

ordp : K(C)∗ → Z is a discrete valuation. That is,

• ordp(fg) = ordp(f) + ordp(g), and
• ordp(f + g) ≥ min(ordp(f), ordp(g)).

Definition 3.3. t ∈ K(C)∗ is a uniformizer at P if ordp(t) = 1.

Example 3.4 (Finding uniformizers). (2.4) Let C = {g = 0} ⊂ A2 where g ∈ K[x, y] is
irreducible. By definition

K(C) = Frac (K[x, y]/(g)) .

Write g = g0 + g1(x, y) + g2(x, y) + · · · where gi is homogeneous of degree i. Suppose
P = (0, 0) is a smooth point on C: that is, g0 = 0 and g1(x, y) = αx + βy has α, β not
both zero.

Fact 3.5. Let γ, δ ∈ K. Then γx+ δy is a uniformizer iff αδ − βγ 6= 0.

That is, you can take any linear combination of x, y in the fraction field, except for the
tangent line g1.

Example 3.6. (2.5) Set

C : {y2 = x(x− 1)(x− λ)} ⊂ A2.
12
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It has projective closure

{Y 2Z = X(X − Z)(X − λZ)} ⊂ P2.

Let p = (0 : 1 : 0) (the unique “point at infinity”). Our aim is to compute ordp(x) and

ordp(y). Put w = Z
Y , t = X

Y . In this new affine piece, the equation for the curve is

w = t(t− w)(t− λw). (3.1)

Then p is the point (t, w) = (0, 0). By Fact 3.5, either w or t is a uniformizer. But w
vanishes to order at least 3, so ordp(t) = 1. All terms on the right vanish to multiplicity
1, so by the rules of ordp, ordp(w) is exactly 3. So

ordp(x) = ordp
t
w = −2

ordp(y) = ordp
1
w = −3

3.2. The degree of a morphism. Let ϕ : C1 → C2 be a non-constant morphism of
smooth projective algebraic curves. Then there is a ring homomorphism ϕ∗ : K(C2) →
K(C1) taking f 7→ f ◦ϕ. The kernel of a ring homomorphism is an ideal, and fields don’t
have ideals, so this is an embedding. That is, you can think of ϕ as a field extension.

Definition 3.7 (degree, separable). Let ϕ : C1 → C2 be as above.

(1) degϕ = [K(C1) : ϕ∗K(C2)]
(2) ϕ is separable if K(C1)/ϕ∗K(C2) is a separable field extension (automatic if charK =

0).

Remark 3.8. One can prove:

ϕ is an isomorphism ⇐⇒ degϕ = 1.

Definition 3.9. Suppose P ∈ C1 and Q ∈ C2, where ϕ(P ) = Q. Let t ∈ K(C2) be a
uniformizer at Q. Define the ramification index eϕ as

eϕ(P ) = ordP (ϕ∗t).

This is a positive integer, and one can show it is independent of the choice of t.

(Recall we are working over an algebraically closed field.)

Theorem 3.10. (2.6) Let ϕ : C1 → C2 be a non-constant morphism of smooth projective
curves, and Q ∈ C2. Then ∑

P∈ϕ−1(Q)

eϕ(P ) = degϕ.

Moreover, if ϕ is separable, then eϕ(P ) = 1 for all but finitely many P ∈ C1.

In particular,

(1) ϕ is surjective (there must be points in the fiber for deg ϕ to be nonzero);
(2) #ϕ−1(Q) ≤ deg ϕ with equality for all but finitely many points Q ∈ C2.

3.3. Riemann-Roch space. Let C be a smooth projective curve.
13



Elliptic curves Lecture 4

Definition 3.11. A divisor on C is a formal sum of points on C, say D =
∑

P∈C nPP
with nP ∈ Z and nP = 0 for all but finitely many P ∈ C.

Definition 3.12.

• D is effective (written D ≥ 0) if nP ≥ 0 for all P .
• Define the degree as degD =

∑
nP .

• If f ∈ K(C)∗ we define div f =
∑

P∈C ordP (f)P .
• The Riemann-Roch space of D is the vector space

L(D) = {f ∈ K(C)∗ : div f +D ≥ 0} ∪ {0}.
This is the K-vector space of rationals on C with “poles no worse than specified
by D”.

Lecture 4: January 25

Remark 4.1. (2.7) Let C be an algebraic curve. A rational map ϕ : C → Pn is given by

P 7→ (f0(P ) : f1(P ) : · · · : fn(P ))

where f0, · · · , fn ∈ K(C) are not all zero.

Fact 4.2. If C is smooth, then ϕ is a morphism.

Chapter 3: Weierstrass equations

In this section, K is a perfect (but not necessarily algebraically closed) field.

Definition 4.3. An elliptic curve E over K is a smooth projective curve of genus 1,
defined over K, with a specified K-rational point 0E .

Example 4.4. Smooth plane cubics have genus 1 by the degree-genus formula quoted in
the last lecture. If p is prime, then

C = {X3 + pY 3 + p2Z3 = 0} ⊂ P2

is a smooth cubic, but it is not an elliptic curve as C has no Q-rational points (if so then
you could scale it so everything is an integer; taking mod p yields a contradiction).

Theorem 4.5. (3.1) Every elliptic curve E over K is isomorphic to a curve in Weierstrass
form, via an isomorphism taking 0E 7→ (0 : 1 : 0).

Remark 4.6. In lecture 3, we treated the special case where E is a smooth plane cubic
and 0E is a flex.

Let D be a divisor on E (i.e. D is a formal sum of points on E, by which I mean K-points,
not necessarily rational points). We quote the following theorems:

Fact 4.7.
14



Elliptic curves Lecture 4

(1) Riemann-Roch theorem for genus 1:

dimL(D) =


degD if degD > 0

0 or 1 if degD = 0

0 if degD < 0.

(2) If D is defined over K, i.e. it is fixed by the natural action of Gal(K/K), then L(D)
has a basis in K(E).

Proof of Theorem 3.1. Note L(2 · 0E) ⊂ L(3 · 0E) (functions with at worst a double pole
⊂ functions with at worst a triple pole). Use the fact that these are vector spaces of
dimensions 2 and 3, to pick a basis 1, x of L(2 ·0E) and 1, x, y of L(3 ·0E). Then the seven
elements

1, x, y, x2, xy, x3, y2

have at worst a pole of order 6; they belong to the 6-dimensional vector space L(6 · 0E)
so they must satisfy a dependence relation.

We know that x has a double pole, because otherwise it would be in L(1 · 0E); similarly
y has a pole of order 3. The first five terms above have poles of order, respectively,
0, 2, 3, 4, 5, but x3 and y2 both have poles of order 6. So leaving out x3 or y2 gives a basis
for L(6 · 0E). Thus the coefficients of x3 and y2 in the dependence relation are nonzero.
Rescaling x and y, we can assume these coefficients are 1, so:

E′ : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for some ai ∈ K (the ai are in K by the second quoted fact above).

There is a morphism ϕ : E → E′ ⊂ P2 given by P 7→ (x(P ) : y(P ) : 1). This is a morphism
because E is smooth (Fact 4.2).

[K(E) : K(x)] = deg(E
x→ P1) = ord0E

(
1
x

)
= 2

(The points mapping to ∞ are the poles, and the only pole is at x; we have to work
out multiplicity to get the degree. We get this by pulling back the uniformizer at ∞.)
Similarly,

[K(E) : K(y)] = deg(E
y→ P1) = ord0E

(
1
y

)
= 3

Use the tower rule:
K(E)

32 K(x, y)

K(x) K(y)

to show that the degree of the vertical extension is 1, and therefore K(E) ∼= K(x, y).

15
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K(E′) is generated by things we call x, y modulo the ideal defined by E′. K(E) = ϕ∗K(E′)
and the degree of this extension is, by definition, the degree of ϕ. So degϕ = 1, so ϕ is
birational. We need to show that ϕ is an isomorphism.

We need to check that E′ is smooth. Check that E′ is irreducible. If E′ is singular then
E and E′ are rational. But saying it’s rational means saying it has genus zero, which is a
contradiction.

So E′ is smooth; ϕ−1 is a rational map from a smooth curve into projective space, and
so it’s an isomorphism (this is a fact you should know). We can rewrite ϕ : E → E′ as
P 7→ (xy (P ) : 1 : 1

y (P )), and under this 0E 7→ (0 : 1 : 0) as desired. #

(Note that two elliptic curves being isomorphic also means their specified points match
up in the right way.)

Proposition 4.8. (3.2) Let E,E′ be elliptic curves over K in Weierstrass form. Then
E ∼= E′ over K iff the Weierstrass equations are related by a substitution of the form

x = u2x′ + r

y = u3y′ + u2sx′ + t

if E is given in terms of variables x, y, E′ is given in terms of x′, y′, and some u, r, s, t ∈ K
where u 6= 0.

Proof.
〈1, x〉 = L(2 · 0E) =

〈
1, x′

〉
so x′ = λx+ r for some λ, r ∈ K for λ 6= 0. Similarly,

〈1, x, y〉 = L(3 · 0E) =
〈
1, x′, y′

〉
so y′ = µy+ σx+ t for some µ, σ, t ∈ K, where µ 6= 0 (otherwise y ∈ span(1, x)). Looking
at the coefficients of x3 and y2 we see that λ3 = µ2. After a tiny manipulation, we see

λ = u2, µ = u3

for some u ∈ K∗, and put s = σ
u2

. #

A Weierstrass equation defines an elliptic curve ⇐⇒ it defines a smooth curve. This
is determined by the coefficients a1, · · · , a6. But there is a polynomial ∆ ∈ Z[a1, · · · , a6]
such that the curve is smooth ⇐⇒ ∆(a1, · · · , a6) 6= 0.

You can complete the square unless char(K) = 2, and get rid of the x2 term unless
char(K) = 3; so in the case when char(K) 6= 2, 3 we can reduce to the case when

y2 = x3 + ax+ b

with discriminant ∆ = −16(4a3 + 27b2).

Corollary 4.9. (3.3) Assume char(K) 6= 2, 3. Elliptic curves

E : y2 = x3 + ax+ b
16
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E′ : y2 = x3 + a′x+ b′

are isomorphic over K iff {
a′ = u4a

b′ = u6b

for some u ∈ K∗.

Proof. E and E′ are related by a substitution of the form in Proposition 3.2, but r = 0
otherwise we’d introduce an x2-term, and t = 0 otherwise that would mess up the fact
we’d completed the square. #

Lecture 5: January 28

Let E : y2 = x3 + ax+ b be an elliptic curve.

Definition 5.1. The j-invariant of E is

j(E) =
1728(4a3)

4a3 + 27b2
.

Corollary 5.2. (3.4) E ∼= E′ =⇒ j(E) = j(E′). The converse holds if K = K.

Proof. Let E′ : y2 = x3 + a′x+ b′. We saw in the previous lecture that

E ∼= E′ ⇐⇒

{
a′ = u4a

b′ = u6b

for some u ∈ K∗. So (a3 : b2) = ((a′)3 : (b′)2). The j invariant is just this ratio, after
doing a Moebius map. So (a3 : b2) = ((a′)3 : (b′)2) ⇐⇒ j(E) = j(E′).

Conversely, solve for a and b given j(E); this involves extracting roots, which is OK over
an algebraically closed field. #

Chapter 4: The group law

Let E ⊂ P2 be a smooth plane cubic. Let 0E be any point. How do you add P +Q? By
Bezout’s theorem, any line meets the cubic E in three points (with multiplicity). Suppose
P,Q meet the curve in S. Then the line through 0E and S meets the curve in a third
point R. Define P ⊕Q = R.

If P = Q, “the line through P and Q” means the tangent line. This way of defining the
group law is called the “chord and tangent process”.

Theorem 5.3. (4.1) (E,⊕) is an abelian group.

Proof. Commutative: The line PQ is the same as the line QP .
17
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0E is the identity: We need 0E ⊕ P = P : 0EP meets E in S; 0ES meets E in P .

Inverses: Take the tangent line to 0E ; it meets the curve in S. Let Q be the third point
of intersection of E and PS; I claim this is −P . Now PQ meets E in S; S0E meets E at
0E .

Associativity: A direct approach turns into a total mess; we need more theory.

Definition 5.4 (Linear equivalence, Picard group Pic(E)). D1, D2 ∈ Div(E) are linearly
equivalent if there is some f ∈ K(E)∗ such that div(f) = D1 −D2.

Define the Picard group
Pic(E) = Div(E)/ ∼

where D ∼ D′ if they are linearly equivalent. Also define

Div0(E) = {D ∈ Div(E) : degD = 0}
Pic0(E) = Div0(E)/ ∼ .

Back to associativity. I will show that ϕ in the next proposition is an isomorphism of
groups (although we can’t phrase it that way yet).

Proposition 5.5. (4.2) Define ϕ : E → Pic0(E) where ϕ : P 7→ [P − 0E ].

(1) ϕ(P ⊕Q) = ϕ(P ) + ϕ(Q) for all P,Q ∈ E.
(2) ϕ is a bijection.

Proof. (1) ` := PQ meets E in S; m := 0ES meets E again in R.

div(`/m) = (P ) + (Q) + (S)− (0E)− (S)− (R) = (P ) + (Q)− (0E)− (P ⊕Q)

so

(P ) + (Q) ∼ (0E) + (P ⊕Q)

(P )− (0E) + (Q)− (0E) ∼ (P ⊕Q)− (0E)

ϕ(P ) + ϕ(Q) = ϕ(P ⊕Q)

(2) Injective: Suppose ϕ(P ) = ϕ(Q) for some P 6= Q. That is, P −0E ∼ Q−0E so P ∼ Q.
There exists a rational function f such that div(f) = P − Q (i.e. this has exactly one
zero, at P , and exactly one pole, at Q). Rational functions define a map E → P1. This is
also a morphism, because E is smooth. Work out the degree by picking a point in P1 and
counting the preimages. There is only one preimage of 0 (f has only zero), so this is a
morphism of degree 1. Since these are smooth projective curves, this means that E ∼= P1.
But we can’t have that: E is a curve of genus 1.

Surjective: Let [D] ∈ Pic0(E). Then D + (0E) is a divisor of degree 1. Use the Riemann-
Roch theorem to say that dimL(D + (0E)) = 1. So there is some f ∈ K(E)∗ such that
D + (0E) + div(f) ≥ 0. D and div(f) have degree zero (rational functions have the same
number of zeroes and poles), and (0E) has degree 1. So D+ (0E) + div(f) = (P ) for some

18
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P ∈ E.

D ∼ (P )− (0E)

ϕ(P ) = [D]

#

So ϕ identifies (E,⊕) with (Pic0(E),+). Therefore ϕ is associative. #

Note: in the following, we will use 	 to denote the inverse in the group law, to distinguish
it from negative signs of the affine coordinates.

Formulae for ⊕ and 	. Suppose E is given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (5.1)

The point at infinity is where all vertical lines meet.

Calculating 	P1: Let P1 = (x1, y1). Since 0E is a point of inflection, 	P1 is the other
intersection point of the vertical line through P1. (x1, y1) is one solution of (5.1); finding
the other solution of the form (x1, ?) amounts to solving a quadratic equation in y. If y1 is
one solution of the quadratic equation y2 +Ay +B = 0 (for A,B ∈ K[x]), then the other
solution is −B

A − y1. That is,

	P1 = (x1,−(a1x1 + a3)− y1).

Calculating P1 ⊕ P2: Let P1 = (x1, y1), P2 = (x2, y2); suppose the line P1P2 intersects E
again at P ′ = (x′, y′). A line through infinity is a vertical line: 0EP

′ meets E again in
P3 = (x3, y3), where x3 = x′. Our goal is to obtain an expression for P3 = P1 ⊕ P2 in
terms of the coordinates of P1 and P2.

Let y = λx+ ν be the line through the points P1, P2, P
′. Substitute this into 5.1 to get a

cubic in just x with roots x1, x2 and x′. In any cubic (x−r1)(x−r2)(x−r3), the coefficient
of x2 is the sum of the roots; here:

λ2 + a1λ− a2 = x1 + x2 + x′ = x1 + x2 + x3.

So x3 = λ2 + a1λ− a2 − x1 − x2. Using the formula for 	 above, we conclude that

y3 = −(a1x
′ + a3)− (λx′ + ν)

= −(λ+ a1)x′ − ν − a3

= −(λ+ a1)x3 − ν − a3 because P3 = 	P ′.
It remains to give formulae for λ and ν.

Case 1: x1 = x2, P1 6= P2. In this case, the line P1P2 is vertical, and P1 ⊕ P2 = 0E .
19
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Case 2: x1 6= x2. Then

λ =
y2 − y1

x2 − x1

ν = y1 − λx1 =
x2y1 − x1y2

x2 − x1
.

Case 3: P1 = P2. The line is the tangent line. . . this is on the handout.

Assume E is defined over K, i.e. a1, · · · , a6 ∈ K.

E(K) = {(x, y) ∈ K2 : x, y satisfy 5.1} ∪ {0E}

Corollary 5.6. (4.3) (E(K),⊕) is an abelian group.

Proof. It is a subgroup of E.

Identity: 0E is a K-rational point by definition.

Closure, inverses: See above formulae.

Associative, commutative: Inherited. #

Lecture 6: January 30

Theorem 6.1. (4.4) Elliptic curves are group varieties:

[−1] : E → E, where P 7→ 	P
⊕ : E × E → E, where (P,Q) 7→ P ⊕Q

are morphisms of algebraic varieties.

Proof. (1) By formulae in the last lecture, [−1] : E → E is a rational map, and hence a
morphism (since E is a smooth projective curve).

(2) The formulae from last time show that ⊕ : E × E → E is a rational map. But the
result used in part (1) is specific to curves. This map is regular on U = {(P,Q) ∈ E×E :
P,Q, P + Q,P − Q 6= 0E}. For P ∈ E, let τP : E → E sending X 7→ P ⊕ X: this is a
rational map (from a smooth curve to a projective variety), and hence a morphism.

Factor ⊕ as

E × E τ−A×τ−B→ E × E ⊕→ E
τA+B→ E

which shows that ⊕ is regular on (τA× τB)U , for all A,B ∈ E. So ⊕ is regular on E ×E.
#
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6.1. Statements of results. Let K be any field, and E/K an elliptic curve. Let
E(K) be the group of K-rational points on E.

(1) E(C) ∼= C/Λ ∼= R/Z × R/Z, where Λ is a lattice (all integer linear combinations of
some R-basis of C)

(2) If K = R, then

E(R) ∼=

{
Z/2Z× R/Z if ∆ > 0

R/Z if ∆ < 0

(3) (Hasse’s theorem) If K = Fq (field with q elements), then

|#E(Fq)− (q + 1)| ≤ 2
√
q.

(4) Suppose [K : Qp] <∞, and OK is the ring of integers. Then E(K) has a subgroup of
finite index ∼= (OK ,+).

(5) (Mordell-Weil theorem) Suppose [K : Q] < ∞. Then E(K) is a finitely generated
abelian group.

(The isomorphisms in (1), (2), and (4) respect the relevant topologies.)

Recall the fact from basic group theory:

Theorem 6.2. If A is a finitely generated abelian group, then

A ∼= (finite group⊕ Zr).
r is called the rank of A.

The proof of Mordell-Weil gives an upper bound for the rank of E(K). But, there is no
known algorithm (even for K = Q) for computing the rank in all cases.

Remark 6.3 (Brief remark on the case K = C). If Λ = {aω1 + bω2} (where ω1, ω2 is a
basis for C as an R-vector space), there is a correspondence{

meromorphic functions

on Riemann surface C/Λ

}
←→

{
Λ-invariant meromorphic

functions on C

}
The set on the left is the function field of C/Λ. This function field is generated by ℘(z)
and ℘′(z), where ℘ is the Weierstrass ℘-function.

One shows C/Λ ∼= E(C) (an isomorphism of groups and of Riemann surfaces) for some
elliptic curve E/C. The other part of the classification of E(C) is the following:

Theorem 6.4 (Uniformization theorem). Every elliptic curve over C arises in this way.

(One proof uses modular forms and the j-invariant.)

Chapter 5: Isogenies

Let E1, E2 be elliptic curves.
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Definition 6.5 (Isogeny). An isogeny is a non-constant morphism ϕ : E1 → E2 with
ϕ(0) = 0.

If there is an isogeny from E1 → E2, then we say that E1 and E2 are isogenous.

Next time we’ll prove that these are automatically group homomorphisms, and later we’ll
prove that this is an equivalence relation (where symmetry is the only non-obvious prop-
erty).

Over an algebraically closed field, any non-constant morphism of elliptic curves is surjective
(see Theorem 2.6).

Definition 6.6. Define

Hom(E1, E2) = {isogenies E1 → E2} ∪ {0}.
This is an abelian group under

(ϕ+ ψ)(P ) = ϕ(P )⊕ ψ(P ).

If E1
ϕ→ E2

ψ→ E3 are isogenies, then ψ ◦ ϕ is an isogeny. Why is the composition of
non-constant maps, non-constant? Because non-constant is equivalent to surjective. We
have a “tower law”

deg(ψ ◦ ϕ) = deg(ψ) deg(ϕ).

Definition 6.7 ([n]). For n ∈ Z>0, define [n] : E → E to be the map P 7→ P ⊕ · · · ⊕ P
n

,

and if n < 0, define [n] = [−1] ◦ [−n].

By Theorem 4.4, [n] is a morphism. Why is this non-constant?

Lemma 6.8. (5.1) Assume char(K) 6= 2. Assume the elliptic curve has the form

E : y2 = f(x) = (x− e1)(x− e2)(x− e3)

for ei ∈ K. (We know that the ei are distinct.) Then E[2] = {0, (e1, 0), (e2, 0), (e3, 0)} ∼=
(Z/2Z)2.

Proof. Let 0 6= P ∈ E, with coordinates P = (xP , yP ). Then

TPE = {f ′(xP )(x− xP ) = 2yP (y − yP )}
P ∈ E[2] iff [2]P = 0. Use the chord and tangent process: [2]P = 0 iff TP = {x = xp},
which happens only if yP = 0. #

Proposition 6.9. (5.2) If 0 6= n ∈ Z then [n] is an isogeny.

Proof. We must show that [n] 6= 0. Assume char(K) 6= 2.

Case n = 2: Lemma 5.1 implies that not every point is a 2-torsion point, so [2] is not the
zero map.
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Case n is odd: Lemma 5.1 implies that there is a nonzero 2-torsion point T . Then
nT = T 6= 0, so [n] is not the zero map.

Case n is even: Composition of isogenies is an isogeny: use the fact that [mn] = [m] ◦ [n].

If char(K) = 2 then we could replace Lemma 5.1 by an explicit lemma on E[3]. #

If K = C, then E(C) ∼= C/Λ; the n-torsion of the circle group is E[n] = (Z/nZ)2. Also,
deg[n] = n2. Later, we’ll show that the second statement is true over any field K, and the
first holds if char(K) - n.

Definition 6.10 (n-torsion subgroup). The n-torsion subgroup of E is

E[n] = ker([n] : E → E).

Lecture 7: February 1
Theorem 7.1. (5.3) Let ϕ : E1 → E2 be an isogeny. Then ϕ(P ⊕Q) = ϕ(P )⊕ ϕ(Q) for
all P,Q ∈ E1.

Sketch proof. ϕ induces a map

ϕ∗ : Div0(E1)→ Div0(E2) where
∑
p∈E1

nPP 7→
∑
P∈E1

nPϕ(P ).

Recall ϕ∗ : K(E2) ↪→ K(E1) induces a field extension.

Fact 7.2. If f ∈ K(E1)∗ then div(NK(E1)/K(E2)f) = ϕ∗(div f).

So div f gets sent to div(something); i.e. ϕ∗ takes principal divisors to principal divisors.
Since ϕ(0E1) = 0E2 , the following diagram commutes

E1
ϕ

//

∼=
��

E2

∼=
��

Pic0(E1)
ϕ∗ // Pic0(E2)

where the vertical maps were given by P 7→ [P − 0E1 ]. ϕ∗ is a group homomorphism, so
ϕ is a group homomorphism. #

Example 7.3. We will come up with a 2-isogeny (i.e. an isogeny of degree 2) E → E′

with curves defined:
E : y2 = x(x2 + ax+ b)

E′ : y2 = x(x2 + a′x+ b′)

where a′ = −2a, b′ = a2 − 4b. To make sure there aren’t repeated roots, we can assume
2b(a2 − 4b) 6= 0. Note that E has a rational 2-torsion point at (0, 0) (it has a vertical
tangent line). First rearrange E:

x(x2 + b) = y2 − ax2

23



Elliptic curves Lecture 7

x2(x2 − b)2 + 4bx4 = x2(x2 + b)2 = (y2 − ax2)2

x2(x2 − b)2 = (y2 − ax2)2 − 4bx4

= y4 − 2ax2y2 + (a2 − 4b)x4

and multiply by y2/x6: (
y(x2 − b)

x2

)2

=
(y
x

)6
+ a′

(y
x

)4
+ b′

(y
x

)2
.

Let ϕ : E → E′ be defined by

(x, y) 7→
((y

x

)2
,
y(x2 − b)

x2

)
We need to check that ϕ(0) = 0. Just count orders of vanishing: remember that x has a
double pole, and y has a triple pole. Rewrite the point in projective coordinates:((y

x

)2
:
y(x2 − b)

x2
: 1

)
The orders of vanishing here are −2, −3, 0. Multiply through by the cube of a uniformizer,
so the orders are 1, 0, 3. That is, this point is the same as (0 : 1 : 0) = 0E′ .

What is the degree of ϕ? We need the following lemma.

Lemma 7.4. (5.4) Suppose ϕ : E1 → E2 is an isogeny. Then there is a morphism ξ : P1 →
P1 making the following diagram commute:

E1
ϕ
//

x1
��

E2

x2
��

P1 ξ
// P1

where xi is the function “take the x-coordinate”.

If ξ(t) = r(t)
s(t) , for r, s ∈ K[t] are coprime, then

deg(ϕ) = deg(ξ) = max(deg(r),deg(s)).

Moral: to compute degree, you only need to pay attention to x-coordinates.

Proof. For i = 1, 2, K(Ei)/K(xi) is a degree 2 extension, with Galois group generated by
the map [−1]∗ (if charK 6= 2, complete the square so it looks like y2 = f(x)). By Theorem
5.3, ϕ ◦ [−1] = [−1] ◦ ϕ.

If f ∈ K(x2) then
[−1]∗(ϕ∗f) = ϕ∗([−1]∗f).
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f is fixed by pullback by [−1], so ϕ∗f ∈ K(x1). Now invoke the tower law:

K(E1)

K(x1)

2

K(E2)

degϕ

K(x2)

deg ξ

2

There is an inclusion K(x2) ↪→ K(x1), where x2 7→ ξ(x1) = r(x1)
s(x1) . We will show that the

minimal polynomial of x1 over K(x2) is

f(X) = r(X)− x2s(X).

It’s easy to see that x1 is a root of f . We need to check it’s irreducible. I claim it is
irreducible in K[X,x2]: as a polynomial in x2 it has degree 1; so if it factors, then one
factor contains only X. This would imply that r, s have a common factor. Then, by
Gauss’s lemma, it’s irreducible in K(x2)[X]. #

Now apply this to our example. x gets sent to something
( y
x

)2
in terms of both x and y,

but recall that (x, y) was a point in E, so y2 = x(x2 + ax+ b). So

ξ(x) =
(y
x

)2
=
x2 + ax+ b

x
.

If b = 0, then this would have been singular. So the numerator and denominator are
indeed coprime. Then deg(ϕ) = max(deg x2 + ax+ b,deg x) = 2.

Example 7.5. (5.5) Assume char(K) 6= 2, 3, so we can assume an elliptic curve E can be
put into Weierstrass form

E : y2 = f(x) = x3 + ax+ b.

The [2] map E → E is given by

(x, y) 7→
(
slope2 − 2x, · · ·

)
=

((
3x2 + a

2y

)2

, · · ·

)
.

In the notation of the lemma, ξ(x) =
(

3x2+a
2y

)2
. We need to write it as a rational function

only in x:

ξ(x) =
(3x2 + a)2 − 8x(x3 + ax+ b)

4(x3 + ax+ b)

=
x4 + · · ·

4(x3 + ax+ b)

The maximum degree is 4, but we have to check that these are coprime. Suppose there
is some θ ∈ K that is a root of both numerator and denominator. Since it is a root of
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the denominator, it is a root of f . Since it is a root of the numerator, it is also a root
of f ′. This only happens if f has a double root, and that can’t happen here because f is
nonsingular.

Recall, Hom(E1, E2) = {isogenies E1 → E2}∪{0}. Say that 0 has degree 0 by convention.

Theorem 7.6. (5.6) The degree map

deg : Hom(E1, E2)→ Z
is a positive definite quadratic form, i.e.

(1) deg(nϕ) = n2 · deg ϕ for all n ∈ Z;
(2) (ϕ,ψ) 7→ deg(ϕ+ ψ)− deg(ϕ)− degψ is Z-bilinear;
(3) (positive definite) deg ϕ ≥ 0 with equality iff ϕ = 0.

Proof. (3) Trivial: the degree of the morphism is defined as a degree of a field extension;
so unless ϕ = 0, degϕ ≥ 1.

T.B.C. #

Lecture 8: February 4

Examples class: 2:00 on Friday Feb 8, MR9.

Remark 8.1. If ϕ ∈ Hom(E1, E2) then

• deg(−ϕ) = deg([−1] ◦ ϕ) = deg(ϕ)
• deg(2ϕ) = deg([n] ◦ ϕ)4 degϕ

Lemma 8.2 (Parallelogram law). (5.7) Let ϕ,ψ ∈ Hom(E1, E2), then

deg(ϕ+ ψ) + deg(ϕ− ψ) = 2 deg(ϕ) + 2 deg(ψ).

This is a property of all quadratic forms, but we will use it to deduce that deg is a quadratic
form.

Proof. We may assume ϕ,ψ, ϕ + ψ,ϕ − ψ 6= 0 (check each case, using the remark above
and common sense). Assume for simplicity that char(K) 6= 2, 3, so we can write E2 as

E2 : y2 = x3 + ax+ b.

(The lemma also holds in characteristic 2 and 3.) Write ϕ : (x, y) 7→ (ξ1(x, y), η(x, y));
remember from last lecture that ξ1 only depends on x. Also write

ψ : (x, y) 7→ (ξ2(x, y), η2(x, y))

ϕ+ ψ : (x, y) 7→ (ξ3(x, y), η3(x, y))

ϕ− ψ : (x, y) 7→ (ξ4(x, y), η4(x, y))
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By the group law on E2:

ξ3 =

(
η1 − η2

ξ1 − ξ2

)2

− ξ1 − ξ2

ξ4 =

(
η1 + η2

ξ1 − ξ2

)2

− ξ1 − ξ2

We have η2
i = ξ3

i + aξi + b. You could show that

(1 : ξ3 + ξ4 : ξ3ξ4)

=
(
(ξ1 − ξ2)2 : 2(ξ1ξ2 + a)(ξ1 + ξ2) + 4b : ξ2

1ξ
2
2 − 2aξ1ξ2 − 4b(ξ1 + ξ2) + a2

)
Put ξi(x) = ri(x)

si(x) where ri, si ∈ K[x] are coprime, and clear denominators:

(s3s4 : r3r4 + r4s3 : r3r4) = ((r1s2 − r2s1)2 : W1 : W2)

W1 = 2(r1r2 + as1s2)(r1s2 + r2s1) + 4bs2
1s

2
2

You can calculate W2. But you can show that W0,W1,W2 each have degree 2 in r1 and
s1, and degree 2 in r2 and s2.

deg(ξ3) + deg(ξ4) = max(deg(r3),deg(s3)) + max(deg(r4), deg(s4))

= max(deg(s3s4),deg(r3s4 + r4s3), deg(r3r4))

(You have to check each case r1 > s1, r2 > s2, etc.) Claim that s3s4, r3s4 + r4s3, r3r4 are
coprime. We’re not going to check that W0,W1,W2 are coprime. But we can say

deg(ξ3) + deg(ξ4) ≤ max(deg(W0), deg(W1), deg(W2))

≤ 2 max(deg(r1),deg(s2)) + 2 max(deg(r2), deg(s2))

So
deg(ϕ+ ψ) + deg(ϕ− ψ) ≤ 2 deg(ϕ) + 2 deg(ψ)

Replacing ϕ and ψ by ϕ+ ψ and ϕ− ψ, we get the reverse of the inequality above:

deg(2ϕ) + deg(2ψ) ≤ 2 deg(ϕ+ ψ) + 2 deg(ϕ− ψ)

4 deg(ϕ) + 4 deg(ψ) ≤ 2 · (deg(ϕ+ ψ) + deg(ϕ− ψ))

2 deg(ϕ) + 2 deg(ψ) ≤ deg(ϕ+ ψ) + deg(ϕ− ψ)

#

Lemma 8.3. (5.8) For all n ∈ Z,
deg[n] = n2.

Proof. Induction on n. The base cases n = 0, 1 are already known.

Assume we know the lemma in degrees ≤ n. Put ϕ = [n] and ψ = [1] in the previous
lemma to get

deg([n+ 1]) + deg([n− 1]) = 2 deg(ϕ) + 2

deg[n+ 1] = 2n2 + 2− (n− 2)2 = (n+ 1)2
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This proves the lemma for n ≥ 0. If n is negative, use the fact that [n] = [−1][−n]; but
[−1] is an isomorphism (so has degree 1), so deg[n] = deg[−n] = n2. #

Proof of Theorem 5.6. (1) deg(nϕ) = deg[n] degϕ, and we just checked that deg[n] = n2,
so this is n2 degϕ as desired.

(2) Let 〈ϕ,ψ〉 = deg(ϕ+ ψ)− deg(ϕ)− deg(ψ). This is symmetric in ϕ and ψ, so we just
need to show linearity in the first argument; that is, we need to show:

〈ϕ1 + ϕ2, ϕ3〉 = 〈ϕ1, ϕ3〉+ 〈ϕ2, ϕ3〉
In other words, we need to show:

deg(ϕ1 + ϕ2 + ϕ3) + deg(ϕ1) + deg(ϕ2) + deg(ϕ3)

= deg(ϕ1 + ϕ2) + deg(ϕ2 + ϕ3) + deg(ϕ1 + ϕ3)

This follows from Lemma 5.7 (Exercise). #

Chapter 6: The invariant differential

Let C be a smooth projective curve over an algebraically closed field K.

Definition 8.4. The space of Kähler differentials ΩC on C is the K(C)-vector space
generated by symbols df for f ∈ K(C), subject to the relations

(1) d(f + g) = df + dg
(2) (Product rule) d(fg) = f · dg + g · df
(3) da = 0 for all constants a ∈ K
Fact 8.5. Since C is a curve, ΩC is a one-dimensional K(C)-vector space.

Let ω ∈ ΩC be a nonzero differential, P ∈ C be a point, and t ∈ K(C) a uniformizer at P
(rational function having a simple pole at P ). Anything nonzero in a 1-dimensional vector
space forms a basis. So we can write ω = f ·dt for some f ∈ K(C), and ordP (ω) = ordp(f).

Fact 8.6.

(1) This is independent of the choice of t.
(2) ordP (ω) = 0 for all but finitely many P ∈ C.

Definition 8.7.
div(ω) =

∑
P∈C

ordP (ω)P

By the above fact, this is a formal sum that consists of finitely many terms.

Definition 8.8. A regular differential ω is one that doesn’t have any poles; that is,
div(ω) ≥ 0. The space of regular differentials is denoted

g(C) = dimK{ω ∈ ΩC : div(ω) ≥ 0}

It turns out that this is a finite-dimensional vector space, and its dimension is called the
genus.
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Fact 8.9.

(1) (Consequence of Riemann-Roch) If ω is a regular differential, then deg(div(ω)) =
2g(C)− 2

(2) Suppose f ∈ K(C)∗ and ordP (f) = n 6= 0. If char(K) - n, then ordP (df) = n − 1.
(Think about f as a power series in t with leading term tn, and use the standard rules
of calculus.)

Lemma 8.10. (6.1) Assume char(K) 6= 2.

E : y2 = (x− e1)(x− e2)(x− e3)

Then ω = dx
y is a differential on E with no zeros or poles. In particular, by Fact 8.9(1)

we have g(E) = 1, and ω is a basis for the 1-dimensional K-vector space of regular
differentials on E.

Proof. Let Ti = (ei, 0). E[2] = {0, T1, T2, T3}. div(y) = (T1) + (T2) + (T3) − 3(0E) (we
checked earlier that y has a triple pole at infinity).

If P = (xP , yP ) ∈ E\E[2] then ordP (x− xP ) = 1 and by Fact 8.9, ordp(dx) = 0. But if P
is a 2-torsion point (has a vertical tangent), then ordP (x− ei) = 2, and ordp(dx) = 1. If
P = 0E then ordp(x) = −2 (we’ve done this earlier), and ordp(dx) = −3. So

div(dx) = (T1) + (T2) + (T3)− 3(0E)

and div(dx) = div(y), so div dx
y = 0. #

Lecture 9: February 6

Definition 9.1. If ϕ : C1 → C2 is a non-constant morphism, then define the map ϕ∗ by:

ϕ∗ : ΩC2 → ΩC1 where f dg 7→ (ϕ∗f)d(ϕ∗g).

Lemma 9.2. (6.2) Let P ∈ E, and let ω be a nonzero regular differential. Define τP : E →
E by τP : Q 7→ P ⊕Q. Then τ∗Pω = ω. We call ω the invariant differential.

Proof. τ∗pω is a regular differential on E. So τ∗pω = λpω for some λp ∈ K∗ (this is nonzero

because we’re pulling back by a nonzero differential). The map E → P1, P 7→ λP is a
morphism of algebraic curves, but not surjective (misses 0 and ∞). But a nonconstant
morphism between smooth projective curves is surjective. Therefore, it is constant, so
there is some λ ∈ K∗ such that τ∗pω = λω for all p ∈ E. Taking P = 0E shows that λ = 1.

#

Remark 9.3. In the case K = C, we have an isomorphism C/Λ
∼=→ E given by z 7→

(℘(z), ℘′(z)). Then the invariant differential is: dx
y = ℘′(z)dz

℘′(z) = dz.

Fact 9.4. ΩE×E is a 2-dimensional vector space over K(E × E) with basis pr∗1ω, pr∗2ω.

Lemma 9.5. (6.3) Let ϕ,ψ ∈ Hom(E1, E2), and let ω be the invariant differential on E2.
Then (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.
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Proof. Let E = E2. We have several maps E × E → E:

µ : (P,Q) 7→ P ⊕Q
pr1 : (P,Q) 7→ P

pr2 : (P,Q) 7→ Q

By Fact 9.4
µ∗ω = f pr∗1ω + g pr∗2ω (9.1)

for some f, g ∈ K(E × E). Let Q ∈ E. Let iQ : E → E × E be the map P 7→ (P,Q).
Apply i∗Q to (9.4) to get

(µ ◦ iQ)∗ω = i∗Qf(pr1 ◦ iQ)∗ω + i∗Qg (pr2 ◦ iQ)∗

constant map
on Q

ω

τ∗Qω = i∗Qfω

By Lemma 6.2, i∗Qf = 1 for all Q ∈ E.

So f(P,Q) = 1 for all P,Q ∈ E. Similarly, g(P,Q) = 1 for all P,Q, and so

µ∗ω = pr∗1ω + pr∗2ω

We pull back by
E1 → E × E where P 7→ (ϕ(P ), ψ(P ))

to get (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω. #

Lemma 9.6. (6.4) Let ϕ : C1 → C2 be a nonconstant morphism. Then ϕ is separable iff
ϕ∗ : ΩC2 → ΩC1 is nonzero.

Proof. Omitted. #

Example 9.7. Let Gm = A1\{0} be the multiplicative group. Let ϕ : Gm → Gm be the
map x 7→ xn for some n ∈ Z.

ϕ∗(dx) = d(xn) = nxn−1dx

As long as n - charK, this is nonzero, and hence ϕ is separable.

In general, if ϕ is a separable morphism, then #ϕ−1(Q) = deg(ϕ) for all but finitely many
points Q. But in this case, ϕ is a group homomorphism, so every fiber has the same
number of elements (size of the kernel). So # ker(ϕ) = deg(ϕ) = n.

Theorem 9.8. (6.5) If char(K) - n then E[n] ∼= (Z/nZ)2.

Proof. Lemma 6.3 plus an easy induction yields

[n]∗ω = nω.

We assumed that char(K) - n, and so [n] is separable. So #[n]−1Q = deg[n] for all but
finitely many Q ∈ E. But [n] is a group homomorphism, so #[n]−1Q = #E[n] for all Q.
Putting these facts together, #E[n] = deg[n]. When we checked that deg was a quadratic
form, we showed that deg[n] = n2.
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By the structure theorem for finite abelian groups, E[n] ∼= Z/d1Z ⊕ · · · ⊕ Z/dtZ with
d1 | d2 | · · · | dt | n. If p is a prime dividing d, then E[p] ∼= (Z/pZ)t, but #E[p] = p2 so
t = 2, and d1 = d2 = n. Therefore, E[n] ∼= (Z/nZ)2. #

Remark 9.9. If char(K) = p then either E[pr] ∼= Z/prZ for all r (the ordinary case) or
E[pr] = 0 for all r (the supersingular case).

Theorem 9.10 (Hasse). (6.6) Let E be an elliptic curve over a finite field Fq. Then

|#E(Fq)− (q + 1)| ≤ 2
√
q.

Proof. Recall the Galois group Gal(Fqr/Fq) of a degree-r extension of Fq is a cyclic group
generated by the Frobenius map x 7→ xq.

Let E have a Weierstrass equation with coefficients a1, · · · , a6 ∈ Fq (so aqi = ai for all i).
So xq and yq give another solution to the curve. Define the Frobenius endomorphism ϕ

(i.e. an isogeny from E to itself)

ϕ : E → E where (x, y) 7→ (xq, yq).

This has degree q. Then E(Fq) = {P ∈ E : ϕ(P ) = P} = ker(1− ϕ).

Proving Hasse’s theorem means working out the size of the kernel.

ϕ∗
(
dx

y

)
=
d(xq)

yq
=
qxq−1dx

yq

This is zero because we’re in characteristic q. By Lemma 6.3,

(1− ϕ)∗ dxy = dx
y − ϕ

dx
y

The second term is zero, and the first term is nonzero. So 1− ϕ is separable. So

#E(Fq) = # ker(1− ϕ) = deg(1− ϕ).

Lecture 10: February 8
Lemma 10.1. (6.7) Let A be an abelian group, and let q : A → Z be a positive definite
quadratic form. If ϕ,ψ ∈ A, then

〈ϕ,ψ〉 := |q(ϕ+ ψ)− q(ϕ)− q(ψ)| ≤ 2
√
q(ϕ)q(ψ).

(Note that 〈−,−〉 is bilinear by definition.)

(This is basically Cauchy-Schwartz.)

Proof. Assume ϕ 6= 0 (otherwise clear). Let m,n ∈ Z.

0 ≤ q(mϕ+ nψ) =
1

2
〈mϕ+ nψ,mϕ+ nψ〉
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= q(ϕ)m2 + 〈ϕ,ψ〉mn+ q(ψ)n2

= q(ϕ)

(
m+

〈ϕ,ψ〉n
2q(ϕ)

)2

+ n2

(
q(ψ)− 〈

ϕ,ψ〉2

4q(ϕ)

)
Take m = −〈ϕ,ψ〉 and n = 2q(ϕ) to make the first term = 0:

0 ≤ q(ψ)− 〈
ϕ,ψ〉2

4q(ϕ)

So 〈ϕ,ψ〉2 ≤ 4q(ϕ)q(ψ) and

|〈ϕ,ψ〉| ≤ 2
√
q(ϕ)q(ψ).

#

Proof of Theorem 6.6, con’t. By Theorem 5.6, deg : End(E) → Z is a positive definite
quadratic form. Apply Lemma 6.7:∣∣∣∣deg(1− ϕ)

#E(Fq)

−deg(ϕ)

q

−deg(1)

1

∣∣∣∣ ≤ 2
√

deg(ϕ)

#

Chapter 7: Formal groups

Let
E : Y 2Z + a1XY Z + a3Y Z

2 = X3 + a2X
2Z + a4XZ

2 + a6Z
3

be an elliptic curve. We will work on the affine piece where Y 6= 0. Choose new coordinates
t = −X

Y and w = −Z
Y (minus signs for consistency with Silverman’s book):

E : w = t3 + a1tw + a2t
2w + a3w

2 + a4tw
2 + a6w

3

f(t,w)

We will find a power series for f(t, w); that is, an expression

w(t) = t3(1 +A1t+A2t
2 + · · · ) ∈ Z[a1, · · · , a6][[t]]

such that w(t) = f(t, w(t)). It turns out that

A1 = a1

A2 = a2
1 + a2

A3 = a3
1 + 2a1a2 + a3

Definition 10.2. Let R be a ring, I ⊂ R be an ideal. The I-adic topology on R is the
topology where the basic open sets have the form r+ In, for r ∈ R and n ≥ 0. (s is close
to r if s ∈ r + IN for large N ; in other words, if the difference r − s is in IN .)

Definition 10.3. R is complete w.r.t I if

(1)
⋂
n≥0 I

n = {0}, and

(2) every Cauchy sequence converges.
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(xn)n is a Cauchy sequence in this context if: for every s, there is some N such that
xn − xm ∈ Is for n,m ≥ N .

Remark 10.4. If x ∈ I, then 1
1−x = 1 + x+ x2 + · · · and so 1− x ∈ R×.

Lemma 10.5 (Hensel’s lemma). (7.1) Let R be an integral domain that is complete with
respect to the ideal I. Let F ∈ R[X] and s ≥ 1. Suppose we are given a ∈ R such that

F (a) ≡ 0 (mod Is)

F ′(a) ∈ R×.
Then there is a unique b ∈ R such that

F (b) = 0

b ≡ a (mod Is).

Proof. Pick any α ∈ R such that α ≡ F ′(a) (mod I). Replacing F (X) by F (X+a)
α , we

may assume a = 0, α = 1. We have F (0) ≡ 0 (mod Is) and F ′(0) ≡ 1 (mod I). Define a
sequence recursively:

x0 = 0

xn+1 = xn − F (xn) (10.1)

By an easy induction,
xn ≡ 0 (mod Is) (10.2)

for all n ≥ 0. We need to show that this sequence is Cauchy.

Claim 10.6. xn+1 ≡ xn (mod In+s) for all n ≥ 0.

Proof of claim. By induction on n. If n = 0 then we’re done.

Suppose xn ≡ xn−1 (mod In+s−1).

F (X)− F (Y ) = (X − Y )(F ′(0) +XG(X,Y ) + Y H(X,Y )) (10.3)

for some G,H ∈ F [X,Y ]. If X = xn and Y = xn−1, the second bracket is just 1 (mod I):

F (xn)− F (xn−1) ≡ xn − xn−1 (mod In+s)

xn − F (xn) ≡ xn−1 − F (xn−1) (mod In+s)

xn+q ≡ xn (mod In+s)

#

So (xn) is Cauchy. Since R is complete, xn → b as n→∞ for some b ∈ R. Taking limits
in (10.1) gives b = b−F (b), and so F (b) = 0. Taking limits in (10.2) gives b ≡ 0 (mod Is).

Uniqueness is proved by plugging two supposed solutions into (10.3); I claim that the right
bracket is nonzero, which forces X − Y = 0. #

We apply Lemma 7.1 with R = Z[a1, · · · , a6][[t]] and I = (t). We’re looking for a solu-
tion to F (X) = X − f(t,X). Set s = 3, and use the approximate root a = 0. Then
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F (0) = −t3 ≡ 0 (mod t3) and F ′(0) = 1 − a1t − a2t
3 ∈ R×. There exists a unique

w ∈ Z[a1, · · · , a6][[t]] such that w(t) = f(t, w(t)) and w ≡ 0 (mod t3).

Remark 10.7. Taking α = 1 in the proof, we find w = limn→∞wn with w0 = 0, wn+1 =
f(t, wn).

Lemma 10.8. (7.2) Let R be an integral domain that is complete with respect to the ideal
I. Let a1, · · · , a6 ∈ R, and K = FracR. Then

Ê(I) = {(t, w(t)) ∈ E(K) : t ∈ I}
is a subgroup of E(K).

Proof. Taking t = 0 gives 0E ∈ Ê(I). Let P1 = (t1, w1) and P2 = (t2, w2) be points in

Ê(I). It suffices to show that −P1 − P2 ∈ Ê(I). Let P3 = (t3, w3) = −P1 − P2. Let
w = λt + ν be the line through P1, P2, P3. Suppose t1, t2, w1, w2 ∈ I. We need to show
that t3, w3 ∈ I. This suffices by uniqueness in Hensel’s lemma (there is a unique w(t) ∈ I
that makes this work).

Write
w(t) = t3(1 +A1t+A2t

2 + · · · )
λ is the slope w2−w1

t2−t1 =
∑∞

n=3An−3
tn2−tn1
t2−t1 . Also ν = w1 − λt1 ∈ I because w1 and t1 ∈ I.

Finish later.

Lecture 11: February 11

Let R be an integral domain, complete with respect to the ideal I. We have an elliptic
curve

E : w = f(t, w) = t3 + a1tw + · · ·+ a6w
3

containing points P1 = (t1, w1), P2 = (t2, w2), P3 = (t3, w3) all on the line w = λt + ν.
Suppose t1, t2, w1, w2 ∈ I. We checked that λ, ν ∈ I. Substituting w = λt + ν into
w = f(t, w), we have

λt+ ν = t3 + a1t(λt+ ν) + a2t
2(λt+ ν) + a3(λt+ ν)2 + a4t(λt+ ν)2 + a6(λt+ ν)3

A := Coefficient of t3 = 1 + a2λ+ a4λ
2 + a6λ

3 ∈ R×

B := Coefficient of t2 = a1λ+ a2ν + a3λ
2 + 2a4λν + 3a6λ

2ν ∈ I

t3 = −B
A − t1− t2 ∈ I and w3 = λt3 +ν ∈ I. We also could have calculated w3 by plugging

t3 into the power series; by the uniqueness in Hensel’s lemma, this is indeed the same
point. That is, w3 = w(t3). Thus

Ê(I) = {(t, w(t)) ∈ E(K) : t ∈ I}
is a subgroup of E(K).

By taking R to be a power series ring in Lemma 7.2,

(1) there is some power series ι(t) ∈ Z[a1, · · · , a6][[t]] such that [−1](t, w(t)) = (ι(t), w(ι(t)))
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(2) there is some F (t1, t2) ∈ Z[a1, · · · , a6][[t1, t2]] such that

(t1, w(t1)) + (t2, w(t2)) = (F (t1, t2), w(F (t1, t2))).

In fact,
ι(X) = −X − a1X

2 − a2
2X

3 − (a3
1 + a3)X4 + · · ·

and
F (X,Y ) = X + Y − a1XY − a2(X2Y +XY 2) + · · ·

It follows from the group axioms that

(1) F (Y,X) = F (X,Y )
(2) F (X, 0) = X and F (0, Y ) = Y
(3) F (F (X,Y ), Z) = F (X,F (Y,Z))
(4) F (X, ι(X)) = 0

Definition 11.1. Let R be any ring. A formal group over R is a power series F ∈ R[[X,Y ]]
satisfying (1) – (3) above.

Motto: formal groups are “a group law without elements”.

Exercise 11.2. If F satisfies (1) – (3), then show that there is some power series ι(X) =
−X + · · · ∈ R[[X]] such that F (X, ι(X)) = 0.

This is a 1-parameter commutative group; but we will just call it a formal group because
we don’t care about any other kinds of formal groups here.

Example 11.3.

(1) F (X,Y ) = X + Y is a formal group, which we call Ĝa.

(2) F (X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1 is the formal group Ĝm

(3) The formal group F (X,Y ) arising from the elliptic curve E is called Ê.

Definition 11.4. Let F,G be formal groups over R.

(1) A morphism f : F → G is a power series f ∈ R[[T ]] with zero constant term such that
f(F (X,Y )) = G(f(X), f(Y )).

(2) F ∼= G if there are morphisms f : F → G and g : G→ F satisfying f ◦ g(T ) = T and
g ◦ f(T ) = T .

Theorem 11.5. (7.3) If char(R) = 0 then every formal group F over R is isomorphic to

the additive formal group Ĝa over R⊗Q.

More precisely,

(1) there exists a unique power series

log T = T +
a2

2
T 2 +

a3

3
T 3 + · · ·

with ai ∈ R satisfying
logF (X,Y ) = logX + log Y (11.1)

and
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(2) there is a unique power series

exp(T ) = T +
b2
2!
T 2 +

b3

3!
T 3 + · · ·

with bi ∈ R satisfying

log(expT ) = T and exp(log T ) = T.

Proof. (1) Uniqueness of log: For convenience, denote F1(X,Y ) = ∂F
∂X (X,Y ). Suppose

we have a series log as above. Let

p(T ) =
∂

∂T
log T = 1 + a2T + a3T

2 + · · · .

Differentiating (11.1) w.r.t X we get

p(F (X,Y ))F1(X,Y ) = p(X) + 0

Putting X = 0,
p(Y )F1(0, Y ) = 1

so p(Y ) = F1(0, Y )−1. So p is uniquely determined by F , and so is log, because log is
defined in terms of the coefficients of p.

Existence of log: Let p(T ) = F1(0, T )−1 = 1 + a2T + a3T
2 + · · · for some ai ∈ R. Define

log by formally integrating:

log(T ) = T +
a2

2
T 2 +

a3

3
T 3 + · · ·

Start with the associativity law:

F (F (X,Y ), Z) = F (X,F (Y, Z))

and take d
dX :

F1(X,Y )F1(F (X,Y ), Z) = F1(X,F (Y,Z))

Set X = 0:

F1(0, Y )F1(Y,Z) = F1(0, F (Y, Z))

p(Y )−1F1(Y,Z) = p(F (Y,Z))−1

P (F (Y,Z))F1(Y,Z) = p(Y )

Integrate with respect to Y :

logF (Y,Z) = log Y + h(Z)

constant from
integrating

for some power series h.

But there’s symmetry between Y and Z, which forces h(Z) = logZ.

For (2), we use

36



Elliptic curves Lecture 12

Lemma 11.6. (7.4) Let f(T ) = aT + · · · ∈ R[[T ]] with a ∈ R×. Then there is a unique
power series

g(T ) = a−1T + · · · ∈ R[[T ]]

such that f ◦ g(T ) = T and g ◦ f(T ) = T .

Proving the lemma proves the original statement of the theorem. To prove the more
specific formulation that says how bad the denominators get in exp, just pick through this
proof (exercise).

Proof of Lemma. We construct polynomials gn(T ) ∈ R[T ] such that f(gn(T )) = T (mod Tn+1)
and gn+1(T ) ≡ gn(T ) (mod Tn+1). Then let g(T ) = limn→∞ gn(T ); this makes sense be-
cause R is complete and the second condition on (gn) ensures that they form a Cauchy
sequence (pointwise).

To start the induction, let g1(T ) = a−1T .

Now suppose n ≥ 2 and gn−1 exists with the desired properties. Then

f(gn−1(T )) ≡ T + bTn (mod Tn+1)

for some b ∈ R. We put gn(T ) = gn−1(T ) + λTn for some λ ∈ R to be chosen. Then

f(gn(T )) = f(gn−1(T ) + λTn)

≡ f(gn−1(T )) + λaTn (mod Tn+1)

≡ T + (b+ λa)Tn (mod Tn+1)

so we can choose λ = − b
a (we are using the fact that a was a unit). We get

g(T ) = a−1T + · · · ∈ R[[T ]]

such that
f ◦ g(T ) = T. (11.2)

The same construction applied to g gives h(T ) = aT + · · · ∈ R[[T ]] such that

g ◦ h(T ) = T (11.3)

f(T )
(11.3)

= f(g(h(T )))
(11.2)

= h(T )

#

Theorem 7.3 follows, except for showing the coefficients of exp(T ) which are in R⊗Q are
of the form bn

n! with bn ∈ R (optional exercise, or see Silverman’s book).

Remark 11.7. If F (X,Y ) = (1 + X)(1 + Y ) − 1, then exp and log are the usual series
for log(1 + T ) and exp(T ) − 1. (The shift of 1 occurs because formal groups require the
identity to be called “0”.)
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Lecture 12: February 13

Examples class: next Friday, 2:30

Construction 12.1. Let F be a formal group (e.g. Ĝa, Ĝm, Ê) given by F ∈ R[[X,Y ]].
We want to construct an actual group from this. Suppose R is complete with respect to
some ideal I (for example, R = Zp, I = prZp for some r ≥ 1). If x, y ∈ I then define a
group law

x⊕F y := F (x, y).

These power series converge with respect to the I-adic topology because R is complete.
Then F(I) = (I,⊕F ) is an abelian group.

For example, Ĝa(I) = (I,+) and Ĝm(I) = (1 + I,×). In Lemma 7.2 we showed Ê(I) ⊂
E(K).

Check that morphisms of formal groups induce group homomorphisms.

Corollary 12.2. (7.5) Let F be a formal group over R. Let n ∈ Z. Suppose n ∈ R∗.
Then

(1) [n] : F → F is an isomorphism.

(2) If R is complete w.r.t. an ideal I then F(I)
−×n−→ F(I) is an isomorphism.

In particular, F(I) has no n-torsion.

Proof. [1](T ) is the power series T , and [n + 1](T ) = F ([n]T, T ). Induction shows that
[n]T = nT + · · · ∈ R[[T ]]. If n is a unit in R, then Lemma 7.4 applies, and shows that [n]
has an inverse, which in turn gives an isomorphism of groups. #

Chapter 8: Elliptic curves over local fields

Let K be a field of characteristic zero. Assume that K is complete w.r.t. some discrete
valuation

ordK : K∗ → Z.
Recall the following constructions from algebraic number theory:

ring of integers: OK = {x ∈ K : ordK(x) ≥ 0} ∪ {0}
group of units: O∗K = {x ∈ K∗ : ordK(x) = 0}
maximal ideal: πOK where ordK(π) = 1

residue field: k = OK/πOK
Assume that char(k) = p > 0.

For example, K = Qp, OK = Zp, πOK = pZp, k = Fp.

Remark 12.3. ord is a group homomorphism, and

ordK(x+ y) ≥ min(ordK(x), ordK(y)).
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Equality holds when ordK(x) 6= ordK(y) and possibly at other times as well.

Definition 12.4. A Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ai ∈ K

is integral if ai ∈ OK for all i. It is minimal if ordK(∆) is minimal among all integral
Weierstrass equations for E. If you complete the square to make this y2 = cubic, ∆ is, up
to unit, the discriminant of the cubic.

Remark 12.5.

(1) Putting x = u2x′, y = u3y′, we get ai = uia′i. So integral Weierstrass equations exist.
(2) If a1, · · · , a6 ∈ OK , then ∆ ∈ OK . So ordK(∆) ∈ Z≥0. So minimal Weierstrass

equations exist.

Lemma 12.6. (8.1) Fix an integral Weierstrass equation for E. Suppose P = (x, y) ∈
E(K) is nonzero. Then one of the following holds:

(1) x, y ∈ OK
(2) ordK(x) = −2r, ordK(y) = −3r for some r ≥ 1.

Proof. Let s = ordK(x) and t = ordK(y).

Case s ≥ 0: If t < 0 we get ordK(LHS) = 2t, and ordK(RHS) ≥ 0, a contradiction. So
t ≥ 0, i.e. x, y ∈ OK .

Case s < 0: ordK(LHS) ≥ min(2t, s + t, t) and ordK(RHS) = 3s. There are three
possible inequalities, and in each case, t < s < 0. Now we know that the 2t term wins; so
3s = 2t which implies s = −2r, t = −3r for some r ≥ 1. #

In §7 we put t = −x
y and w = − 1

y . Let I = πrOK for some r ≥ 1. Then

Ê(I) = Ê(πrOK) = {(x, y) ∈ E(K) : −x
y ,

1
y ∈ π

rOK}
= {(x, y) ∈ E(K) : ord x

y ≥ r, ordK(y) ≤ −r}
8.1
= {(x, y) ∈ E(K) : ordK(x) ≤ −2r, ordK(y) ≤ −3r}

By Lemma 7.2 this is a subgroup of E(K), say Er(K). We have a series of inclusions

· · · ⊂ E2(K) ⊂ E1(K) ⊂ E(K)

Proposition 12.7. (8.2) Let F be a formal group over OK . As defined above, π is the
maximal ideal, and the residue field k = OK/πOK has characteristic p. Let e = ordK(p).
If r > e

p−1 then

log : F(πrOK)→ Ĝa(π
rOK)

is an isomorphism with inverse

exp : Ĝa(π
rOK)→ F(πrOK).
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Proof. The only thing left to check is convergence. Let x ∈ πrOK . We must show the
series log(x) and exp(x) in Theorem 7.3 converge.

Recall: exp(T ) = T + b2
2!T

2 + b3
3!T

3 + · · · for bi ∈ OK . Because of the ultrametric law, we
just have to check that the terms tend to zero (i.e. tend towards infinite order).

ordK(n!) = e · ordp(n!)

= e

m∑
r=1

[
n

pr

]
if pm ≤ n < pm+1

≤ e
m∑
r=1

n

pr

= e ·
(

n

p− 1
· (1− p−m)− 1

)
≤ e

p− 1
(n− 1)

(you would get e
p−1 if the sum went to ∞).

ordK
bnxn

n! ≥ 0 + nr − e

p− 1
(n− 1)

= r + (n− 1) (r − e
p−1)

>0 by
hypothesis

This is always ≥ r and tends to ∞ as n→∞. So exp(x) converges and belongs to πrOK
(and likewise for log).

So for r sufficiently large,

F(πrOK) ∼= Ĝa(π
rOK) ∼= (πrOK ,+) ∼= (OK ,+).

#

Lecture 13: February 15

Let F be a formal group over OK . There is a sequence

· · · ⊂ F(π2OK) ⊂ F(πOK).

We showed in Proposition 8.2 that F(πrOK) ∼= (OK ,+) for sufficiently large r.

Lemma 13.1. (8.3) If r ≥ 1 then

F(πrOK)/F(πr+1OK) ∼= (k,+).

Proof. From the axioms of a formal group,

F (X,Y ) = X + Y +XY (· · · ).
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So if x, y ∈ OK ,
F (πrx, πry) ≡ πr(x+ y) (mod πr+1)

Define a map F(πrOK) → (k,+) via πrx 7→ x (mod π). We checked that this gives a
group homomorphism. It is surjective, with kernel F(πr+1OK). #

Corollary 13.2. If |k| <∞, then F(πOK) contains a subgroup of finite index isomorphic
to (OK ,+).

Notation 13.3. The reduction mod π map OK → OK/πOK = k sends x 7→ x̃.

Proposition 13.4. (8.4) The reduction mod π of any two minimal Weierstrass equations
for E defines isomorphic curves over k.

Proof. Say the Weierstrass equations are related by [u; r, s, t] for u ∈ K∗, r, s, t ∈ K. Let
∆1, ∆2 be the discriminants of the two Weierstrass equations. Then

∆1 = u12∆2.

Since both equations are minimal, ordK(∆1) = ordK(∆2). So ordK(u) = 0 (i.e. u is a
unit in OK). Use the transformation formulae on the formula sheet for the ai and bi to
give r, s, t ∈ OK . (As long as you don’t worry about characteristic 2 or 3, you don’t have
to worry about r, s, t anyway, and this proof is even simpler.)

The Weierstrass equations obtained by reduction are now related by a transformation
[ũ; r̃, s̃, t̃]. #

Definition 13.5. The reduction Ẽ/k of E/K is the reduction of a minimal Weierstrass

equation. E has good reduction if Ẽ is non-singular (i.e. Ẽ is an elliptic curve); otherwise
call this a bad reduction.

Remark 13.6. For an integral Weierstrass equation,

ordK(∆) = 0 =⇒ minimal + good reduction

0 < ordK(∆) < 12 =⇒ minimal + bad reduction

ordK(∆) ≥ 12 =⇒ if minimal then bad reduction

There is a well-defined map P2(K)→ P2(k)

(x : y : z) 7→ (x̃ : ỹ : z̃)

To avoid ending up with (0 : 0 : 0) on the right, you have to choose a representative of
(x : y : z) such that min(ordK(x), ordK(y), ordK(z)) = 0 (i.e. at least something is a

unit). We restrict to E(K)→ Ẽ(k), sending p 7→ p̃.

Lemma 8.1 says Ê(πOK) = E1(K) = {P ∈ E(K) : P̃ = 0}. We want to say that the
formal group is the kernel of reduction. This works if reduction is a group homomorphism,

which is the case if Ẽ(k) is a group (i.e. it was a good reduction). If it was a bad reduction,
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we can get rid of the offending singular points: let

Ẽns =

{
Ẽ if good reduction

Ẽ\{singular pts.} if bad reduction

The chord and tangent process still defines a group law on Ẽns. Any line meets a singular
point with multiplicity at most 2. In the chord and tangent process, we start with two
(smooth) points and try to find the third point of intersection. So there is no danger of
running into the singular points this way.

Proposition 13.7. If E has bad reduction, then

Ẽns ∼= Gm or Ga

(if it’s Ga, this can be taken over k, but in the multiplicative case, you might have to add
some square roots).

For simplicity assume char k 6= 2. Consider an elliptic curve

Ẽ : y2 = f(x) where deg f = 3.

The singular points correspond to the repeated roots of f . If there’s a double root, then
there’s a node; if it’s a triple root, then there’s a cusp.

Case 1: triple root. Assume the triple root is at zero, so the equation is y2 = x3. Define a

map Ga → Ẽns where t 7→ (t−2, t−3) and 0 7→ 0E . Let P1, P2, P3 lie on the line ax+by = 1.
Put Pi = (xi, yi).

x3
i = y2

i = y2
i (axi + byi)

This is homogeneous; divide by y3
i :

ti = xi
yi

is a root of X3 − aX − b = 0; so t1 + t2 + t3 = 0.

Specialize as necessary to show that inverses work; then read off the fact that this is a
group homomorphism.

Case 2: double root. Pick the homomorphism such that the singular points correspond to
0 and ∞ in Gm. The calculation is messier.

Definition 13.8.
E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(k)}

(i.e. points that reduce to a smooth point).

Proposition 13.9. (8.5) E0(K) ⊂ E(K) is a subgroup, and reduction mod π gives a

surjective group homomorphism E0(K)→ Ẽns(k).

Proof. Group homomorphism: We need to check that E0 is closed under the operation ⊕.
Let P1, P2 ∈ E0(K). Let P3 ∈ E(K) be the point such that P1 ⊕ P2 ⊕ P3 = 0E: that is,

such that P1, P2, and P3 lie on a line ` : ax + by + cz = 0. But then P̃1, P̃2, P̃3 lie on
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the line ˜̀ : ãx + b̃y + c̃z = 0. Since ` is not degenerate, we could have picked a, b, c with

min(ordK(a), ordK(b), ordK(c)) = 0; now ã, b̃, c̃ are not all zero, and ˜̀ is not the zero line.

Since we assumed that P̃1 and P̃2 were nonsingular, P̃3 also has to be nonsingular. Thus,
P3 ∈ E0(K).

Surjective: Let f(x, y) = y2 +a1xy+a3y−x3−· · ·−a6 be the usual affine equation for E.

Let P̃ ∈ Ẽns(k)\{0} have coordinates (x̃0, ỹ0) (for some x0, y0 ∈ OK). P̃ is non-singular,

so either ∂f
∂x (x0, y0) 6= 0 in k or ∂f

∂y (x0, y0) 6= 0 in k. Suppose ∂f
∂x 6≡ 0 (mod π). Put

g(t) = f(t, y0) ∈ OK [t]: g(x0) ≡ 0 (mod π) and g′(x0) ∈ O∗K . By Hensel’s lemma, there
is some b ∈ OK such that b ≡ x0 (mod π) and g(b) = 0. Then P = (b, y0) ∈ E(K) and its

reduction mod π is P̃ . #

Lecture 14: February 18

We had the group of smooth points E0(K) ⊂ E(K), which had a kernel we called E1(K),

which is just Ê(πOK). We checked that E0(K)/E1(K)
∼=→ Ẽns(k). We can continue the

sequence
Er(K) ⊂ · · · ⊂ E2(K) ⊂ E1(K) ⊂ E0(K) ⊂ E(K)

where Er(K) = Ê(πrOK), and for r sufficiently large, Er(K) ∼= (OK ,+), and the quotients
at each stage are (k,+). We assumed that the residue field k was finite, so we have
produced some subgroups of finite index. But, we haven’t yet proved that E0(K) ⊂ E(K)
has finite index.

Lemma 14.1. (8.6)If |k| <∞, then Pn(K) is compact (w.r.t the π-adic topology).

Proof. OK = lim←−OK/π
nOK is profinite (i.e. it’s an inverse limit of finite groups). It’s a

well-known result that profinite groups are compact. Pn(K) is a union of (finitely many)
compact sets of the form

Vi = {(a0 : · · · : ai−1 : 1 : ai+1 : · · · : an) : aj ∈ OK}.
#

Lemma 14.2. (8.7) E0(K) ⊂ E(K) has finite index.

Proof. E(K) ⊂ P2(K) is a closed subset (it’s formed by satisfying an equation), hence
compact. Our group operations are continuous w.r.t. the topology, i.e. (E(K),⊕) is

a compact topological group. If Ẽ has no singular point, then there’s nothing to do.
Otherwise, let (x̃0, ỹ0) be a singular point (for x0, y0 ∈ OK). Then

E(K)\E0(K) = {(x, y) ∈ E(K) : ordK(x− x0) ≥ 1, ordK(y − y0) ≥ 1}
is a closed set.

E0(K) ⊂ E(K) is open, and so its cosets are open. These cosets form an open cover
of E(K). But E(K) is compact – every open cover has a finite subcover. Cosets don’t
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overlap, so the only way this can happen is for there to have been only finitely many of
them to begin with. #

Definition 14.3. [E(K) : E0(K)] <∞ is called the Tamagawa number cK(E).

Lemma 8.7 says that this is finite. It turns out that you don’t need k to be finite. You can
set things up more carefully to get a geometric interpretation of the Tamagawa number
(see Silverman’s second book).

Fact 14.4. Either cK(E) = ordK(∆) or cK(E) ≤ 4.

Remark 14.5. If we have good reduction, then cK(E) = 1. But, the converse is false.

If the reduction is the additive group, then cK(E) ≤ 4. You have split reduction if the
reduction is the multiplicative group, and you don’t have to add in any square roots. In
this case cK(E) = 1. Otherwise, the reduction is called nonsplit, and cK(E) = ord(∆).

If you’re not working with minimal Weierstrass equations, then this doesn’t work – you
can make E0 have huge index in E(K).

Theorem 14.6. (8.8) Let [K : Qp] < ∞, and let E be an elliptic curve over K. Then
E(K) contains a subgroup of finite index isomorphic to (OK ,+). In particular E(K)tors
is finite (since it injects into E(K)/Er(K) ← this is because OK ∼= Er(K) is torsion-free).

Fact 14.7. Let [L : Qp] <∞, and L/K be a finite extension. Then [L : K] = ef , and you
get a diagram

K∗� _

��

ordK // Z

−×e
��

L∗
ordL // Z

where e is the ramification index (take the uniformizer in K∗, and ask for its valuation in
L∗). Also, f = [kL : k], where k and kL are the residue fields of K and L.

If L/K is Galois, the natural map

Gal(L/K)→ Gal(kL/k)

is surjective. The kernel has order e.

Definition 14.8. L/K is unramified if e = 1.

Fact 14.9. For each integer n ≥ 1,

(1) k has a unique extension of degree n (unique means unique within some fixed algebraic
closure of k);

(2) K has a unique unramified extension of degree n, whose residue field is the unique
extension of the residue field of K described in (1).

These are Galois extensions with cyclic Galois group of order n.

Definition 14.10. Knr is the maximal unramified extension of K. Its residue field is k.
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Warning: Knr is not complete (unlike finite extensions).

Proposition 14.11. (8.9) Suppose E/K has good reduction, and suppose p - n (where p
is the characteristic of k). Then

(1) E(Knr)[n] = E(K)[n] (every n-torsion point you could imagine is defined over an
unramified extension)

(2) E(Knr)
−×n→ E(Knr) is surjective.

Proof. If L/K is finite and unramified, E1(L)
−×n→ E1(L) is an isomorphism (by Corollary

7.5). In Proposition 8.5, we checked that E(L) → Ẽ(kL) is surjective (assuming good
reduction).

There is a commutative diagram with exact rows:

0 // E1(Knr) //

−×n
��

E(Knr) //

−×n
��

Ẽ(k) //

−×n
��

0

0 // E1(Knr) // E(Knr) // Ẽ(k) // 0

The first vertical map is an isomorphism. Now do a diagram chase using the snake lemma

to show that E(Knr)[n]
∼=→ Ẽ(k)[n] ∼= (Z/nZ)2 is an isomorphism and

E(Knr)/nE(Knr) ∼= Ẽ(k)/nẼ(k) = 0.

But E(Knr)[n] ⊂ E(K)[n] ∼= (Z/nZ)2 also by Theorem 6.5. #

Corollary 14.12. (8.10) Suppose E/K has good reduction, and P - n. If p ∈ E(K) then
K([n]−1P )/K is unramified.

Note: [n]−1P = {Q ∈ E(K) : nQ = P}
K({P1, · · ·Pr}) = K(x1, · · · , xr, y1, · · · , yr) with P = (xi, yi)

Proof. Proposition 8.9(2) shows that there is some Q ∈ E(Knr) such that nQ = P . Then
[n]−1P = {Q+T : T ∈ E(K)[n]}. But part (1) of the Proposition shows that all of these
points are in E(Knr). So K([n]−1P ) ⊂ Knr. #

Chapter 9: The torsion subgroup

We are now working over a field K that is a finite extension of Q. Let E be an elliptic
curve over K.

Notation 14.13. For P a prime of K (i.e. prime ideal in OK) we write

KP = completion of K w.r.t. P-adic valuation.

Definition 14.14. P is a prime of good reduction for E/K if E/KP has good reduction.

Lemma 14.15. (9.1) E/K has only finitely many primes of bad reduction.
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Proof. Take a Weierstrass equation for E with a1, · · · , a6 ∈ OK . Since E is nonsingular,
0 6= ∆ ∈ OK . Factor the discriminant

(∆) = Pα1
1 · · ·P

αr
r

where Pi are prime ideals. Let S = {P1, · · · ,Pr}. If P /∈ S, then ordP(∆) = 0. So E/kP
has good reduction, and

{ bad primes for E } ⊂ S.
#

Lecture 15: February 20

K was a finite extension of Q.

Lemma 15.1. (9.2) E(K)tors is finite.

Proof. Take any prime P, K ⊂ KP. Then E(K)tors ⊂ E(KP)tors, and we checked in
Theorem 8.8 that the latter is finite. #

Lemma 15.2. (9.3) Let P be a prime of good reduction for E/K, with P - n. Then
reduction mod P gives an injection

E(K)[n] ↪→ Ẽ(kP)[n]

Proof. E1(KP) was the kernel of E(KP) → Ẽ(kP); this has no n-torsion, since multipli-
cation by n was an isomorphism by Corollary 7.5. #

Example 15.3.
E : y2 + y = x3 − x2

Note that ∆ = −11. E has good reduction at all p 6= 11.
p 2 3 5 7 11 13

#Ẽ(Fp) 5 5 5 10 - 10

So

#E(Q)tors | 5 · 2a for some a ≥ 0

#E(Q)tors | 5 · 3b for some b ≥ 0

So #E(Q)tors | 5. Let T = (0, 0) ∈ E(Q). You can show that 5T = 0, so E(Q)tors ∼= Z/5Z.

Example 15.4.
E : y2 + y = x3 + x2

Now ∆ = −43. E has good reduction at all p 6= 43
p 2 3 5 7 11 13

#Ẽ(Fp) 5 6 10 8 9 19

#E(Q)tors | 5 · 2a for some a ≥ 0
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#E(Q)tors | 9 · 11b for some b ≥ 0

So E(Q)tors = {0}.

Take T = (0, 0). Since there aren’t any torsion points, this has infinite order (and
rankE(Q) ≥ 1). So we get a way to find infinitely many solutions to E: just take all
the multiples of (0, 0).

Example 15.5.
ED : y2 = x3 −D2x

where D ∈ Z is square-free. Compute ∆ = 26D6. 2-torsion points consist of roots of the
cubic:

ED(Q)tors ⊃ {0, (0, 0), (±D, 0)} ∼= (Z/2Z)2

Let f(X) = X3 −D2X. If p - 2D then

#ẼD(Fp) = 1 +
∑
x∈Fp

( (
f(x)
p

)
Legendre
symbol

+1

)
.

The Legendre symbol is multiplicative, so if p ≡ 3 (mod 4) then(
f(−x)

p

)
=

(
−f(x)

p

)
=

(
−1

p

)(
f(x)

p

)
= −

(
f(x)

p

)
So the Legendre symbols cancel in pairs, and ẼD(Fp) = p+ 1.

Let m = #ED(Q)tors. We have 4 | m | p + 1 for all sufficiently large primes p with
p ≡ 3 (mod 4) (use the lemma and take p larger than any prime factors of m). I claim
that 8 - m, because otherwise there would be finitely many primes that are 3 mod 8, a
contradiction to Dirichlet’s theorem on primes in arithmetic progressions. So m = 4, and
ED(Q)tors ∼= (Z/2Z)2.

So

rankED(Q) ≥ 1 ⇐⇒ ∃x, y ∈ Q with

y2 = x3 −D2x and y 6= 0

Lect.1⇐⇒ E is a congruent number

Lemma 15.6 (Torsion points over integral elliptic curves are almost integers). (9.4) Let
E/Q be an elliptic curve given by a Weierstrass equation with coefficients a1, · · · , a6 ∈ Z.
Suppose 0 6= T ∈ E(Q)tors, say T = (x, y). Then

(1) 4x, 8y ∈ Z
(2) If T is not a 2-torsion point, or 2 | a1, then x, y ∈ Z.

Proof. The Weierstrass equation determines a formal group Ê over Z. Recall we can use
this to construct an actual group

Ê(prZp) = {(x, y) ∈ E(Qp) : ordp(x) ≤ −2r, ordp(y) ≤ −3r}.
By Proposition 8.2,

Ê(prZp) ∼= (Zp,+) if r >
1

p− 1
47



Elliptic curves Lecture 16

(we haven’t made any extension of Qp, so the ramification index here is 1). If p = 2,

Ê(4Z2) is torsion free; for odd p, Ê(pZp) is torsion free. So

ord2(x) ≥ −2, ord2(y) ≥ −3

ordp(x) ≥ 0, ordp(y) ≥ 0 ∀p odd

This proves (1).

For (2), suppose T ∈ Ê(2Z2).

Ê(2Z2)/Ê(4Z2) ∼= (F2,+)

Ê(4Z2) ∼= (Z2,+) is torsion-free. So 2T = 0.

(x, y) = T = −T = (x,−y − a1x− a3)

and equating second coordinates, 2y + a1x+ a3 = 0. But ord2(x) = −2, ord2(y) = −3.

8y

odd

+a1 (4x)

odd

+ 4a3

even

= 0

so a1 is odd. So if 2T 6= 0 or a1 is even, then T /∈ Ê(2Z2), and so x, y ∈ Z. #

For example, if y2 + xy = x3 + 4x+ 1, then (−1
4 ,

1
8) ∈ E(Q)[2].

So, over Q the only annoying prime is 2. A similar thing happens over other number fields,
but there might be more annoying primes.

Corollary 15.7 (Lutz-Nagell). (9.5) Let E be an elliptic curve over Q of the form
y2 = x3 + ax + b, for a, b ∈ Z. Suppose 0 6= T ∈ E(Q)tors, say T = (x, y), then x, y ∈ Z
and either y = 0 (2-torsion point) or y2 | 4a3 + 27b2.

Proof. By Lemma 9.4, x, y ∈ Z. If 2T = 0, then y = 0. Otherwise, 2T is not the point at
infinity, so it has coordinates (x2, y2). Again for the lemma (applied to 2T ), x2, y2 ∈ Z.

x2 =

(
f ′(x)

2y

)2

− 2x

Everything is an integer here, so y | f ′(x).

Since E is nonsingular, f has no repeated roots – i.e. f(X) and f ′(X) are coprime. This
means f(X) and f ′(X)2 are coprime. Use Euclid’s algorithm to produce g, h ∈ Q[X] such
that g(X)f(X) + h(X)f ′(X)2 = 1. The coefficients in g, h depend on a, b; a calculation
gives

(3X2 + 4a)f ′(X)2 − 27(X3 + aX − b)f(X) = 4a3 + 27b2

Since y | f ′(x) and y2 = f(x), we get y2 | (4a3 + 27b2). #

Remark 15.8. Mazur showed that if E is an elliptic curve over Q, then the torsion
subgroup is one of the following:

E(Q)tors =

{
Z/nZ 1 ≤ n ≤ 12, n 6= 11

Z/2Z× Z/2nZ 1 ≤ n ≤ 4
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Lecture 16: February 22

Chapter 10: Kummer Theory

Let K be a field with char(K) - n. Assume µn ⊂ K.

Lemma 16.1. (10.1) Let ∆ ⊂ K∗/(K∗)n be a finite subgroup. Let L = K( n
√

∆). Then
L/K is Galois and

Gal(L/K) ∼= Hom(∆, µn)

where µn is the nth roots of unity.

Proof. L/K is Galois since µn ⊂ K (normality) and char(K) - n (separability). Define
the Kummer pairing

〈−,−〉 : Gal(L/K)×∆→ µn where (σ, x) 7→ σ( n
√
x)

n
√
x

First we need to check that this is well-defined, i.e. that it doesn’t depend on the root

of x chosen. Suppose αn = βn = x. So
(
α
β

)n
= 1, and α

β ∈ µn. This is fixed by all

σ ∈ Gal(L/K), so σ(α)
α = σ(β)

β .

Bilinear:

〈στ, x〉 =
στ( n
√
x)

τ( n
√
x)

τ( n
√
x)

n
√
x

= 〈σ, x〉 〈τ, x〉

〈σ, xy〉 =
σ( n
√
x n
√
y)

n
√
x n
√
y
〈σ, x〉 〈σ, y〉

Non-degenerate: Let σ ∈ Gal(L/K). If 〈σ, x〉 = 1 for all x ∈ ∆ then σ n
√
x = n

√
x for all

x ∈ ∆. But the Galois group fixes K, and now we see it fixes everything used to generate
the extension L, so σ fixes every element of L; that is, σ = 1.

Let x ∈ ∆. If 〈σ, x〉 = 1 for all σ ∈ Gal(L/K), then σ n
√
x = n

√
x for all σ. Elements fixed

by all the Galois group are in the base field: so n
√
x ∈ K, and x ∈ (K∗)n (the group we’d

modded out by at the beginning).

〈−,−〉 induces injections

(1) Gal(L/K) ↪→ Hom(∆, µn)
(2) ∆ ↪→ Hom(Gal(L/K), µn)

The fact that these are injections follows from the non-degeneracy on the right.

By (1), we see that GalL/K is a finite abelian group of exponent dividing n (use the fact
that Hom(A,µn) is the dual of A∗ and so has the same order as A). Also by looking at
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orders, (1) and (2) above give:

|Gal(L/K)|
(1)

≤ |∆|
(2)

≤ |Gal(L/K)| .
Therefore, (1) and (2) are isomorphisms. #

Proposition 16.2. (10.2) There is a bijection{
finite subgroups

∆ ⊂ K∗/(K∗)n

}
←→

{
finite abelian extensions L/K

of exponent dividing n

}
where ∆ 7→ K( n

√
∆) and, in the reverse direction, L 7→ (K∗ ∩ (L∗)n)/(K∗)n.

Proof. Let L/K be a finite abelian extension of exponent dividing n. Let

∆ = (K∗ ∩ (L∗)n)/(K∗)n.

Then K( n
√

∆) ⊂ L. We need to show that these are isomorphic.

Let G = Gal(L/K). The Kummer pairing gives an injection

∆ ↪→ Hom(G,µn)

Claim 16.3. This map is surjective.

Proof. Let χ : G → µn be a group homomorphism. Think of the elements of G as maps
L→ L, so they are an L-vector space.

Fact 16.4. Distinct automorphisms are linearly independent.

There exists a ∈ L such that ∑
τ∈G

χ(τ)−1τ(a) 6= 0

(or else this linear combination would be the zero automorphism). Let y be the LHS
above. Let σ ∈ G.

σ(y) =
∑
τ∈G

χ(τ)−1στ(a)

=
∑
τ∈G

χ(σ−1τ)−1τ(a) = χ(σ)

∈µn

y.

But χ(σ) is a nth root of unity, so

σ(yn) = yn ∀σ ∈ G.

Set x = yn ∈ K∗, and note that x ∈ K∗ ∩ (L∗)n = ∆. So χ : σ 7→ σ(y)
y = χ(σ),

which shows x ∈ ∆ is the required preimage of χ under the map ∆ → Hom(G,µn).
End of proof of Claim.

Now ∆→ Hom(G,µn) is an isomorphism. So |∆| = |Hom(G,µn)| = |G|. We have

[K(
n
√

∆) : K] = |Gal(K(
n
√

∆)/K)
10.1
= |∆|
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[L : K] = |Gal(L/K)| = |G|
and these are equal because we just proved ∆ → Hom(G,µn) is an isomorphism (and

hence |∆| = |G|). Since K( n
√

∆) ⊂ L, this gives L = K( n
√

∆) as desired.

It remains to show that the composition in the other direction is the identity. Let ∆ ⊂
K∗/(K∗)n be a finite subgroup; set L := K( n

√
∆) and ∆′ = K∗∩(L∗)n

(K∗)n . We need to show

that ∆ = ∆′.

It is clear that ∆ ⊂ ∆′. But

L = K(
n
√

∆) ⊂ K(
n
√

∆′) ⊂ L
By Lemma 10.1, |∆| = |∆′|, and since we already have one inclusion, they are equal. #

Proposition 16.5. (10.3) Let K be a number field containing all nth roots of unity. Let
S be a finite set of primes of K. There are only finitely many extensions L/K such that

(1) L/K is abelian of exponent dividing n, and
(2) L/K is unramified at all primes outside S.

Proof. By Proposition 10.2, L = K( n
√

∆) for some finite subgroup ∆ ⊂ K∗/(K∗)n.

Let P be a prime of K. We can factor POL = P e11 · · ·P err for some prime ideals Pi in OL.

If x ∈ K∗ represents an element of ∆, then

n · ordPi(
n
√
x) = ordPi(x) = ei ordP(x).

If P /∈ S then P is unramified, so all the ei = 1. So from the equation above we see that
ordP(x) ≡ 0 (mod n). So ∆ ⊂ K(S, n) where

K(S, n) = {x ∈ K∗/(K∗)n : ordP(x) ≡ 0 (mod n) ∀P /∈ S}.
For example, Q({3, 17}, 2) = 〈−1, 3, 17〉 ⊂ Q∗/(Q∗)2. We have reduced this proposition
to the following lemma:

Lemma 16.6. (10.4) K(S, n) is finite.

Proof. We need the following two facts from algebraic number theory:

(1) The class group is finite
(2) Dirichlet’s Unit theorem (O∗K is finitely generated)

Let IK be the group of fractional ideals in K. The class group is the cokernel of the map
K∗ → IK , where x 7→ (x). So we have an exact sequence

0→ O∗K → K∗ → IK → ClK → 0

Let PK = i(K∗) be the group of principal fractional ideals. We can break up the above
short exact sequence into two new ones:

0→ O∗K → K∗ → PK → 0

0→ PK → IK → ClK → 0
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which gives two diagrams

0 // O∗K //

n

��

K∗

n

��

// PK //

n

��

// 0

0 // O∗K // K∗ // PK // 0

0 // PK //

n

��

IK

n

��

// ClK

n

��

// 0

0 // PK // IK // ClK // 0

Applying the snake lemma,

0→ OK∗/(O∗K)n → K∗/(K∗)n → Pk/P
n
K → 0 (16.1)

If ClK [n] is the kernel of the multiplication-by-n map, we get

0→ ClK [n]→ PK/P
n
K → IK/I

n
K → ClK/Cl

n
K → 0 (16.2)

By definition, the image of K(S, n) in IK/I
n
K is finite.

Using (16.2) and the fact that ClK is finite, we see that the image of K(S, n) in PK/P
n
K

is finite.

Using (16.1) and the fact that O∗K is finitely-generated, we see that K(S, n) is finite. #

Lecture 17: February 25

Chapter 11: Mordell-Weil

Let K be a number field, E an elliptic curve over K. Let n ≥ 2.

Theorem 17.1 (Weak Mordell-Weil). (11.1)

|E(K)/nE(K)| <∞

We will use this to prove the full Mordell-Weil theorem. It suffices to use n = 2, but
considering general n gives more information about the rank.

Lemma 17.2. (11.2) Assume E[n] ⊂ E(K). Let

S = { primes of bad reduction for E } ∪ {primes dividing n}
Let L = K([n]−1P ) for some P ∈ E(K). (This is a finite extension: you can use the
group law to solve for the points Q such that nQ = P .) Then:

(1) L/K is abelian of exponent dividing n
(2) L/K is unramified at all P - S
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Proof. (1) Let Q ∈ E with nQ = P . All other points in L are gotten by adding an n-
torsion point; since we’re assuming all the n-torsion points are defined over Q, L = K(Q).
Let M/K be a Galois closure of L/K. For σ ∈ Gal(M/K), σ(Q) − Q ∈ E[n] ⊂ E(K),
and so σ(Q) ∈ E(L). Thus, σ(L) = L for all σ ∈ Gal(M/K), and so L/K is Galois.

Define f : Gal(L/K)→ E[n] where σ 7→ σQ−Q.

f injective: Suppose f(σ) = 0. Then σQ = Q. σ pointwise fixes L, so σ = 1.

f is a group homomorphism:

f(στ) = στQ−Q
= σ(τQ−Q) + σQ−Q
= σf(τ) + f(σ)

= f(τ) + f(σ)

where the last line is because f(∗) is an n-torsion point, which is in E(K) and hence fixed
by the Galois group.

So f : Gal(L/K) ↪→ E[n] ∼= (Z/nZ)2. So L/K is abelian of exponent dividing n.

(2) See Corollary 8.10. #

Remark 17.3. If E[n] ⊂ E(K) and L/K is a finite Galois extension, then, analogously
to the Kummer pairing, we get an injective group homomorphism

E(K) ∩ nE(L)

nE(K)
→ Hom(Gal(L/K), E[n]) where P 7→ (σ 7→ σQP −QP )

where QP is a point such that nQP = P .

Lemma 17.4. (11.3) If L/K is a finite Galois extension, then the natural map

E(K)
/
nE(K)

α−→ E(L)
/
nE(L)

has finite kernel.

Proof. There is a surjective group homomorphism

E(L) ∩ [n]−1E(K)

E(K)

−×n−→ E(K) ∩ nE(L)

nE(K)
= ker(α)

Let X be a set, and A an abelian group,

Map(X,A) = {maps : X → A}
is a group under pointwise operations. There is an injective group homomorphism

E(L) ∩ [n]−1E(K)

E(K)
↪→Map(Gal(L/K), E[n])

Q 7→ (σ 7→ σQ−Q)
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(If σQ = Q for all σ ∈ Gal(L/K) then Q ∈ E(K).) Gal(L/K) and E[n] are finite, so the
space of maps between them is finite. #

Proof of Theorem 11.1. By Lemma 11.3, we may extend the field K such that

(1) µn ⊂ K
(2) E[n] ⊂ E(K)

(It turns out that (2) =⇒ (1), by the Weil pairing, to be discussed later.)

Let L be the composite of all field extensions of the form K([n]−1P ) for P ∈ E(K).
By Lemma 11.2 and Proposition 10.3, there are only finitely many such extensions. So
[L : K] <∞.

The map
E(K)

nE(K)
→ E(L)

nE(L)

is the zero map. By Lemma 11.3, E(K)
nE(K) is finite. #

Remark 17.5. If K = R,C or [K : Qp] <∞, then we know

E(K)

nE(K)
<∞

but E(K) is not finitely generated (it’s uncountable).

Fact 17.6. If K is a number field, there is a quadratic form (called the canonical height)

ĥ : E(K)→ R≥0

with the property that for any B ∈ R,

{P ∈ E(K) : ĥ(P ) ≤ B} is finite. (17.1)

Theorem 17.7 (Mordell-Weil). (11.4) Let K be a number field, and E an elliptic curve
over K. Then E(K) is a finitely-generated abelian group.

Proof. Fix an integer n ≥ 2. By the Weak Mordell-Weil Theorem, E(K)/nE(K) has finite
order. Pick coset representatives P1, · · · , Pr. Let

Σ = {P ∈ E(K) : ĥ(P ) ≤ max
1≤i≤r

ĥ(Pi)}.

Claim 17.8. Σ generates E(K).

Proof of claim. If not, by (17.1), we can pick P ∈ E(K)\ 〈Σ〉 of minimal height. Then
P = Pi + nQ; Q is not in the subgroup generated by Σ, because if it was, then P would

also be generated by Σ since Pi is. Because P was minimal, ĥ(P ) ≤ ĥ(Q).

4ĥ(P ) ≤ 4ĥ(Q)

≤ n2ĥ(Q) = ĥ(nQ)
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= ĥ(P − Pi)

≤ ĥ(P − Pi) + ĥ(P + Pi)

= 2ĥ(P ) + 2ĥ(Pi) by the Parallelogram Law

ĥ(P ) ≤ ĥ(Pi)

This shows that P ∈ Σ, a contradiction. #

Σ is finite by (17.1). #

Lemma 17.9. (11.5) Let P ∈ E(K). Then

P ∈ E(K)tors ⇐⇒ ĥ(P ) = 0

Proof. ( =⇒ ) nP = 0 so n2ĥ(P ) = ĥ(nP ) = 0 (since ĥ is a quadratic form). So ĥ(P ) = 0.

(⇐= ) If ĥ(P ) = 0 then ĥ(nP ) = 0 for all n ∈ Z.

{nP : n ∈ Z}
is finite by (17.1), so P ∈ E(K)tors. #

This gives another proof that E(K)tors is finite.

Lecture 18: February 27

Chapter 12: Heights

For simplicity let K = Q.

Definition 18.1. Write P ∈ Pn(Q) as P = (a0 : · · · : an); we may assume that ai ∈ Z
with gcd(a0, · · · , an) = 1. Then define

H(P ) := max
0≤i≤n

|ai| .

Lemma 18.2. (12.1) Let f1, f2 ∈ Q[X1, X2] be homogeneous polynomials of degree d, with
no common root in P1(Q) (i.e. they have no common factor, even over Q). Let F : P1 →
P1 be the map (x1 : x2) 7→ (f1(x1, x2) : f2(x1, x2)).

Then there exist c1, c2 > 0 such that

c1H(P )d ≤ H(F (P )) ≤ c2H(P )d ∀P ∈ P1(Q).

Proof. Without loss of generality assume f1, f2 ∈ Z[X1, X2].

Upper bound: Write P = (a : b) where a, b ∈ Z are coprime. Then

H(F (P )) ≤ max(|f1(a, b)|, |f2(a, b)|)
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≤ c2 max(|a|d, |b|d)
where c2 = maxi=1,2(sum of absolute values of coefficients of fi). (Remember that a, b,

and all coefficients are integers.) Then H(F (P )) ≤ c2H(P )d.

Lower bound: We claim that there are some homogeneous polynomials gij ∈ Z[X1, X2] of
degree d− 1 and some integer κ > 0 such that

2∑
j=1

gijfj = κX2d−1
i (18.1)

Indeed, running Euclid’s algorithm on f1(X, 1) and f2(X, 1) yields polynomials r, s ∈ Q[X]
with degrees < d such that

r(X)f1(X, 1) + s(X)f2(X, 1) = 1.

Homogenize and clear denominators to get an equation of the form (18.1), with i = 2.
Similarly, one can obtain an analogous expression for i = 1.

Write P = (a1 : a2) where a1, a2 are coprime integers. By equation (18.1),

2∑
j=1

gij(a1, a2)fj(a1, a2) = κa2d−1
i .

Therefore, gcd(f1(a1, a2), f2(a1, a2)) divides gcd(κa2d−1
1 , κa2d−1

2 ). Since a1, a2 were co-
prime, this is κ.

But also

|κa2d−1
i | ≤ max

j=1,2
|fj(a1, a2)|

≤κH(F (P ))

2∑
j=1

|gij(a1, a2)|

≤γiH(P )d−1

|ai|2d−1 ≤ γiH(F (P ))H(P )d−1

H(P )2d−1 ≤ max(γ1, γ2)H(F (P ))H(P )d−1

1
max(γ1,γ2)

c1

H(P )d ≤ H(F (P ))

#

Notation 18.3. For x ∈ Q, define H(x) = H(x : 1) (i.e. write x = a
b for a, b ∈ Z coprime,

and define H(x) = max(|a|, |b|)).

Let E be an elliptic curve over Q, which we can write as y2 = x3 + ax+ b.

Definition 18.4. Define the height of a rational point:

H : E(Q)→ R≥1
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P 7→

{
H(x) if P = (x, y)

1 if P = 0E

and define the logarithmic height:

h : E(Q)→ R≥0

P 7→ log(H(P ))

Lemma 18.5. (12.2) Let E,E′ be elliptic curves over Q; let ϕ : E → E′ be an isogeny
defined over Q. Then there is some constant c such that

|h(ϕ(P ))− (degϕ)h(P )| < c

for all P ∈ E(Q).

Note that c depends on E,E′, and ϕ but not on P .

Recall Lemma 5.4 says that deg(ϕ) = deg(ξ) where ξ is the map

E
ϕ
//

x
��

E′

x
��

P1 ξ
// P1

Suppose d = deg(ϕ). By Lemma 12.1, we can find c1, c2 > 0 such that

c1H(P )d ≤ H(ϕ(P )) ≤ c2H(P )d.

Taking logs gives

|h(ϕ(P ))− dh(P )| ≤ log(max(
1

c1
, c2))

c

.

Example 18.6. Let ϕ = [2] : E → E. Then there is some c > 0 such that

|h(2P )− 4h(P )| < c

for all P ∈ E(Q).

Definition 18.7. The canonical height is

ĥ(P ) = lim
n→∞

1

4n
h(2nP )

Convergence: Let m ≥ n.∣∣∣∣ 1

4m
h(2mP )− 1

4n
h(2nP )

∣∣∣∣ ≤ m−1∑
r=n

∣∣∣∣ 1

4r+1
h(2r+1P )− 1

4r
h(2rP )

∣∣∣∣
=

m−1∑
r=n

1

4r+1

∣∣h(2r+1P − 4h(2rP ))
∣∣ triangle ineq.

= c

m−1∑
r=n

1

4r+1
≤ c

4n+1

(
1

1− 1
4

)
=

c

3 · 4n
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This tends to 0 as n→∞, so the sequence is Cauchy.

Lemma 18.8. (12.3) |h(P )− ĥ(P )| is bounded for P ∈ E(Q).

Proof. Put n = 0 in the above calculation to get∣∣∣∣ 1

4m
h(2mP )− h(P )

∣∣∣∣ < 3

c
.

Take limm→∞. #

Lemma 18.9. (12.4) Let ϕ : E → E′ be an isogeny defined over Q. Then

ĥ(ϕ(P )) = (degϕ)ĥ(P )

for all P ∈ E(Q).

Proof. By Lemma 12.2, there is some constant c with

|h(ϕ(P ))− (degϕ)h(P )| < c

for all P ∈ E(Q). Replace P by 2nP and divide by 4n:∣∣∣∣ 1

4n
h(2nϕ(P ))− 1

4n
(degϕ)h(2nP )

∣∣∣∣ < c

4n
.

Take the limit n→∞. #

Remark 18.10. Lemma 12.4 also shows that ĥ does not depend on the choice of Weier-
strass equation.

Lemma 18.11. (12.5)

#{P ∈ E(Q) : ĥ(P ) ≤ B} <∞.

Proof. By Lemma 12.3, bounding ĥ also bounds h; this bounds the numerator and the
denominator, so there are only finitely many choices for x. Given x, we have ≤ 2 choices
for y. #

We need to show that ĥ is a quadratic form.

Lecture 19: March 1

Examples class: Friday March 8, 2:30 PM

Recall the naive height was h(P ) = logH(P ), where H : (x, y) 7→ max(|r|, |s|) where

x = r
s and r, s are coprime integers. The canonical height was ĥ(P ) = limn→∞

1
4nh(2nP ).

By Lemma 12.4, ĥ(nP ) = n2ĥ(P ).
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Lemma 19.1. (12.6) Let E be an elliptic curve over Q. Then there is some constant c
such that

H(P +Q)H(P −Q) ≤ c ·H(P )2H(Q)2

for all P,Q ∈ E(Q) such that P,Q, P −Q,P +Q 6= 0E.

Proof. Write P = (ξ1, η1), Q = (ξ2, η2), P +Q = (ξ3, η3), P −Q = (ξ4, η4). Write ξi = ri
si

for coprime ri, si. See the proof of Lemma 5.7.

(s3s4 : r3r4 + r4s3 : r3r4) = (W0 : W1 : W2)

where W0 = (r1s2 − r2s1)2. W0,W1,W2 each have degree 2 in r1, s1 and have degree 2 in
r2, s2.

H(P +Q)H(P −Q) = max(|r3|, |s3|) max(|r4|, |s4|)
≤ 2 max(|r3r4|, |r3s4 + r4s3|, |s3s4|)
≤ 2 max(|W0|, |W1|, |W2|)
≤ c ·H(P )2H(Q)2

There are a bunch of cases to check to prove the first inequality, depending on what
max(|r3|, |s3|), etc., is. #

Theorem 19.2. (12.7) ĥ : E(Q)→ R≥0 is a quadratic form.

Proof. Take logs in Lemma 12.6 to obtain

h(P +Q) + h(P −Q) ≤ 2h(P ) + 2h(Q) + c′

if P,Q, P +Q,P −Q 6= 0. But if P −Q = 0, then this still holds, because |h(2P )− 4h(P )|
is bounded.

Replace P and Q by 2nP and 2nQ and divide by 4n. Take the limit to get

ĥ(P +Q) + ĥ(P −Q) ≤ 2ĥ(P ) + 2ĥ(Q)

Replacing P and Q by P +Q and P −Q, and using the fact that ĥ(2P ) = 4ĥ(P ) we get
the reverse inequality.

ĥ satisfies the parallelogram law, and hence (by Example sheet 2), ĥ is a quadratic form.
#

Remark 19.3. The theory extends to arbitrary number fields. But, you need to modify
the definition of height since OK need not be a UFD. For P = (x0 : · · · : xn) ∈ Pn(K),
define H(P ) =

∏
v max0≤i≤n |xi|v where the product is taken over places of the number

field. This is well-defined, since
∏
v |λ|v = 1 for all λ ∈ K∗ (so multiplying all the xi by λ

doesn’t affect H(P )).

Chapter 13: Dual isogenies and the Weil pairing

Let K be a perfect field (every finite extension is separable, hence has a Galois closure).
Fields of characteristic 0, and finite fields, are all perfect.
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Proposition 19.4. (13.1) Let Φ ⊂ E(K) be a finite, Gal(K/K)-stable subgroup. Then
there exists an elliptic curve E′/K and a separable isogeny ϕ : E → E′ defined over K
with kernel Φ such that every isogeny ψ : E → E′′ with Φ ⊂ kerψ factors uniquely via ϕ.

E
ψ

//

ϕ
  

E′′

E′
∃!

==

Proof. Omitted. The basic idea is to form E′ = E/Φ with function field K(E)Φ. (P ∈ Φ
acts on the function field via τ∗P , where τP : E → E is translation by P .) #

To define the dual isogeny I think you need a stronger statement:

Proposition 19.5. Let ϕ : E1 → E2 and ψ : E1 → E3 be nonconstant isogenies, and
assume that ϕ is separable. If kerϕ ⊂ kerψ then there is a unique isogeny λ : E2 → E3

satisfying ψ = λ ◦ ϕ.

E1
ψ

//

ϕ
  

E3

E2

∃!

>>

Proof. See Silverman, III.4.11. #

Proposition/ Definition 19.6. (13.2) ϕ : E → E′ is an isogeny of degree n. Then there
exists a unique isogeny ϕ̂ : E′ → E, called the dual isogeny, such that ϕ̂ ◦ ϕ = [n].

Proof. Case 1: ϕ is separable. | kerϕ| = degϕ = n; so everything in the kernel has degree
dividing n, and is hence contained in ker[n]. Then apply Proposition 19.5 with ψ = [n].

Case 2: ϕ inseparable. Omitted. Read Silverman.

But we can check uniqueness. Suppose ψ1 and ψ2 are candidates: ψ1 ◦ ϕ = ψ2 ◦ ϕ. So
(ψ1 − ψ2) ◦ ϕ = 0. Taking degrees shows that ϕ1 = ϕ2. #

Remark 19.7.

(1) deg[n] = n2, so degϕ = deg ϕ̂. In particular, [̂n] = [n].
(2) ϕϕ̂ϕ = ϕ ◦ [n]E = [n]E′ ◦ ϕ (second equality because ϕ is a homomorphism), which

shows that ϕϕ̂ = [n]E′ . In particular, ̂̂ϕ = ϕ.

(3) If ϕ,ψ ∈ Hom(E1, E2) it can be shown that ϕ̂+ ψ = ϕ̂+ ψ̂. Proving this gives another
way to show that deg : Hom(E1, E2)→ Z is a quadratic form.

(4) “Being isogenous” is an equivalence relation.

Definition 19.8. Define

sum : DivE → E
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np · P

formal
sum

7→
∑

npP

add using
group law

Recall there is an isomorphism ϕ : E
∼=→ Pic0(E) given by P 7→ [P − 0]. Since ϕ(P ⊕Q) =

ϕ(P )+ϕ(Q) (5.5), the composition Div0E
sum−→ E

ϕ−→ Pic0(E) takes P−Q 7→ P⊕(−Q) 7→
ϕ(P ⊕ (−Q)) = ϕ(P ) − ϕ(Q) = [P − 0] − [Q − 0] = [P −Q]. In general, D 7→ [D]. This
immediately proves:

Lemma 19.9. (13.3) Let D ∈ Div0(E). Then D ∼ 0 iff sum(D) = 0E.

Lecture 20: March 4

If ϕ : E → E′ is an isogeny, then there is an induced map ϕ∗ : DivE′ → DivE, where
ϕ∗P =

∑
ϕ(Q)=P Q.

Let ϕ : E → E′ be an isogeny of degree n, and let ϕ̂ : E′ → E be the dual isogeny. Assume
charK - n. We will define the Weil pairing

E[ϕ]× E′[ϕ̂]→ µn

(where E[ϕ] := kerϕ). Let T ∈ E′[ϕ̂]. Then T ∈ kerϕϕ̂ = ker[n] so nT = 0. Apply
Lemma 13.3 to n · T − n · 0 to obtain some f ∈ K(E′)∗ such that div f = n · T − n · 0.

Pick T0 ∈ E(K) with ϕ(T0) = T . Then

ϕ∗(T )− ϕ∗(0E′) =
∑

P∈E[ϕ]

(P ⊕ T0)−
∑

P∈E[ϕ]

(P )

has sum nT0 = ϕ̂ϕT0 = ϕ̂T = 0. So there exists g ∈ K(E)∗ such that div(g) = ϕ∗(T ) −
ϕ∗(0).

Now

divϕ∗f = ϕ∗ div f = n(ϕ∗T − ϕ∗0)

= n div g = div gn

so ϕ∗f = cgn for some constant c ∈ K∗ (two functions that have the same divisor are the
same up to multiplication by nonzero constant). Rescale f , so we can assume c = 1. Now

ϕ∗f = gn.

If S ∈ E[ϕ] then

div τ∗Sg = τ∗S div g

= τ∗S
( ∑
P∈E[ϕ]

(T0 ⊕ P ) +
∑

P∈E[ϕ]

P
)

=
∑

τ∗S(T0 ⊕ P )−
∑

τ∗SP
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=
∑

T0 ⊕ P 	 S −
∑

P 	 S

=
∑

T0 ⊕ P −
∑

P = div g

since S ∈ E[ϕ] (and so −S ∈ E[ϕ]) so adding −S just permutes the P ’s. This implies

τ∗Sg = ζg for some ζ ∈ K∗. Equivalently,

ζ =
g(X ⊕ S)

g(X)

is independent of the choice of X ∈ E(K). Now

ζn =
g(X ⊕ S)n

g(X)n
=
f ◦ ϕ(X ⊕ S)

f ◦ ϕ(X)
=
f ◦ ϕ(X)

f ◦ ϕ(X)
= 1.

So ζ ∈ µn.

Define eϕ(S, T ) = g(X+S)
g(X) .

Proposition 20.1. eϕ is bilinear and nondegenerate.

Proof. Linearity in the first argument:

eϕ(S1 + S2, T ) =
g(X + S1 + S2)

g(X + S2)
· g(X + S2)

g(X)

= eϕ(S1, T ) · eϕ(S2, T )

Linearity in the second argument: Let T1, T2 ∈ E′[ϕ̂]. Find f1, f2 such that div(fi) =
n(Ti)− n(0) and ϕ∗fi = gni for i = 1, 2.

There exists h ∈ K(E′)∗ such that

div h = (T1) + (T2)− (T1 ⊕ T2)− (0)

Now put f = f1f2
hn , g = g1g2

ϕ∗h . Then

div f = n(T1 + T2)− n(0)

and

ϕ∗f =
(ϕ∗f1)(ϕ∗f2)

(ϕ∗h)n
=

gn1 g
n
2

ϕ∗(h)n
= gn.

So

eϕ(S, T1 + T2) =
g(X + S)

g(X)

=
g1(X + S)

g1(X)
· g2(X + S)

g2(X)
· h(ϕ(X))

h(ϕ(X + S))

1

= eϕ(S, T1)eϕ(S, T2)

eϕ nondegenerate: Fix T ∈ E′[ϕ̂]. Suppose eϕ(S, T ) = 1 for all S ∈ E[ϕ]. Then, by
definition of ζ, τ∗Sg = g for all S ∈ E[ϕ].
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We have a field extension K(E)/ϕ∗K(E′); this is a Galois extension with group E[ϕ].
Since g is fixed by everything in the Galois group, we have g ∈ ϕ∗K(E′); that is, g = ϕ∗h
for some h ∈ K(E′).

We had ϕ∗f = gn = (ϕ∗h)n, which shows f = hn. So div h = (T )− (0); principal divisors
have degree zero and sum to zero, and that can only happen if T = 0.

We’ve shown that there is an inclusion E′[ϕ̂] ↪→ Hom(E[ϕ], µn). Since n = degϕ = deg ϕ̂,
this is an isomorphism. Non-degeneracy on the right follows by group theory. #

Lemma 20.2. (13.5) If E,E′, ϕ are defined over K, then the Weil pairing is Galois-
equivariant. That is,

eϕ(σS, σT ) = σ(eϕ(S, T ))

for all S ∈ E[ϕ], T ∈ E′[ϕ̂], σ ∈ Gal(K/K).

Proof. div f = n(T ) − n(0) and div(σ(f)) = n(σT ) − n(0) (σ fixes zero). From the
definition, ϕ∗f = gn, so ϕ∗(σf) = (σg)n.

eϕ(σS, σT ) =
(σg)(σX + σS)

(σg)(σX)

= σ

(
g(X + S)

g(X)

)
= σ(eϕ(S, T ))

#

Taking ϕ = [n] : E → E, we have ϕ̂ = [n], and the Weil pairing is a map en : E[n]×E[n]→
µn2 . But by the previous two lemmas, the image is actually in µn (everything is killed by
multiplication by n).

Corollary 20.3. If E[n](K) = E[n](K) then µn ⊂ K.

Proof. Let S, T be a basis for E[n](K) ∼= (Z/nZ)2. By the non-degeneracy of en, en(S, T ) =
ζn is a primitive nth root of unity. For σ ∈ Gal(K/K),

σ(ζn) = σ(en(S, T ))

= en(σS, σT )

= en(S, T ) = ζn

and so ζn ∈ K. #

Example 20.4. There is no elliptic curve E over Q with E(Q)tors ∼= (Z/3Z)2.

Proposition 20.5 (Properties of the Weil Pairing).

(1) (Alternating) en(T, T ) = 1 for all T ∈ E[n] (and that implies en(S, T ) = en(T, S)−1).
(2) Dual isogenies are adjoints with respect to en: that is, if ϕ : E → E′ and ϕ̂ : E′ → E,

then en(ϕS, T ) = en(S, ϕ̂T ) for all S ∈ E[n], T ∈ E′[n].
(3) (Compatibility) emn(S, T ) = em(nS, T ) for all S ∈ E[mn], T ∈ E[m].
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Proposition 20.6. (13.7) An endomorphism ϕ of E induces an endomorphism ϕn ∈
EndE[n] ∼= Mat2(Z/nZ).

Then deg ϕ ≡ detϕn (mod n).

Proof. Let S, T be a basis for E[n]. We can write ϕ(S) = aS+cT , ϕ(T ) = bS+dT , so ϕn is

the matrix ϕn =

(
a b
c d

)
(for a, b, c, d ∈ Z/nZ). Since the Weil pairing is non-degenerate,

en(S, T ) = ζn is a primitive nth root of unity.

ζdegϕ
n = en((degϕ)S, T )

= en(ϕ̂ϕS, T )

= en(ϕS, ϕT ) adjoint property

= en(aS + cT, bS + dT )

= en(S, T )ad−bc = ζad−bcn

ζn is a primitive nth root of unity, and

degϕ ≡ ad− bc ≡ detϕn (mod n).

#

Lecture 21: March 6

Let ` be prime. The Tate module T`(E) is the inverse limit of the following sequence

· · · → E[`3]
×`→ E[`2]

−×`→ E[`].

Then T`(E) ∼= Z2
` . The morphism of End modules in Proposition 13.7 induces a morphism

End(E)→ End(T`(E)) ∼= Mat2(Z`)
ϕ 7→ ϕ`

where degϕ = detϕ`.

Chapter 14: Galois cohomology

Let G be a group, and A a G-module: an abelian group with G acting on A via a group
homomorphism. (Note that a G-module is the same thing as a Z[G]-module, where Z[G]
is the group ring.)

Definition 21.1. H0(G,A) = AG = {a ∈ A : σ(a) = a ∀σ ∈ G}

The set of “cochains” is C1(G,A) = {maps G→ A}; this is an abelian group.

The set of cocycles is Z1(G,A) = {(aσ)σ∈G : aστ = σ(aτ ) + aσ ∀σ, τ ∈ G}.
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Inside this is the set of coboundaries: B1(G,A) = {(σb− b)σ∈G : b ∈ A}.

Define

H1(G,A) =
Z1(G,A)

B1(G,A)
.

For example, if the action of G on A is trivial, H1(G,A) is the set of group homomorphisms
G→ A.

Theorem 21.2. A short exact sequence of G-modules

0→ A
f→ B

g→ C → 0

gives rise to a long exact sequence

0→ AG
f→ BG g→ CG

δ→ H1(G,A)
f∗→ H1(G,B)

g∗→ H1(G,C).

Proof. Omitted (a long list of things to check).

Comment – definition of δ: Let c ∈ CG. Since g is surjective, there is b ∈ B such that
g(b) = c. Then g(σb−b) = σc−c = 0 for all σ ∈ G. Since σb−b is in the kernel of g, it is in
the image of f : σb− b = f(aσ) for some aσ ∈ A. You can check that (aσ)σ∈G ∈ Z1(G,A).

We define δ(c) to be the class of (aσ)σ∈G in H1(G,A). You still need to check a lot of
things, including the fact that δ(c) is well-defined (what happens if you choose a different
preimage b?). #

Theorem 21.3. (14.2) Let A be a G-module, and H /G a normal subgroup. There is an
inflation-restriction exact sequence:

0→ H1(G/H,AH)
inf→ H1(G,A)

res→ H1(H,A)

Proof. Lots more checking. #

Let K be a perfect field. Gal(K/K) is a topological group with basis of open subgroups
Gal(K/L) for [L : K] < ∞. If G = Gal(K/K) we modify the definition of H1(G,A) by
insisting:

(1) the stabilizer of each a ∈ A is open in G;
(2) all cochains G→ A are continuous when A is given the discrete topology.

Then H1(Gal(K/K), A) = lim−→
L

H1(Gal(L,K), AGal(K/L)) where the direct limit is taken

over all finite Galois extensions L/K, with respect to the inflation maps.

Theorem 21.4 (Hilbert’s Theorem 90). (14.3) Let L/K be a finite Galois extension. Then
H1(Gal(L/K), L∗) = 0.
Given a cycle (aσ),

∑
τ a
−1
τ τ is not the zero operator (linear independence of τ ’s). So find

nonzero x =
∑

τ a
−1
τ τ(y) and compute σ(x) to show it’s a boundary.
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Proof. Let G = Gal(L/K), and let (aσ) ∈ Z1(G,L∗). Use the fact that distinct automor-
phisms are linearly independent. Then there is some y ∈ L such that x :=

∑
τ∈G a

−1
τ τ(y) 6=

0. Then

σ(x) =
∑
τ∈G

σ(aτ )−1στ(y)

= aσ
∑
τ∈G

a−1
στ στ(y) defn. cocycle

= aσx.

So aσ = σ(x)
x , and our original cocycle (aσ) was a coboundary. Thus H1 is trivial. #

Corollary 21.5. H1(Gal(K/K),K
∗
) = 0.

Application 21.6. Assume charK - n. There is an exact sequence of Gal(K/K)-modules

0→ µn → K
∗ x 7→xn−→ K

∗ → 0.

This gives a long exact sequence

· · · → K∗ → K∗
δ→ H1(Gal(K/K), µn)→ H1(Gal(K/K),K

∗
)

0
by 14.3

→ · · ·

Therefore, H1(Gal(K/K), µn) ∼= K∗/(K∗)n.

If µn ⊂ K (as we assumed in the Kummer theory section), then Gal(K/K) acts trivially
on µn, so [continuous] cycles are just [continuous] group homomorphisms and there are
no nontrivial coboundaries. Thus we can write the previous isomorphism as

Homcts(Gal(K/K), µn) ∼= K∗/(K∗)n.

Continuous homomorphisms here are the ones that factor through some finite Galois
extension. Note that the finite subgroups of Homcts(Gal(K/K), µn) are of the form
Hom(Gal(L/K), µn) where L/K is a finite abelian extension of exponent dividing n. (This
recovers Proposition 10.2.)

Notation 21.7. To reduce annoyance, write H1(K,−) to mean H1(Gal(K/K),−).

Let ϕ : E → E′ be an isogeny of elliptic curves over K. This induces an exact sequence
of Gal(K/K)-modules

0→ E[ϕ]→ E → E′ → 0.

The long exact sequence is

· · · → E(K)
ϕ→ E′(K)

δ→ H1(K,E[ϕ])→ H1(K,E)
ϕ∗→ H1(K,E′)

which we can rearrange into a short exact sequence

0→ E′/ϕE(K)→ H1(K,E[ϕ])→ H1(K,E)[ϕ∗]→ 0

(where X[f ] means “kernel of f in X” as before).

Now take a number field K. Let

MK = {places of K} = {finte places} ∪ {infinite places}
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where finite places correspond to primes P ⊂ OK , and the infinite places correspond to
real, and complex conjugate pairs, of embeddings K ↪→ C.

For v ∈MK , let Kv be the completion w.r.t. the v-adic topology. Now fix an embedding
K ⊂ Kv; then Gal(Kv/Kv) ⊂ Gal(K/K). We have

0 // E′(K)/ϕE(K)
δ //

��

H1(K,E[ϕ]) //

resv
�� ((

H1(K,E)[ϕ∗] //

resv
��

0

0 // E′(Kv)/ϕE(Kv)
δv // H1(Kv, E[ϕ]) // H1(Kv, E)[ϕ∗] // 0

Lecture 22: March 8

We consider the kernel of the dotted arrow in the diagram at the end of the last lecture.

Definition 22.1. Define the ϕ-Selmer group to be

S(ϕ)(E/K) = ker
(
H1(K,E[ϕ])→

∏
v∈MK

H1(Kv, E)
)
.

This is the kernel of the diagonal map above, and (because the rows are exact), this can
be rewritten

{x ∈ H1(K,E[ϕ]) : resv(x) ∈ im(δv) ∀v}.

Define the Tate-Shafarevich group to be

X(E/K) = ker(H1(K,E)→
∏

v∈MK

H1(Kv, E)).

We get a short exact sequence

0→ E′(K)/ϕE(K)→ S(ϕ)(E/K)→X(E/K)[ϕ∗]→ 0

and if we take ϕ = [n] : E → E, this is

0→ E(K)/nE(K)→ S(n)(E/K)→X(E/K)[n]→ 0. (22.1)

We saw that computing ranks of elliptic curves is equivalent to computing E(K)/nE(K),

and it turns out that there is a finite and efficient algorithm for computing S(n)(E/K); so
you can get an upper bound for the rank, but the problem isX.

Conjecture 22.2. X(E/K) is finite.

If this is true, then it turns out that the rank of E(K) is effectively computable.

Definition 22.3. For a finite set S ⊂ MK of places containing all the infinite places we
define

H1(K,A;S) = ker
(
H1(K,A)→

∏
v/∈SH

1(Knr
v , A)

)
where Knr

v is the maximal unramified extension of Kv.
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Remark 22.4. Gal(Kv/Kv) is the decomposition group; it is defined only up to conjugacy,
due to the choice involved in embedding it in Gal(K/K). Inside this we have the inertia
group Gal(Kv/K

nr
v ).

The proof of weak Mordell-Weil can be rephrased in the following steps:

(1) Show S(n)(E/K) ⊂ H1(K,E[n];S) where

S = { primes of bad reduction for E} ∪ {v | n} ∪ {infinite places}.
(2) Show H1(K,E[n];S) is finite.
(3) Conclude from (22.1) that |E(K)/nE(K)| <∞.

Proof of (1). Let v /∈ S. There is a commutative diagram with exact rows

· · · // E(Kv)
×n

//
� _

��

E(Kv)
δv //

� _

����

H1(Kv, E[n]) //

res
��

· · ·

· · · // E(Knr
v )

×n
// E(Knr

v )
α // H1(Knr

v , E[n]) // · · ·

The multiplication by n map on the bottom row is surjective by Proposition 8.9 (and the
choice of S). So α = 0. Do a diagram chase to show that im(δv) ⊂ ker(res). #

Proof of (2). By inflation-restriction, we can replace K by a finite Galois extension. So
without loss of generality µn ⊂ K and E[n] ⊂ E(K). Then E[n] ∼= µn×µn as Gal(K/K)-
modules. So

H1(K,E[n];S) ∼= H1(K,µn;S)2.

By Application 21.6 of Hilbert’s Theorem 90,

H1(K,µn) ∼= K∗/(K∗)n

and the image of H1(K,µn;S) ⊂ H1(K,µn) is contained in K(S, n), hence finite.

#

Chapter 15: Descent by cyclic isogeny

Let E,E′ be elliptic curves over a number field K. Let ϕ : E → E′ be an isogeny of degree
n. Suppose E′[ϕ̂] = Z/nZ is generated by T ∈ E′(K). Then

E[ϕ]→ µn

S 7→ eϕ(S, T )

is an isomorphism as Gal(K/K)-modules. We have a short exact sequence of Gal(K/K)-
modules

0→ µn → E
ϕ→ E′ → 0

which gives rise to a long exact sequence

· · · → E(K)
ϕ→ E′(K)

δ→ H1(K,µn)→ H1(K,E)
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By Application 21.6 of Hilbert’s Theorem 90, H1(K,µn) ∼= K∗/(K∗)n. Let’s study the
map α : E′(K) → K∗/(K∗)n, defined to be the composite of δ with the isomorphism in
Application 21.6.

Theorem 22.5. (15.1) Let f ∈ K(E′) and g ∈ K(E) with div f = n(T ) − n(0), and
ϕ∗f = gn. (We can pick f, g defined over K because T ∈ E′(K).) Then α(P ) = f(P )
(mod (K∗)n) for all P ∈ E′(K)\{0, T}.

Proof. Let Q ∈ E(K) with ϕ(Q) = P (since ϕ was surjective). Then δ(P ) is represented
by the cocycle σ 7→ σQ−Q ∈ E[ϕ] ∼= µn. By the definition of the Weil pairing,

eϕ(σQ−Q,T ) =
g(σQ−Q+X)

g(X)

for any X ∈ E[K] (excluding the zeroes and poles of g). Take X = Q:

=
g(σQ)

g(Q)
=
σ(g(Q))

g(Q)

=
σ n
√
f(P )

n
√
f(P )

since ϕ(Q) = P and ϕ∗f = gn

We had an isomorphism

K∗/(K∗)n
∼=→ H1(K,µn)

x 7→
(
σ n
√
x

n
√
x

)
σ

.

Therefore, α(P ) = f(P ) (mod (K∗)n). #

Lecture 23: March 11

Descent by 2-isogeny. Consider

E : y2 = x3 + ax2 + bx

E′ : y2 = x3 + a′x2 + b′x

where a′ = −2a, b′ = a2 − 4b. You can check that the following 2-isogenies are dual:

ϕ : E → E′, (x, y) 7→
(( y

x

)2
, y(x2−b)

x2

)
ϕ̂ : E′ → E, (x, y) 7→

(( y
2x

)2
, y(x2−b′)

8x2

)
.

Let T = (0, 0) ∈ E(K) and T ′ = (0, 0) ∈ E′(K). We have E[ϕ] = {0, T} and E[ϕ̂] =
{0, T ′}.
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Proposition 23.1. (15.2) There is a group homomorphism

α : E′(K)→ K∗/(K∗)2

(x, y) 7→

{
x (mod (K∗)2) if x 6= 0

b′ (mod (K∗)2) if x = 0

with kernel ϕ(E(K)).

Proof. Either apply Theorem 15.1 with f = x ∈ K(E′) and g = y
x ∈ K(E), or use direct

calculation (see problem sheet). #

We’d like to study the following maps

αE : E(K)/ϕ̂E′(K) ↪→ K∗/(K∗)2

αE′ : E′(K)/ϕE(K) ↪→ K∗/(K∗)2

Lemma 23.2. (15.3)

2rankE(K) =
| imαE | · | imαE′ |

4

Proof. Since ϕ̂ϕ = [2]E and ϕϕ̂ = [2]E′ there is an exact sequence

0→ E(K)[ϕ]

Z/2Z

→ E(K)[2]
ϕ→ E′(K)[ϕ̂]

Z/2Z

→ E′(K)/ϕE(K)

imαE′

ϕ̂→ E(K)/2E(K)→ E(K)/ϕ̂E′(K)

imαE

→ 0

Then
|E(K)/2E(K)|
|E(K)[2]|

=
| imαE | · | imαE′ |
|Z/2Z| · |Z/2Z|

By the Mordell-Weil theorem, E(K) ∼= ∆× Zr where ∆ is finite and r ≥ 0. Then

E(K)/2E(K) ∼= ∆/2∆× (Z/2Z)r.

But also
E(K)[2] ∼= ∆[2].

Since ∆ is finite, ∆/2∆ and ∆[2] have the same order. Taking orders and dividing, we
have

|E(K)/2E(K)|
|E(K)[2]|

= 2r

#

Lemma 23.3. (15.4) Assume K is a number field, and a, b ∈ OK . Then imαE ⊂ K(S, 2)
where S = {primes dviding b}.

Proof. We must show that if x, y ∈ K with y2 = x(x2 + ax+ b) and P a prime of K with
ordP(b) = 0, then ordP(x) is even.
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Case 1: ordP(x) < 0. By Lemma 8.1, ordP(x) = −2r and ordP(y) = −3r for some r ≥ 1.
In particular, ordP(x) is even, so we’re done.

Case 2: ordP(x) = 0. Done.

Case 3: ordP(x) > 0. Then ordP(x2 +ax+b) = 0. Then ordP(x) = ordP(y2) = 2 ordP(y).
#

Lemma 23.4. (15.5) If b1b2 = b then b1(K∗)2 ∈ imαE iff

w2 = b1u
4 + au2v2 + b2v

4 (23.1)

is soluble for u, v, w ∈ K not all zero.

Proof. If b1 ∈ (K∗)2 or b2 ∈ (K∗)2 then both conditions are satisfied (in this case b1 = b
up to squares, and b is in the image of E since αE(T ) = b (mod (K∗)2)). So we may
assume b1 /∈ (K∗)2, b2 /∈ (K∗)2. Then

b1(K∗)2 ∈ imαE ⇐⇒ ∃(x, y) ∈ E(K) s.t. x = b1t
2 for some t ∈ K∗

=⇒ y2 = b1t
2((b1t

2)2 + ab1t
2 + b)

=⇒
(
y

b1t

)2

= b1t
4 + at2 + b2

So (23.1) has solution u = t, v = 1, w = y
b1t

.

Conversely, if (u, v, w) is a solution to (23.1), then uv 6= 0 and

(b1

(u
v

)2
, b1

(uw
v3

)
) ∈ E(K)

is a rational point whose x-coordinate is b1 (up to the square of something). #

Now take K = Q.

Example 23.5. Recall the elliptic curve from the first lecture:

E : y2 = x3 − x.
We showed that this has no solution, i.e. rankE(Q) = 0. Let’s do this with different
methods. Here a = 0 and b = −1 and

imαE ⊂ 〈−1〉 ⊂ Q∗/(Q∗)2

But −1 ∈ imαE , so imαE = 〈−1〉. Consider

E′ : y2 = x3 + 4x.

Now b = 4, and imαE′ ⊂ 〈−1, 2〉 ⊂ Q∗/(Q∗)2. The subgroup 〈−1, 2〉 has three nontrivial
elements b1 = −1, 2,−2. To check if these are in imαE′ , we need to check if solutions exist
for the following:

w2 = −y4 − 4v4 insoluble over R
w2 = 2u4 + 2v4 solution u = v = 1, w = 2
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w2 = −2u4 − 2v4 insoluble over R

So imαE′ = 〈2〉 ⊂ Q∗/(Q∗)2, and hence E(Q) = 0 (as we discovered in the first lecture).

Example 23.6. Let p be a prime with p ≡ 5 (mod 8). Consider E : y2 = x3 + px. To
check if b1 = −1 is in the image, check that w2 = −u4 − pv4 is insoluble over R. So
imαE = 〈p〉 ⊂ Q∗/(Q∗)2. Now consider

E′ : y2 = x3 − 4px.

Then imαE′ ⊂ 〈−1, 2, p〉 ⊂ Q∗/(Q∗)2. Note αE′(T
′) = (−p) · (Q∗)2. We have to check if

b1 = 2,−2, p are in the image; that is, we have to find solutions for

w2 = 2u4 − 2pv4 (23.2)

w2 = −2u4 + 2pv4 (23.3)

w2 = pu4 − 4pv4 (23.4)

Suppose (23.2) is soluble; without loss of generality u, v, w ∈ Z and gcd(u, v) = 1. IF p | u
then p | w and p | v, which contradicts u, v being coprime. So w2 ≡ 2u4 6≡ 0 (mod p).

That is,
(

2
p

)
= +1 which contradicts the assumption that p ≡ 5 (mod 8).

Likewise, (23.3) is insoluble since
(
−2
p

)
= −1. So, imαE′ ⊂ 〈p,−1〉 ⊂ Q∗/(Q∗)2. We

don’t know if the group has size 2 or 4, but we can say

rankE(Q) =

{
0 if (23.4) is not soluble

1 otherwise

Since p ≡ 1 (mod 4) (we were assuming p ≡ 5 (mod 8)), then −1 is a square; hence it is
a square in Q∗p, so −1 is a solution to (23.1) over Qp.

(23.4) is soluble over Q2 since p− 4 ∈ (Q∗2)2, and is soluble over R since
√
p ∈ R.

Conjecture: rankE(Q) = 1 for all p ≡ 5 (mod 8). (This has been proven, under the
assumption thatX is finite.)

p u v w
5 1 1 1
13 1 1 3
29 1 1 5
27 5 3 151
53 1 1 7

Lecture 24: March 13

Given an elliptic curve E : y2 = x3 + ax2 + bx, we were looking for the image of αE :
E(Q)/ϕ̂E′(Q) ↪→ K∗/(K∗)2.
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By Lemma 15.5, the Selmer group can be written

S(ϕ̂)(E′/Q) = {b1(Q∗)2 ∈ Q∗/(Q∗)2 : (23.1) has solutions over R and all Qp}.

Fact 24.1. If a, b1, b2 ∈ Z and p - 2b(a2− 4b), then (23.1) is soluble over Qp. So you only
have to check the primes dividing 2bb′, where b′ = a2 − 4b.

Example 24.2. Let E : y2 = x3 + 17x. Then im(αE) = 〈17〉 ⊂ Q∗/(Q∗)2

E′ : y2 = x3 − 4 · 17x

im(αE′) ⊂ 〈−1, 2, 17〉 ⊂ Q∗/(Q∗)2 We know that −17 is in the image, as is the identity.
Let’s check b1 = 2. This corresponds to

w2 = 2u4 − 2 · 17v4

Replace w by 2w and divide through by 2:

C : 2w2 = u4 − 17v4 (24.1)

It turns out that (23.1) is a double cover of P1, ramified at 4 points. For a field K,

C(K) = {(u, v, w) ∈ K3\{0} satisfying (24.1)}/ ∼
where (u, v, w) ∼ (λu, λv, λ2w) for λ ∈ K∗.

C(Q2) 6= ∅ since 17 ∈ (Q∗2)4 (anything that is 1 mod 16 is a 4th power by Hensel’s lemma).

C(Q17) 6= ∅ since 2 ∈ (Q∗17)2 (again by Hensel’s lemma).

C(R) 6= ∅ since
√

2 ∈ R.

So C(Qv) 6= ∅ for all places v of Q.

Suppose (u, v, w) ∈ C(Q). Without loss of generality u, v, w ∈ Z and gcd(u, v) = 1. If
17 | w then 17 | u, and so 17 | v, contradicting the assumption that u, v are coprime. So if
p | w then p 6= 17 and 17 is a fourth power. We will just use the fact that 17 is a square

(i.e.
(

17
p

)
= 1). ( p

17

)
=

(
17

p

)
= 1

and
(−1

17

)
= 1. w is a product of things, each of which are squares mod 17, so w is a

square mod 17. Look at equation C mod 17:

2w2 ≡ u4 (mod 1)7

So 2 is a fourth power mod 17. But (F∗17)4 = {±1,±4}. This is a contradiction. So
C(Q) = ∅.

We say that the Hasse principle holds whenever C(Qv) 6= 0 ∀v implies C(Q) = ∅. So the
above example illustrates a failure of the Hasse principle.

73



Elliptic curves Lecture 24

Recall the short exact sequence

0→ E′(Q)/ϕE(Q)→ S(ϕ)(E/Q)→X(E/Q)[ϕ]→ 0

C represents a nonzero element inX(E/Q).

Birch-Swinnerton-Dyer Conjecture. Let E/Q be an elliptic curve.

Definition 24.3.

Lp(E, s) =


(1− app−s + p1−2s)−1 if p has good reduction

(1− p−s)−1 if split multiplicative reduction

(1 + p−s)−1 ∗ if non-split

1 if additive reduction

where ap is defined by #Ẽ(Fp) = 1 + p− ap. Define

L(E, s) =
∏
p

Lp(E, s).

By Hasse’s theorem, |ap| ≤ 2
√
p. This allows you to check convergence: L(E, s) converges

if Re(s) > 3
2 .

Theorem 24.4 (Wiles, Breuil, Conrad, Diamond, Taylor). L(E, s) is the L-function of
a weight 2 modular form, and has an analytic continuation to all of C (and a functional
equation relating L(E, s) to L(E, 2− s)).

Conjecture 24.5 (Weak BSD).

ords=1 L(E, s) = rankE(Q)

We call ords=1 L(E, s) the analytic rank.

Conjecture 24.6 (Strong BSD).

lim
s→1

1

(s− 1)r
L(E, s) =

ΩE Reg(E(Q))|X(E/Q)|
∏
p cp

|E(Q)tors|2

where:

• cp = [E(Qp) : E0(Qp)] is the Tamagawa number
• r = rankE(Q)

• Reg(E(Q)) = det(〈Pi, Pj〉)i,j=1,··· ,r, where 〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q)

• ΩE =
∫
E(R)

dx
|2y+a1x+a3| where ai are coefficients of a globally minimal Weierstrass

equation (minimal at all primes)

The best result to date is

Theorem 24.7 (Kolyragin). If ords=1 L(E, s) = 0 or 1 then Weak BSD holds, and
X(E/Q) is finite. Moreover, there is an algorithm for checking Strong BSD.
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