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Čech cohomology

20 November 19 55
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Algebraic geometry Lecture 1

Lecture 1: October 5

Sheaves. Let X be a topological space.

Definition 1.1. A presheaf is a set of algebraic data on this space: For every open U ⊂ X
we associate an abelian group F(U), such that F(∅) = 0. In addition, for every V ⊂ U
we assign a “restriction map” F(U)→ F(V ), such that

• if V = U , then F(U)→ F(V ) is the identity;
• if W ⊂ V ⊂ U then the diagram

F(U) //

$$

F(V )

��

F(W )

commutes.

(Think of F(U) as a set of functions on U .)

Definition 1.2. A sheaf is a presheaf F subject to the following condition. If U =
⋃
Ui

is an open cover, and we have a collection of si ∈ F(Ui) such that si|Ui∩Uj = sj |Ui∩Uj ,
then there is a unique s ∈ F(U) such that si = s|Ui .

Informally, a sheaf is a system in which global data is determined by local data. (If you
have local data that is consistent, then that gives you global data.)

Usually there is another condition that says, if all the local sections are trivial, then the
global section is also trivial. But this is given by the uniqueness of the preceding definition.

Example 1.3. Let X be a topological space, and define U = {s : U → R continuous}.
You can check that U is a sheaf. (You could take C instead of R, or any topological group.)

Stalks tell you what happens when you look at a sheaf near a point.

Definition 1.4. Let F be a presheaf on X, x ∈ X. We define the stalk of F at x to be

Fx = lim−→
U3x
F(U)

More explicitly, an element of Fx is represented by a pair (U, s) where U ⊂ X and s ∈ F(U)
is a section, with the relation that (U, s) ∼ (V, t) if there is some W ⊂ U ∩ V (containing
x) such that s|W = tW .

Check that Fx is an abelian group.

Definition 1.5. Suppose that F and G are presheaves [sheaves] on X. A morphism
ϕ : F → G of presheaves [sheaves] is a collection of homomorphisms ϕU : F(U) → G(U)
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Algebraic geometry Lecture 1

for each open U , chosen consistently in the sense that

F(U)
ϕU //

��

G(U)

��

F(V )
ϕV // G(V )

is commutative (where the vertical maps are restriction maps).

If F and G are sheaves, then this is a morphism of sheaves.

Definition 1.6. ϕ is an isomorphism if it has an inverse morphism ψ : G → F such that
ϕ ◦ ψ = Id and ψ ◦ ϕ = Id.

For any x ∈ X, we get an induced homomorphism Fx → Gx.

Given a presheaf, you can always construct an associated sheaf.

Definition 1.7 (Sheaf associated to a presheaf). Suppose F is a presheaf. The sheaf
associated to F is a sheaf F+, along with a morphism F → F+, satisfying:

• given any morphism F → G to a sheaf G, then there is a unique morphism
F+ → G such that

F //

  

G

F+

OO

Construction 1.8. F+(U) is the subset of sections s : U →
⊔
x∈U Fx that satisfy the

following condition:

• For every x ∈ U , there is some neighborhood W ⊂ U of x, and a section t ∈
F(W ), such that s(y) = ty for every y ∈ W . (Here ty denotes the image of t in
the stalk Fy.)

Note that this means s(x) ∈ Fx for every x, and moreover, every point has a neighborhood
W in which all of these elements ty of the germ come from the same section t ∈ F(W ).

The idea is that all the “bad” sections vanish in the stalk.

Exercise 1.9. Prove that there is a natural map F → F+ satisfying the conditions above,
and that F+ is a sheaf.

It is “obvious” that if F is a sheaf, then F → F+ is an isomorphism.

Remark 1.10. For every x ∈ X, then the map Fx → F+
x is an isomorphism. This is not

surprising, because F and F+ has the same local data. The proof of this is routine, and
you should do this.
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Algebraic geometry Lecture 2

Definition 1.11 (Image and kernel of a morphism). Suppose that F and G are presheaves
on some topological space X, and suppose ϕ : F → G is a morphism.

• The presheaf kernel of ϕ is defined kerpre(ϕ)(U) = ker (F(U)→ G(U)).
• The presheaf image of ϕ is similarly defined as impre(ϕ)(U) = im (F(U)→ G(U)).

Now assume that F and G are sheaves.

• The kernel is kerpre(ϕ) (i.e. you have to show that the presheaf kernel is actually
a sheaf, if F and G are sheaves).
• This does not work for the image. So define im(ϕ) = (impre(ϕ))+.

Definition 1.12. We say that ϕ is injective if ker(ϕ) = 0. We say that ϕ is surjective if
im(ϕ) = G.

Remark 1.13. For ϕ to be surjective, all the ϕ(U) do not need to be surjective. (They
need to be “locally surjective”.)

Example 1.14. Let X = {a, b}, U = {a}, V = {b}. (Together with the empty set, we
have four open sets). Define a presheaf as follows:

F(X) = Z,F(U) = F(V ) = 0

The stalks at both points vanish, so F+ = 0.

Example 1.15. Let X be the same as before. Now define a presheaf as follows:

G(X) = 0,G(U) = G(V ) = Z
The smallest open set containing a is U , so Ga = Z, and similarly Gb = Z. Then G+(X) =
Z⊕Z (the points are completely independent, hence functions have an independent choice
of value on a or b), and G+(U) = G+(V ) = Z, and the restriction maps are just projections.

Lecture 2: October 8

Let X be a topological space, ϕ : F → G is a morphism of sheaves. Then

(1) ϕ is injective ⇐⇒ ϕx : Fx → Gx is injective for all x ∈ X
(2) ϕ is surjective ⇐⇒ ϕx : Fx → Gx is surjective for all x ∈ X
(3) ϕ is an isomorphism ⇐⇒ ϕx : Fx → Gx is an isomorphism for all x ∈ X

Proof. Suppose ϕ is injective. Assume ϕx(U, s)→ 0. By definition, ϕx(U, s) = (U,ϕU (s)).
In order for this to be zero on the stalk, it is locally zero: there is some W ⊂ U such that
ϕU (s)|W = 0. By diagram chasing in

F(U) //

��

G(U)

��

F(W ) // G(W )

8



Algebraic geometry Lecture 2

ϕW (s|W ) = 0. Since ϕ is injective, s|W = 0. Thus, (U, s) = (W, s|W ) = 0. Therefore, ϕx
is injective.

Now suppose ϕx is injective at every x. Suppose ϕU (s) = 0 for some s ∈ F(U). Since ϕx
is injective, and ϕx(U, s) = 0 in Fx for all x, then (U, s) = 0 in Fx. That is, for all x ∈ U ,
there is some Wx ⊂ U such that s|Wx = 0. By definition of a sheaf, s = 0 in F(U). Thus
ϕU is injective for all U .

Assume ϕ is surjective. Pick (U, t) ∈ Gx. We can’t necessarily get a preimage of t, but
there is some small neighborhood in which t|W has a preimage. Let s ∈ F(W ) be the
preimage of t|W . In particular, ϕx(W, s) = (W, t|W ) = (U, t). So ϕx is surjective.

Now assume that ϕx is surjective for all x. I don’t understand why we can’t just use the
fact that imϕ has the same stalks as the preimage version (the actual image), so showing
imϕ = G is the same as showing Gx = (impre ϕ)x for all x.

We have a factorization

F
ϕ

//

""

G

Im(ϕ)
?�

OO

By replacing F by its image Im(ϕ) we could assume that ϕ is injective. By the first part
of the theorem, we can assume that ϕx is injective, hence an isomorphism for all x. We
need to now show that (the new) ϕ is an isomorphism.

Pick t ∈ G(U). We will find local preimages and glue them. For each x ∈ U there is some
Wx ⊂ U (containing x) and sx ∈ F(Wx) such that ϕWx(sx) = t|W . Since ϕ is injective,
sx|Wx∩Wy = sy|Wx∩Wy . Now by the definition of sheaves, there is some

s ∈ F(U)

such that ϕU (s) = t. This means that the ϕU are isomorphisms for all U , as we wanted.

Suppose that ϕ is an isomorphism. By (1) and (2) ϕx is an isomorphism. Now assume
that ϕx are all isomorphisms. Use the same argument in (2).

#

Definition 2.1. Suppose that X is a topological space. Then a complex of sheaves on X
is a sequence

· · ·
ϕ−1→ F−1

ϕ0→ F0
ϕ1→ F1 → F2 → · · ·

such that im(ϕi) ⊂ ker(ϕi+1).
9



Algebraic geometry Lecture 3

We say that this complex is an exact sequence if im(ϕi) ⊂ ker(ϕi+1) for all i. In particular,
a short exact sequence is an exact sequence of the form

0→ F1 → F2 → F3 → 0

Exercise 2.2. A complex 0→ F → G → H → 0 is a short exact sequence iff the sequences
0→ Fx → Gx → Hx → 0 is an exact sequence.

Example 2.3. Let X be a topological space, A an abelian group. Start by defining
F(U) = A for every U . But this isn’t a sheaf. Instead define the constant sheaf at A to
be F+.

Proposition 2.4. The constant sheaf at A is isomorphic to G, defined as

G(U) = {α : U → A : α is continuous}
where A is given the discrete topology.

Proof. G is a sheaf, and we have a natural morphism F → G where the function F(U)→
G(U) is just the constant map a 7→ (U

a→ A). This uniquely determines a morphism
ϕ : F+ → G.

I claim that this is an isomorphism. It suffices to show that ϕx is an isomorphism, and
since F+

x
∼= Fx, it suffices to show that ψx : Fx → Gx is an isomorphism.

ψx is injective: If ψx(U, s) = 0 = (U,ψU (s)) = (U,αs) then αs = 0 on some point, and
hence s = 0.

ψx is surjective: Pick (U, t) ∈ Gx. (t : U → A where x 7→ t(x).) Put W = t−1{t(x)},
which is open because A has the discrete topology. Now (U, t) = (W, t|W ). Note that t|W
is a constant function. If we put s = t(x), then ψx(W, s) = (W, t|W ). #

Definition 2.5. Suppose that we have a continuous map f : X → Y . If F is a sheaf
on X, then define a presheaf f∗F where (f∗F)(U) = F(f−1U). This is called the direct
image of F .

Proposition 2.6. f∗F is a sheaf.

Proof. Assume U =
⋃
Ui is an open cover of U , and there are sections si ∈ (f∗F)(Ui) that

agree on intersections. By definition, (f∗F(Ui)) = F(f−1Ui). Since F is a sheaf, there is
some s ∈ F(f−1U) such that s|Ui = si. So s ∈ (f∗F) is the thing you want. #

Example 2.7. Let Y be a topological space, X = {x} ⊂ Y and f is the inclusion map.
Suppose A is an abelian group. A defines a sheaf F on X. We call f∗F the skyscraper
sheaf on Y at X: this is

(f∗F)(U) =

{
A if x ∈ U
0 otherwise

10
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Lecture 3: October 10

Schemes.

Conventions 3.1. Rings will always be commutative with unit, and ring homomorphisms
take 1 7→ 1. A local ring A is a commutative ring with a unique maximal ideal. A local
homomorphism A→ B of local rings is a homomorphism that takes the maximal ideal of
A into the maximal ideal of B.

Definition 3.2. Suppose A is a commutative ring.

• The spectrum of A is

Spec(A) = {P : P / A is a prime ideal}
• If I ⊂ A is any ideal, then define the vanishing set

V (I) = {P ∈ Spec(A) : I ⊂ P}

Lemma 3.3. We have:

(1) V (IJ) = V (I ∩ J) = V (I) ∪ V (J) for all ideals I, J
(2) V (

∑
Iα) =

⋂
α V (Iα) for all families Iα of ideals

(3) V (I) ⊂ V (J) ⇐⇒
√
I ⊃
√
J

Recall that
√
I = {ir : i ∈ I} =

⋂
P⊃I P.

Proof. (1) P ∈ V (IJ) ⇐⇒ IJ ⊂ P ⇐⇒ I ⊂ P or J ⊂ P ⇐⇒ P ∈ V (I) ∪ V (J)
where the second equivalence is by the definition of prime ideals. For the statement about
V (I ∩ J) use the fact that IJ ⊂ I ∩ J so I ⊂ P or J ⊂ P implies I ∩ J ⊂ P =⇒ IJ ⊂ P .

(2) P ∈ V (
∑
Iα) ⇐⇒

∑
α Iα ⊂ P ⇐⇒ Iα ⊂ P for all α ⇐⇒ P ∈ ∩αV (Iα)

(3) Use the commutative algebra fact that
√
I =

⋂
P⊃I

P =
⋂

P∈V (I)

P

In particular, V (I) = V (
√
I), and (3) follows. #

Definition 3.4. Let A be a commutative ring, X = Spec(A). By taking the sets V (I) to
be closed in X we get a topology on X. This is called the Zariski topology.

Note that Spec(A)− V (I) = {P that don’t contain I}. Define

D(a) = {P : a /∈ P}
for every a ∈ I; then Spec(A)− V (I) =

⋃
a∈I D(a), and so the sets D(a) form a basis for

the Zariski topology.
11



Algebraic geometry Lecture 3

Definition 3.5. Define the sheaf OX by

OX(U) = {s : U →
⊔
P∈U

AP such that (∗)}

where the conditions (*) are:

(1) s(P ) ∈ AP for all P
(2) For every p ∈ U there is a neighborhood W 3 p such that s|W is the constant

function a
b for some a, b ∈ A

The sections are elements that are locally given by fractions.

If W = U in the definition, we also abuse notation to denote s by a
b . Note that OX is a

sheaf of rings: OX(U) is a commutative ring and restriction maps OX(U) → OX(V ) are
ring homomorphisms.

Theorem 3.6. If A is a commutative ring, X = Spec(A), then

(1) The stalk (OX)P ∼= AP is an isomorphism of local rings, for every P ∈ X
(2) OX(D(b)) ∼= Ab where D(b) = X\V (〈b〉) (set where b does not vanish) for all

b ∈ A. Here Ab = { abn }.
(3) OX(X) ∼= A

Proof. (1) Define f : AP → (OX)P by f
(
a
b

)
= (D(b), s = a

b ). This is well-defined: if
a
b = a′

b′ in AP , then there is some c ∈ A\P such that

c(ab′ − a′b) = 0

(D(b),
a

b
) = (D(b) ∩D(c) ∩D(b′),

a

b
) = (D(b) ∩D(c) ∩D(b′),

a′

b′
) = (D(b′),

a′

b′
)

Injectivity: If f(ab ) = 0 then s = a
b = 0 on some W 3 p. So a

b = s(p) = 0 in Ap.

Surjectivity: Sections of OX are locally defined as a
b , so this is trivial.

Exercise: show that f is a local homomorphism.

(2) Define g : Ab → OX(D(b)) by g( abn ) = a
bn . This is well defined, similar to (1).

Injective: assume g( abn ) = a
bn = 0 in OX(D(b)). So for all P ∈ D(b), a

bn = 0, which
means that there is some cP ∈ A\P such that cPa = 0. Let c be the ideal spanned by all
the cP ’s. I claim D(b) ∩ V (c) = ∅: if P ∈ D(b) then cP /∈ P so P 6⊃ c hence P /∈ V (c).

Equivalently, V (c) ⊂ V (b). So
√
c ⊃

√
(b) =⇒ br =

∑
finite
set of i

ticpi for some cp1 , · · · , cpα .

Then abr =
∑
tiacpi = 0 which shows that a

bn = 0 in Ab.

Surjective: Pick s ∈ OX(D(b)). There is some open covering D(b) =
⋃
Ui and ai, ei ∈ A

such that s|Ui = ai
ei

for all i. The goal is to replace the Ui with something related to D(b).

For all p ∈ Ui, there is some d ∈ A such that p ∈ D(d) ⊂ Ui ⊂ D(ei) (since the D(d) are
12
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a base for the Zariski topology). This implies
√

(d) ⊂
√

(ei). Then there is some power r
such that dr = c · ei for some c ∈ A. So ai

ei
|D(dr)=D(d) = cai

cei
= cai

dr . By replacing the Ui’s

with appropriate D(dr), we could assume that Ui = D(ei) and s|Ui = ai
ei

.

We have a cover D(b) =
⋃
iD(ei), which I claim can be taken to be finite. This follows

from the fact that V ({eα}α) ⊂ V (〈b〉) ⇐⇒
√
{eα}α ⊃

√
〈b〉 ⇐⇒ bn =

∑
α `αeα. We

know all of this is true for some collection of eα, but the last statement only makes sense
for a finite collection, so we may assume the set {eα} is finite.

As constant functions, aiei were originally restrictions of a section s, so ai
ei

=
aj
ej

in O(D(ei)∩
D(ej)) = O(D(eiej)).

By construction we have a commutative diagram:

Aei
//

��

Ox(D(ei))

��

Aeiej
// Ox(D(eiej)) Ox(D(ei) ∩D(ej))

Aej
//

OO

Ox(D(ej))

OO

Since Aeiej → OX(D(eiej)) is injective, ai
ei

=
aj
ej

in Aeiej .

There is some m such that
(eiej)

m(aiej − ajei) = 0

(by definition of how equality in the localized ring works). Equivalently, aie
m
i e

m+1
j −

aje
m
j e

m+1
i = 0. Replace ai

ei
with

aie
m
i

em+1
i

for each i; now we can assume that aiej − ajei = 0

for all i, j.

Now let c =
∑
`iai (recall we had bn =

∑
`iei). Then ejc = ej(

∑
`iai) =

∑
`iaiej =∑

`iajei = aj(
∑
`iei) = ajb

n. Therefore, s|D(ej) =
aj
ej

= c
bn for all j. This expression does

not depend on j, and so s = c
bn is a constant section ∈ Ab.

(3) Simply put b = 1. Then D(b) = X and Ab = A.

#

Lecture 4: October 12

Definition 4.1. A ringed space is a pair (X,OX) when X is a topological space and OX
is a sheaf of rings.

13
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A morphism of ringed spaces (Y,OY )→ (X,OX) is given by a continuous map f : Y → X
and a morphism ϕ : OX → f∗OY . (“Functions on X pull back to functions on Y .”)

A locally ringed space is a ringed space (X,OX) such that (OX)P is a local ring.

A morphism (Y,OY )
f,ϕ→ (X,OX) between locally ringed spaces is a morphism of ringed

spaces such that if p ∈ Y and q ∈ f(p) then the natural map (OX)q → (OY )p is a local
homomorphism.

An isomorphism is a morphism with an inverse.

Theorem 4.2. Suppose that A and B are rings1, and (X = Spec(A),OX) and (Y =
Spec(B),OY ). Then

(1) (X,OX) and (Y,OY ) are locally ringed spaces.
(2) A homomorphism α : A → B “naturally” induces a morphism of locally ringed

spaces (Y,OY )→ (X,OX).
(3) Any morphism (Y,OY ) → (X,OX) of locally ringed spaces arises from a mor-

phism A→ B as in (2).

Proof. (1) For every q ∈ X, p ∈ Y , the stalks (OX)q and (OY )p are local rings.

(2) Define f : Y → X by f(p) = α−1p. We need to show that f is continuous. f−1(V (I)) =
V (α(I) · B), the ideal generated by α(I). Define ϕ as follows: pick s ∈ OX(U). s is
a function U →

⊔
q∈U Aq satisfying certain properties. We need to define a function

t ∈ (f∗OY )(U) = OY (f−1U), so t : f−1U →
⊔
p∈f−1U Bp. Remember, if f(p) = q then we

have a homomorphism Aq
ϕp→ Bp. So assign t(p) = ϕp(s(q)) = ϕp(s(α

−1p)). If s is locally

given by a
b then t is locally given by α(a)

α(b) . So the morphism we’re looking for just sends

s 7→ t; this gives a morphism OX
ϕ→ f∗OY .

Note that the map (OX)q → (OY )P is nothing but ϕp : Aq → Bp. So, the morphism

(Y,OY )
f,ϕ→ (X,OX) is a morphism of locally ringed spaces.

(3) Suppose we are given a morphism of locally ringed spaces (Y,OY )
g,ψ→ (X,OX). We

need to get a homomorphism A→ B. The morphism ψ gives a homomorphism OX(X)→
(g∗OY )(X) = OY (Y ). But from last lecture, A = OX(X) and B = OY (Y ). So this gives
a homomorphism α : A→ B.

1All our rings are commutative.

14
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Let f, ϕ be those given in (2) induced by α. (So we need to show that f = g and ϕ = ψ.)
First we show that f = g, and moreover ϕp = ψp for all p ∈ Y . We have a diagram

OX(X)
ψX
//

��

(f∗OY )(X)

��

(OX)q
ψq
// (f∗OY )q

If q = g(p) then (f∗OY )q = (OY )p, and (using Theorem 3.6) we can rewrite the diagram
as

A
α //

��

B

��

Aq
ψq
// Bp

Use the fact that ψq is a local homomorphism: the maximal ideal of (OY )p pulls back to
the maximal ideal of (OX)q.

q = β−1(max. ideal of Aq) = β−1ψ−1
p (maximal ideal of Bp)

= α−1λ−1(maximal ideal of Bp) = α−1p = g(p)

So f(p) = q = g(p). The diagram also shows that ψp = ϕp.

Now we show that ϕ = ψ. For each open set U ⊂ X we also have two commutative
diagrams as above:

A = OX(U)
ψU
//

��

OY (f−1U) = B

����

Aq = (OX)q
ψp

// (OY )p = Bp

A = OX(U)
ϕU //

��

OY (f−1U) = B

����

Aq = (OX)q
ϕp

// (OY )p = Bp

Pick s ∈ OX(U). Then ϕU (s) = ψU (s) in Bp for every p ∈ f−1U . The bottom rows in
both diagrams are the same. So you have two different sections coming from the top rows,
that are eventually equal after looking in the stalks. But by the definition of sheaves,
ϕU (s) = ψU (s) in OX(f−1U), and so ϕ = ψ.

#

Definition 4.3. An affine scheme is a locally ringed space (X,OX) such that there is
some ring A such that (X,OX) = (Spec(A),OSpec(A)).

15
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A scheme is a locally ringed space (Y,OY ) such that locally it is an affine scheme; that is,
for all p ∈ Y there is some U 3 p such that (U,OU ) is an affine scheme.

Morphisms and isomorphisms are defined as locally ringed spaces.

Think of affine schemes as the disks in differential geometry: simple objects that you glue
together to make manifolds (schemes).

Example 4.4. Z is a commutative ring. Consider X = Spec(Z) = {prime ideals of Z} ∼=
{0, (2), (3), (5), · · · }. If p = 0 then (OX)p = Zp = Q. If p 6= 0 then (OX)p = Zp is a local
ring and (OX)p/m = Fp (finite field).

Lecture 5: October 15

Example 5.1. Suppose that A is a field. Then, X = Spec(A) has only one point. Then
OX = A. A field extension A ↪→ B corresponds to a morphism Spec(B) → Spec(A). So
Galois theory is a special case of algebraic geometry.

Example 5.2. Suppose D is a DVR (Discrete Valuation Ring – regular Noetherian local
ring of dimension 1). Then Spec(D) has two points, corresponding to (0) and m. (For
example, take D = Zp for some nonzero prime ideal (p).) If p 6= 0, then (OX)p = Ap = A;
if p = 0 then (OX)p = Ap = Frac(A).

Example 5.3. Let R be a ring, A = R[t1, · · · , tn] a polynomial ring in n variables. Define
AnR = Spec(R[t1, · · · , tn]) which is called the n-affine space over R.

For any ideal I ⊂ R[t1, · · · , tn] we have the scheme Spec(R[t1, · · · , tn]/I). The homomor-
phism R[t1, · · · , tn] → R[t1, · · · , tn]/I gives a morphism e : Y = Spec(R[t1, · · · , tn]/I) →
Spec(R[t1, · · · , tn]) = X. It is easy to see that e(Y ) = V (I) ⊂ X.

Example 5.4. Suppose k is an algebraically closed field. (This is classical algebraic
geometry.)

Suppose I = 〈f1, · · · , fr〉 ⊂ k[t1, · · · , tn]. Define S = {(a1, · · · , an) : fj(a1, · · · , an) =
0 ∀j}. There is a 1-1 correspondence

S ⇐⇒ { maximal ideals of k[t1, · · · , tn]/I} ⊂ Spec(k[t1, · · · , tn]/I)

where (a1, · · · , an) 7→ 〈t1 − a1, · · · , tn − an〉.

Example 5.5. Let k = C. Then A1
C = SpecC[t] = {0, 〈t− a〉}a∈C. This is “C plus a

point”.

Take a point P = 0. Then {P} is the smallest closed set containing P . Since 0 = 0 · (t−a)
is in every prime ideal, this is the whole space! So P is called the generic point.

Definition 5.6. Let X be a topological space, and P ∈ X. If {P} = X, then we say that
P is a generic point.

16
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Take I = 〈t〉. Then ∗ = SpecC = Spec(C[t]/ 〈t〉)→ SpecC[t] = A1
C is just the inclusion of

the point 0 (corresponding to the prime 〈t〉).

Take J =
〈
t3
〉
. Then Z = Spec(C[t]/J) is one point, with multiplicity 3. There is a

natural morphism Z → A1
C sending ∗ → 〈t〉.

Example 5.7. Take I =
〈
t2 − t21

〉
⊂ k[t1, t2]. You can’t draw this in C, but it’s a parabola

in R. X is “smooth”, so it gives a complex manifold. If S is the complex solution of
t2 − t21, then each x ∈ X has an open neighborhood (in the complex topology, not the
Zariski topology), which is biholomorphic to an open disc in C.

Example 5.8. Set R = Z. Let 〈tm1 + tm2 − tm3 〉 ⊂ Z[t1, · · · , t3]. What are the solutions of
I over Z? (“or, what planet have you been living on?”)

X = Spec(Z[t1, t2, t3]/I) is not empty.

Example 5.9. Let R = R. Take I =
〈
t21 + t22 + 1

〉
⊂ R[t1, t2]. The set of solutions

over R is empty. However, X = SpecR[t1, t2]/I is not trivial. The homomorphism
A = R[t1, t2]/

〈
t21 + t22 + 1

〉
→ C[t1, t2]/

〈
t21 + t22 + 1

〉
= B gives a morphism Spec(B) →

Spec(A).

Example 5.10. First look at the induced map SpecC[t] → SpecR[t]. This takes 〈t− i〉
and 〈t+ i〉 to

〈
t2 + 1

〉
. (So you get factorizations of real polynomials over C.)

Let I =
〈
t2 + 1

〉
⊂ R[t]. There are no solutions over R but the homomorphism R[t]/

〈
t2 + 1

〉
→

C[t]/
〈
t2 + 1

〉
gives a morphism SpecC[t]/

〈
t2 + 1

〉
→ SpecR[t]/

〈
t2 + 1

〉
.

Example 5.11. Take I =
〈
t22 − t1(t21 − 1)

〉
⊂ C[t1, t2]. Then X = Spec(C[t1, t2]/I) is an

elliptic curve.

Example 5.12. Let I = 〈t1t2 − 1〉 ⊂ C[t1, t2], and take X = SpecC[t1, t2]/I. We have a
natural homomorphism C[t1] → C[t1, t2]/I. This gives a morphism X → Y = A1

C . Over

R this looks like y = 1
x , and the morphism is just projection to the x-axis. In terms of

ideals, 〈t1 − a1, t2 − a2〉 7→ 〈t1 − a1〉. This is almost a 1-1 correspondence. But, there is
nothing that maps to 0. If you just remove this point you get an isomorphism: there is
an induced homomorphism

C[t1]t1 = C[t1, t2]/I

that is an isomorphism.

D(t1) = A1 − {0}.

Lecture 6: October 18

RECALL, A graded ring is a ring of the form
⊕

d≥0 Sd such that, for every d, e ≥ 0,
Sd · Se ⊂ Sd+e. The elements of Sd are called homogeneous elements of degree d.

Homogeneous ideals are ideals I of S such that I =
⊕

d≥0(I ∩ Sd). Equivalently, I is
generated by homogeneous elements.

17
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Set S+ =
⊕

d>0 Sd.

If P is a homogeneous prime, then

S(P ) =
{a
b
∈ SP : a, b are homogeneous, deg(a) = deg(b)

}
.

If b ∈ S+ =
⊕

d>0 Sd is homogeneous then

S(b) =
{ a
br
∈ Sb : a is homogeneous, deg(a) = deg(br)

}
.

Definition 6.1. Let S be a graded ring. Define the projective space of S as

Proj(S) = {P / S : P is a homogeneous prime , P 6⊃ S+}

If I is a homogeneous ideal, let V+(I) = {P ∈ ProjS : P ⊃ I}. Similarly, set D+(b) =
ProjS\V+((b)).

Lemma 6.2. Let S be a graded ring. Then

(1) If I, J / S are homogeneous, then

V+(IJ) = V+(I ∩ J) = V+(I) ∪ V+(J)

(2) If Iα / S are homogeneous then V+(
∑
Iα) =

⋂
V+(Iα)

Proof. Same as in the affine case. #

Definition 6.3. Let S be a graded ring. Put X = Proj(S). The lemma says that X is a
topological space, where the closed subsets are the V+(I). (This is the Zariski toplogy on
Proj(S).)

We define a sheaf of rings OX on X as:

OX(U) = {s : U →
⊔
p∈U

S(p) : (∗)}

satisfying the conditions:

(1) s(p) ∈ S(p) for all p ∈ U
(2) There exists some W ⊂ U and a, b ∈ S of the same degree, such that for all

q ∈W , we have s(q) = a
b

Theorem 6.4. Let S be a graded ring. Then

(1) (OX)p ∼= S(p) for all p ∈ X (is an isomorphism of local rings)
(2) For each homogeneous element b ∈ S+, we have a natural isomorphism of locally

ringed spaces
D+(b) ∼= SpecS(b)

where D+(b) = X\V+(〈b〉)
(3) (X,OX) is a scheme

18
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Sketch of proof. The proof looks a lot like the affine proof.

(1) Similar to the affine case (i.e. Y = SpecA, (OY )q ∼= Aq.)
(2) Define a map f : D+(b) → SpecS(b) by sending P 7→ P · S(b). (If M is a

multiplicative subset of a ring A (like {bi}) then there is a bijection between primes
disjoint from M and primes of S−1A.) One shows that f is a homeomorphism
of topological spaces. Because we’re using the subspace topology, every closed
subset looks like V+(I) ∩ D+(b). Then f(V+(I) ∩ D+(b)) = V (Ib ∩ S(b)) where
I / S is homogeneous. Then one shows that, for all p ∈ D+(b), we have (OX)P =
S(P )

∼= (S(b))f(p)
∼= (OZ)f(p) where Z = SpecS(b). Finally, for each open set

U ⊂ D+(b) we get an isomorphism OX(U) ∼= OZ(f(U)). (Use the fact that
there’s a homeomorphism with f(U)...)

(3) Follows from (1) and (2). For every point p ∈ X there exists some b such that
p ∈ D+(b) (where P 6⊃ S+).

#

Example 6.5. R is a ring, S = R[t0, . . . , tn]. The scheme Proj(S) is called the n-projective
space over R which is denoted by PnR.

By the theorem D+(ti) ∼= SpecS(ti), but this is affine n-space. For example, S(t0)
∼=

R[ t1t0 , . . . ,
tn
t0

]. This is isomorphic to R[u1, . . . , un] where the ui are new variables. Then

SpecS(t0)
∼= AnR

So the projective scheme is locally affine space. In particular, PnR is covered by n+1 copies
of AnR. For example, look at the case when R = C, and n = 1. Then P1

C is the scheme
associated to the Riemann sphere: if you remove the south pole (or the north pole), you
get affine space.

Definition 6.6. Suppose that X is a scheme.

(1) We say that X is irreducible if it is irreducible as a topological space: if U, V ⊂ X
are nonempty, then U ∩ V 6= ∅. (This is sort of the opposite of being Hausdorff.)

(2) We say that X is reduced if OX(U) is a reduced ring for every U ⊂ X: this
means that nil(OX(U)) :=

√
0 = 0. (So the ring has no nilpotent elements.) For

exmple, Spec
(
C[t]/

〈
t4
〉)

is not reduced.
(3) We say that X is integral if OX(U) is an integral domain, for all open U ⊂ X.

Example 6.7. Suppose X = SpecA.

X is irreducible ⇐⇒ nil(A) is prime: X is irreducible iff whenever X = V (I) ∩ V (J),
then X = V (I) or V (J). But X = V (I)∪V (J) iff V (0) = SpecA = V (IJ). The condition

X = V (I) or V (J) can be reformulated as follows:
√

0 ⊃
√
IJ =⇒

√
0 ⊃ I or

√
0 ⊃ J .

Equivalently,
√

0 = nil(A) is a prime ideal.
19
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X is reduced iff A is reduced, i.e. nil(A) = 0. If X is reduced, then A is reduced by
definition. Conversely, if A is reduced and s ∈ OX(U) is nilpotent, then the image of s
in AP is nilpotent for every P ∈ U . This implies that s = 0 in such AP because AP is
reduced. By the sheaf condition, this implies that s = 0 in OX(U).

Lecture 7: October 19

Let X = SpecA. A is integral ⇐⇒ 0 is a prime ideal ⇐⇒ nil(A) = 0 and it is prime
⇐⇒ X is reduced and irreducible.

Theorem 7.1. Let X be a scheme. Then, X is integral ⇐⇒ X is reduced and irreducible.

Note that we have already done the ⇐= direction in the affine case: this is Example 6.7.

Proof. ( =⇒ ) Assume X is integral. Then all the sections are integral domains, and so
X is obviously reduced.

X is irreducible: otherwise, there are nonempty opens U, V ⊂ X such that U ∩ V = ∅.
Without loss of generality assume U, V are affine. But the sheaf condition implies

OX(U ∪ V ) = OX(U)⊕OX(V )

But the direct sum of two rings can never be integral; this is a contradiction.

Now assume that X is reduced and irreducible.

Claim 7.2. For every U ⊂ X open and p ∈ U , there is an open affine W ⊂ U containing
p.

Proof of claim. By definition of schemes, p belongs to an affine V = SpecA ⊂ X. Now
p ∈ U ∩ V and U ∩ V is open in V . Since sets of the form D(b) form a base for the open
sets of the Zariski topology, we can find some D(b) 3 p contained in U ∩ V . Furthermore,
D(b) is affine because D(b) ∼= SpecAb. #

Assume s, t ∈ OX(U) such that st = 0 and s 6= 0. We need to show that t = 0. By the
above claim, we can write U =

⋃
Vi where the Vi = SpecAi are open and affine. Note

that Vi inherits irreducibility and reduced-ness from X; in particular, by Example 6.7, Ai
is integral. Since s 6= 0, there is some Vi such that s|Vi 6= 0. But st|Vi = 0, and by the
integrality of Ai, we have t|Vi = 0.

Now, by irreducibility, for all j we have Vi ∩ Vj 6= ∅. So t = 0 on Vi ∩ Vj , which is an open
subspace of the affine space Vj . On affine spaces, all opens are dense, so t = 0 on all of Vj .

So t|Vj = 0 for all j; since the Vj ’s form an open cover of U , the sheaf condition says that
t|U = 0.

20
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#

Remark 7.3. Let X be an integral scheme. X has a unique generic point, i.e. there is a
unique point η ∈ X such that {η} = X.

Existence: pick any affine SpecA = U ⊂ X, and let η = 0 in SpecA = U .

Uniqueness: if η, η′ are generic points, then for any open affine SpecA = U ⊂ X, η, η′ ∈ U
then η = η′ = 0 in SpecA = U .

For example, if X = AnC then η = 0 in SpecC[t1, · · · , tn] is the generic point. If X =

SpecC[t]/
〈
t`
〉

then η = 〈t〉.

In general, there does not have to be a unique generic point, e.g. when the space is not
irreducible.

Definition 7.4. If X is an integral scheme and η is the generic point, then (OX)η is a
field called the function field of X and denoted by K(X). (If SpecA = U ⊂ X is affine,
then K(X) = Aη is the fraction field of A.)

Proposition 7.5. For all U ⊂ X, the natural map

OX(U)
α→ K(X)

is injective.

Proof. If α(s) = 0 then s|V = 0 for all open affine sets V ⊂ U . By the sheaf condition,
s = 0. #

Example 7.6. Let X = Pnk , where k is a field. Then, since Pn is covered by copies of Pn,
we have K(X) = K(Ank), which is the fraction field of k[t1, · · · , tn], a.k.a. k(t1, · · · , tn).

Definition 7.7. A morphism f : Y → X is an open immersion if f(Y ) is open in X and
f gives an isomorphism (as locally ringed spaces) between Y and U = f(Y ) (where U is
given a sheaf structure by restriction of X). (If F is a sheaf on X, then F|U (V ) = F(V )
for all V ⊂ U .)

We call Y an open subscheme of X. (For example, X = SpecA, Y = D(b) = SpecAb.)

Definition 7.8. A morphism g : Z → X is a closed immersion if g(Z) is a closed
subscheme of X such that g gives a homeomorphism between Z and g(Z), AND such that
OX → g∗OZ is surjective.

A closed subscheme of X is an equivalence class of closed immersions: g : Z → X and
g′ : Z ′ → X are equivalent if there is an isomorphism h : Z → Z ′ such that g = g′h.

Z
g
//

∼=
��

X

Z ′
g′

>>

21
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Example 7.9. Let X = SpecA. For any I / A, the homomorphism A → A/I induces a

morphism Z = SpecA/I
f→ X = SpecA.

This is a closed immersion: f is a homeomorphism between Z and V (I) ⊂ X.

The morphism OX
ϕ→ f∗OZ is surjective: (1) if P /∈ V (I) then (OX)P → (f∗OZ)P = 0;

(2) if P ∈ V (I) then (OX)P = AP → (f∗OX)P = (A/I)P/I is surjective. So the maps on
the stalks are all surjective, which implies that ϕ is surjective.

For any n ∈ N, In also defines a scheme structure on V (I) = V (In), by SpecA/In.

Hard Exercise 7.10. Every closed subscheme of X = SpecA is SpecA/I for some I /A.

Example 7.11. LetX = SpecC[t1, t2] = A2
C. For each a ∈ C let Za = SpecC[t1, t2]/ 〈t1t2 − a〉.

Over R this looks like a hyperbola. Taking “the limit as a → 0” we get Z0, the union of
the two axes: V (t1t2) = V (t1) ∪ V (t2).

Let Z ′a = SpecC[t1, t2]/
〈
at2 − t21

〉
. Again drawing pictures in R2, we get a series of

parabolas that approach {x = 0, y ≥ 0} as a→ 0. So we think “the limit” of the Z ′a’s as
a → 0 is Z0 = SpecC[t1, t2]/

〈
−t21
〉
. Even though V (t21) = V (t1), the scheme remembers

the fact that there seems to be multiplicity going on here: you have the two halves of the
parabola that are collapsed together.

Lecture 8: October 22
Definition 8.1. X,Y are schemes over a scheme S, i.e. we have two morphismsX,Y → S.
The fibred product X ×S Y is a scheme sitting in a commutative diagram

X ×S Y //

��

X

��

Y // S

such that X×S Y satisfies the following universal property: given a commutative diagram

Z //

��

X

��

Y // S

then there is a unique morphism Z → X ×S Y giving a commutative diagram

Z

""

%%

##

X ×S Y //

��

X

��

Y // S
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Theorem 8.2. The fibred product exists and is unique up to unique isomorphism.

First, do the affine case. Suppose S ⊂ SpecA, X ⊂ SpecB, Y = SpecC, and there are
morphisms X,Y → S. Put X ×S Y = SpecB ⊗A C. The morphisms X,Y → S give
morphisms A→ B,C and by basic properties of tensor products we get a diagram

A //

��

B

��

C // B ⊗A C
which satisfies: if there is any other commutative diagram

A //

��

B

��

C // R

then there is a unique homomorphism B ⊗A C → R such that the above diagram factors
through this homomorphism. Now just take the Spec of the rings in this diagram, so we
can prove existence of fibred products in the affine case.

For the general case, cover each scheme with affine schemes appropriately; construct the
fiber product in the affine case, and glue.

Definition 8.3. Suppose X
f→ Y is a morphism, and y ∈ Y . We have natural morphisms

SpecK(y)→ Spec(OY )y → Y

where K(y) := (OY )y/m is called the residue field at y. The first morphism is induced
by the quotient map O(Y )y → (OY )y/m. For the second morphism: take any affine open
U 3 y, and take the morphism OY (U)→ (OY )y which gives Spec(OY )y → SpecOY (U) ∼=
U ⊂ Y .

We define the fiber over y as Xy = SpecK(y)×Y X:

Xy
//

��

X

f

��

SpecK(y) // Y

Example 8.4. Suppose we are given a morphism X → Y = SpecZ (in fact every scheme
has a natural morphism into SpecZ). For example, takeX = SpecZ[t1, t2, t3]/

〈
t21 + t22 − 3t3

〉
.

If y = 0 in Y , then (OY )y = Q (localizing at zero gives the fraction field), and so K(y) = Q.
Then

Xy = SpecK(y)×Y X = SpecQ[t1, t2, t3]/
〈
t21 + t22 − 3t3

〉
If y = 〈p〉 ∈ Y for p prime, then K(y) = Fp (the finite field of p elements). Then

Xy = SpecFp ×Y X = SpecFp[t1, t2, t3]/
〈
t21 + t22 − 3t3

〉
23
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This indicates that we should be looking at solutions over Fp for various primes, which is
exactly what you do in number theory.

Example 8.5. Suppose X is a scheme over a field K (i.e. we have a morphism X →
SpecK), and K ↪→ L is a field extension. We get a diagram

X

��

SpecL // SpecK

We can consider the product SpecL×SpecK X which is a scheme over L.

For example, if X = Ank = SpecK[t1, · · · , tn] then the product is

AnL = SpecL[t1, . . . , tn] = Spec(L⊗K K[t1, · · · , tn])

Example 8.6. Let X = SpecC[t1, · · · , t3]/
〈
t2t3 − t21

〉
. The homomorphism C[u] →

C[t1, t2, t3]/
〈
t2t3 − t21

〉
sending u 7→ t3 induces a dual morphism of schemesX → SpecC[u] =

A1
C. (Geometrically, (a1, a2, a3) 7→ a3. . . but not all the points are of that form (only the

classical ones).)

Let y = 〈u− a〉 for a ∈ C. Then

K(y) = (OY )y/m = K[u]〈u−a〉/ 〈u− a〉〈u−a〉 ∼= K[u]/ 〈u− a〉 ∼= C

Then the fiber is

Xy = SpecK(y)×Y X = Spec
(
C[u]/ 〈u− a〉 ⊗K[u] C[t1, t2, t3]/

〈
t2t3 − t21

〉)
.

Fact 8.7.
A/I ⊗AM ∼= M/IM

So Xy above can be rewritten as Spec[t1, t2]/
〈
at2 − t21

〉
. In particular,

Xy=〈u〉 = SpecC[t1, t2]/
〈
t21
〉

which is not a reduced scheme (it’s a double line).

Example 8.8. Suppose X
f→ Y is a morphism where Y is an integral scheme. You can

pick one fiber that reflects the properties of all the other fibers: the fibre over the generic
point ηy is called the generic fiber.

Definition 8.9. Y is a scheme. Define the n-projective space over Y as PnY = Y ×SpecZPnZ.
(Recall that there are natural morphisms from any scheme to SpecZ, in particular a
morphism PnZ → SpecZ.)

A morphism X
f→ Y is called projective if it factors as

X
∃g
//

  

PnY

��

Y
24
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where g is a closed immersion. This is the analogue of proper morphisms in topology
(inverse image of a compact set is compact).

A morphism Z
h→ Y is quasiprojective if it factors as

Z
∃e //

  

X

f
��

Y

if e is an open immersion and f is a projection.

Example 8.10. PnY → Y is projective for obvious reasons.

If X → PnY is a closed immersion, then composing this morphism with PnY → Y gives a
projective morphism.

If Y = SpecR, and I / R[t0, · · · , tn] is a homogeneous ideal, then the homomorphism

S := R[t0, · · · , tn]→ R[t0, · · · , tn]/I

induces a morphism on schemes

Proj(S/I)→ Proj(S) = PnR
which is a closed immersion.

(But, not every morphism of graded rings gives a closed immersion of schemes.)

Lecture 9: October 24

Definition 9.1. Suppose (X,OX) is a ringed space. An OX-module is a sheaf F on X
such that each F(U) is an OX(U)-module, and the restriction maps are compatible with
the module structure: if s ∈ F(U) and a ∈ OX(U) then (as)|V = a|V · s|V .

A morphism ϕ : F → G of OX -modules is a morphism of sheaves that is compatible with
the module structure: i.e. F(U)→ G(U) is a homomorphism of OX(U)-modules.

The kernel and image of a morphism of OX -modules is again an OX -module.

If Fi is a family of OX -modules, then
⊕
Fi is also an OX -module if the sum is finite,

or if X is Noetherian in the infinite case. (Recall the direct sum of sheaves is defined as
(
⊕
Fi)(U) =

⊕
Fi(U).)

If F and G are OX -modules, then we define the tensor product F ⊗OX G to be the sheaf
associated to the presheaf

U 7→ F(U)⊗OX(U) G(U)
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If f : (X,OX)→ (Y,OY ) is a morphism of ringed spaces, and F an OX -module, then f∗F
is an OY -module (we had to use the morphism OY → f∗OX).

Definition 9.2. Let X = SpecA and M an A-module. We define M̃ as follows:

M̃(U) = {s : U →
⊔
p∈U

Mp : (∗)}

where the conditions (*) are:

(1) For all p, s(p) ∈Mp

(2) For all p, there is some neighborhood W ⊂ U containing p, and m ∈ M and
a ∈ A such that s(q) = m

a for all q ∈W .

By taking restriction maps to be restriction of functions, M̃ is a sheaf. Note that if M = A,

then M̃ = OX .

Theorem 9.3. If X = SpecA and M is an A-module, then:

(1) M̃ is an OX-module

(2) (M̃)P ∼= MP

(3) M̃(D(a)) = Ma

(4) M̃(X) = M

Proof. (1) Trivial from the definition.

(2), (3) and (4): Almost identical to the case where M = A. #

Remark 9.4. Let X = SpecA. Any homomorphism M → N of A-modules gives a

morphism M̃ → Ñ of OX -modules. If

(9.1) 0→M → N → L→ 0

is a complex of A-modules, then we get a complex of sheaves

(9.2) 0→ M̃ → Ñ → L̃→ 0

of OX -modules. Then (9.1) is an exact sequence iff (9.2) is an exact sequence: (9.1) is
exact iff

0→MP → NP → LP → 0

are exact for all P ∈ X, iff

0→ (M̃)P → (Ñ)P → (L̃)P → 0

is exact for all P ∈ X, iff (9.2) is exact.

The same holds for longer complexes.

Definition 9.5. Suppose f : X → Y is a continuous map of topological spaces, and
assume G is a sheaf on Y . We define the inverse image f−1G to be the sheaf associated
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to the presheaf
U → lim−→

V⊃f(U)

G(V )

If f : (X,OX)→ (Y,OY ) is a morphism of ringed spaces, and G is an OY -module, then the
previous inverse image is not an OX -module (but – see below – it is an f−1OY -module).
So define the inverse image f∗G by f−1G ⊗f−1OY OX .

We used the fact:

Claim 9.6. f−1G has a natural module structure over f−1OY .

Proof. From the morphism OY → f∗OX we get a morphism f−1OY → f−1f∗OX and we
also have a natural morphism f−1f∗OX → OX . So we get a morphism f−1OY → OX .

#

Theorem 9.7. Suppose α : A → B is a homomorphism of rings, X = SpecB, Y =

SpecA. So, we have a morphism X
f→ Y . Then,

(1) If M,N are A-modules, then ˜(M ⊗A N) = M̃ ⊗OY Ñ .

(2) If M,N are A-modules, then ˜(M ⊕N) ∼= M̃ ⊕ Ñ
(3) If L is a B-module, then f∗L̃ ∼= .̃AL where .AL is just L considered as an A-module.

(4) If M is an A-module, then f∗M̃ ∼= M̃ ⊗A B.

Proof. Define a map

P = M̃(U)⊗OY (U) Ñ(U)→ ˜(M ⊗A N)(U) where s⊗ t 7→ r = (p 7→ s(p)⊗ t(p))

If s (respectively t) is locally given by m
a (respectively n

b ) then r is given by m⊗n
ab . We get

a morphism of presheaves ϕ : P → M̃ ⊗A N from which we get a morphism of sheaves
ϕ+ : P+ → M̃ ⊗A N (P+ means sheafification). Note P+ = M̃ ⊗OY Ñ .

It is enough to show that ϕ+ is an isomorphism. On the stalks, we have ϕ+
P : P+

P = PP =

limP∈U M̃(U)⊗OY (U) Ñ(U)→ (M̃ ⊗A N)P ∼= (M ⊗A N)P ∼= MP ⊗AP NP . But this limit
is isomorphic to MP ⊗AP NP .

So ϕ+
P is an isomorphism, and hence ϕ+ is an isomorphism.

(2) More or less the same as (1) only easier.

(3) We will define a morphism ϕ : .AL̃→ f∗L̃. For each open U ⊂ Y we define .AL̃(U)→
(f∗L̃)(U) ∼= L̃(f−1U) as follows: s ∈ .AL̃(U) is a map s : U →

⊔
Q∈U .ALQ, and we want

to get a map t : f−1U →
⊔
P∈f−1U LP . If f(P ) = Q then we have a homomorphism

.ALQ
βP→ LP . So send s 7→ t(P ) = βP (s(Q)), where Q = f(P ).
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If s is locally given by `
a then t is locally given by `

α(a) . Recall, f−1(D(a)) = D(α(a)).

Now we have a homomorphism

.AL̃(D(a))→ (f∗L̃)(D(a)) = L̃(D(α(a))) = Lα(a)

and the goal is to prove it’s an isomorphism. L is a module over B; .AL is a module
over A, but only via this homomorphism α. So .ALa ∼= Lα(a) just by going through the
definition of how you define the localisation. ϕQ is an isomorphism for all Q ∈ Y because
for every open set U containing Q, there exists a such that a ∈ D(a) ⊂ U . (Stalks can be
calculated using only open sets of the form D(a).)

(4) Exercise (not examinable).

#

Lecture 10: October 26

Definition 10.1. Let X be a scheme, and F an OX module. We say that F is quasico-
herent if, for all x ∈ X, there is an open affine neighborhood U = SpecA ⊂ X (containing

x), and an A-module M such that F|U ∼= M̃ . We say that F is coherent if we can choose
M to be finitely-generated as an A-module.

Example 10.2. Suppose X is a scheme. Then OX is coherent because, for all x ∈ X,

there is some open affine x ∈ U = SpecA ⊂ X and OX |U = Ã.

Example 10.3. Let A be a DVR (so there are only two primes, 0 and m, and one nontrivial
closed set m), and F the OX -module defined as:{

F(X) = 0

F(U) = K = Frac(A)

where U = X − m if m is the maximal ideal of A. Since the only open cover is X itself,
there’s nothing to check for the sheaf condition.

Then F is not quasicoherent: otherwise, there would be some open affine V ⊂ X around
m such that F|V is the sheaf of some module. But then the generic point also belongs

to V , so V = X. Thus, there must be some A-module M such that F = M̃ . However,
0 = F(X) = M , so M = 0, a contradiction.

Lemma 10.4. Let X = SpecA, F an OX-module, and M = F(X). Then, there is a

natural morphism M̃ → F .

Proof. For any b ∈ A, we define a homomorphism Mb = M̃(D(b)) → F(D(b)) by m
br 7→

1
br ·m|D(b). Since each open U ⊂ X is covered by open sets of the form D(b), the above

maps determine a morphism M̃ → F . #

Corollary 10.5. Let X = SpecA, and M be an A-module. Then, M̃ |D(b)
∼= M̃b. (Moral:

Quasicoherent sheaves are covered by arbitrarily small quasicoherent pieces.)
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Proof. By the lemma, there is a morphism M̃b → M̃ |D(b). Now ψp : (M̃b)p → (M̃ |D(b))p is
an isomorphism for each p ∈ D(b) (as both these rings are just Mp), so ψ is an isomorphism.

#

Definition 10.6. We say that a scheme X is Noetherian if we can cover X by finitely
many open affine sets U1, · · · , Ur such that Ui = SpecAi where Ai is Noetherian.

Exercise 10.7. If X is Noetherian then for every open affine U = SpecA ⊂ X, A is
Noetherian.

Theorem 10.8. Suppose X is a scheme. If F is quasicoherent, then for every open affine

U = SpecA ⊂ X, we have F|U = M̃ for some A-module M .

If F is coherent, then for every open affine U = SpecA ⊂ X, we have F|U = M̃ for some
finitely-generated A-module M .

(In other words, it doesn’t matter what kind of open affine covering you take.)

Proof. Pick an open affine U = SpecA ⊂ X. For every point x ∈ U , there is some open

affine subscheme V = SpecB such that F|V ∼= Ñ for some B-module N . The problem is
that maybe V 6⊂ U . But by Corollary 10.5, we can replace V with some SpecBb. Thus,
start by assuming V ⊂ U . The D(b) form a basis for the topology, so you can find some
D(b) ⊂ U ∩ V . See Problem #15 of Example sheet 1. Replace X by U and hence assume
X = SpecA.

Arguing similarly to the above, we can assume there exist b1, · · · , br such that X =
⋃
D(bi)

and such that F|D(bi) = M̃i for some Abi-module. Let fi : D(bi) → X be the inclusion
map. Then D(bi)∩D(bj) = D(bibj) and there is an inclusion, say fij into X. We have an
exact sequence

0→ F →
⊕
i

(fi)∗F|D(bi)

G

→
⊕
i,j

(fij)∗F|D(bibj)

N

For any open set U , we send s ∈ F(U) to (s|D(bi)∩U ), and we send (ti) ∈ G(U) to

ti|D(bibj)∩U − tj |D(bibj)∩U

This sequence is exact because of the sheaf property of F : if ti|D(bibj)∩U = tj |D(bibj)∩U for

all i, j then the ti’s are a consistent collection of sections on a covering D(bi) ∩ U of U ,
and therefore come from a global section on U .

By Theorem 9.7(2) and (3), the last two sheaves in the sequence are given by

G =
⊕̃

.AMi for some Abi-module Mi

N =
⊕̃

.AMij for some Abibj -module Mij .
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We have an exact sequence

0 = F(X)→
⊕

.AMi →
⊕

.AMij

which suggests defining M := F(X). Then we get a sequence

0→ M̃ →
⊕̃

.AMi = G →
⊕̃

.AMij = N

Since the kernel of a morphism is unique, F = M̃ .

Note that taking sections is an exact functor because of the sheaf property.

The Noetherian case follows by the same argument. #

Theorem 10.9. Suppose X is a scheme, ϕ : F → G is a morphism of quasicoherent
sheaves. Then ker(ϕ) and im(ϕ) are again quasicoherent.

If X is Noetherian, the same is true for coherent sheaves.

Proof. This is a local statement, so we can replace X by any open affine subscheme SpecA.

F and G are quasicoherent so say F = M̃ and G = Ñ for some A-modules M and N . The

morphism ϕ : F → G determines a homomorphism of modules M
α→ N . Let K = ker(α).

Then we get an exact sequence

0→ K →M
α→ N

from which we get an exact sequence of sheaves

0→ K̃ → M̃
ϕ→ Ñ .

(You have to check that you get the same morphism ϕ out: see problem on second example
sheet).

So ker(ϕ) = K̃ is quasicoherent. For im(ϕ), apply a similar argument.

The same proof works in the Noetherian case. #

Lecture 11: October 29

Theorem 11.1. Let f : X → Y be a morphism of schemes, F an OX-module, G an
OY -module. Then,

(1) If G is quasicoherent, then f∗G is also quasicoherent.
(2) If G is coherent, then f∗G is coherent.
(3) If F is quasicoherent, then f∗F is quasicoherent if:

• For all y ∈ Y , there is some open affine W ⊂ Y around y such that f−1W
is a finite union

⋃
Ui of open affines, and

• Ui ∩ Uj is a finite union
⋃
Uij of open affines.
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(These conditions are satisfied when X is Noetherian.)

Proof. (1) We can assume X = SpecB, Y = SpecA. Then G = M̃ , and so f∗G = M̃ ⊗A B
by Theorem 9.7(4).

(2) Same as (1): we can take M to be finitely generated, which makes the tensor product
also finitely generated.

(3) This is a local property, so we can assume that Y is affine. Let fi : Ui → X and
fij : Uijk → X be the inclusions. We have an exact sequence

0→ F →
⊕

(fi)∗(F|Ui)→
⊕

(fij)∗(F|Uijk)

where the first nontrivial map is just restriction s 7→ (s|Ui) and the second map is

(si) 7→ si|Uijk − sj |Uijk .
So, we get an exact sequence

0→ f∗F →
⊕

f∗(fi)∗F|Ui
L

→
⊕

f∗(fijk)∗F|Uijk
M

Now L is quasicoherent and M is quasicoherent. Since f∗F = ker(L → M), f∗F is
quasicoherent by Theorem 10.9. #

Example 11.2. Find an example of f : X → Y , F coherent, X and Y Noetherian, such
that f∗F is not coherent. (Remember: if f is projective, then it is known that f∗F is
coherent.)

Definition 11.3. An ideal sheaf I on a scheme X is an OX -module such that I ⊂ OX
(i.e. I(U) ⊂ OX(U), i.e. there is an injective morphism I → OX).

Theorem 11.4. Suppose X is a scheme. Then there is a 1-1 correspondence between the
following sets:

{ closed subschemes of X } ⇐⇒ { quasicoherent ideal sheaves }
If X is Noetherian you can replace quasicoherent with coherent.

Proof. Suppose that Y is a closed subscheme, and f : Y → X is its closed immersion.
Remember we have a morphism ϕ : OX → f∗OY which is surjective. Now take I = kerϕ.
This is clearly an ideal sheaf, but we have to show that it’s quasicoherent. It is enough to
show that f∗OY is quasicoherent. This is a local property, so we can assume X = SpecA
is affine.

We show that f satisfies the conditions in the previous theorem (beware the notation is
not the same). Take an open affine cover Y =

⋃
Ui and let Wi be an open set in X such

that Ui = f−1Wi (because the topology is a restriction of the topology of X). We can
find a family of bα ∈ A such that D(bα) ⊂Wi for some i, or D(bα) ⊂ X\Y and such that
{D(bα)} gives a covering of the Wi.

So X =
⋃
D(bα), and 〈{bα}〉 = A – otherwise, 〈{bα}〉 is contained in some maximal ideal,

which is prime, and is in no D(bα). But when you have an ideal generating the ring, you
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only need finitely many generators because 1 is some finite linear combination of generators
b1, · · · , br, which therefore generate all of A. So we can assume X = D(b1) ∪ · · · ∪D(br).
For all α with 1 ≤ α ≤ r, f−1D(bα) is an open affine subscheme of some Ui, hence of Yi.
(If g : SpecB → SpecA is a morphism induced by h : A→ B, then g−1D(a) = D(h(a)).)
Now, Y = f−1D(b1) ∪ · · · ∪ f−1D(br).

Also note that D(bα) ∩D(bβ) = D(bα · bβ), which is affine, hence f−1D(bα) ∩ f−1(bβ) is
affine for all α, β. So this condition is easy to satisfy, and you don’t even need to take
unions. Then, by the previous theorem, f∗OY is quasicoherent, so I is quasicoherent.

Conversely, assume that we are given a quasicoherent ideal sheaf I ⊂ OX . If X = SpecA
then I is given by an ideal (it’s a module, but submodules of rings are ideals.) We construct
the corresponding closed subscheme Y locally. First we define Y topologically. For each

open affine U = SpecA ⊂ X, define YU = V (I) ⊂ U , and I|U = Ĩ. Then Y is given by
the union of all the YU . But we need to verify for each U = SpecA and U ′ = SpecA′, that
YU ∩ U ′ = YU ′ ∩ U . Everything is local, so we can work with the corresponding rings.

Pick p ∈ YU ∩ U ′, so p ∈ U ′. There is some b′ ∈ A′ such that p ∈ D(b′) ⊂ U (i.e.
you’re surrounding p by a little affine open that sits in the intersection). We also have
homomorphisms

A→ A′b′ ← A′.

We have an ideal I ′ ⊂ A′ such that I|U ′ = Ĩ ′, and I ⊂ A similarly. So I|D(b′) = Ĩ ′b′ , which
corresponds to the ideal I ′b′ ⊂ A′b′ . Think about this and see that I · A′b′ = I ′b′ . Abuse
notation so p refers to the image of the prime in any of the above rings. I ⊂ p =⇒ I ′b′ ⊂
p =⇒ I ′ ⊂ p. This last statement is exactly saying p ∈ YU ′ ∩ U .

So we have shown that YU ∩U ′ ⊂ YU ′ ∩U . The same argument does the reverse direction.
So, Y is well-defined.

Denote by G the sheaf associated to the presheaf U 7→ OX(U)/I(U). Then we have an
exact sequence

I → OX → G → 0

(i.e. G is the quotient of sheaves). Now note that G|X\Y = 0. This implies that G = f∗OY
for some sheaf OY on Y .

We can more directly define OY as OY (W ) = G(U) for any open U such that U ∩Y = W .
This is well-defined, exactly because G|X\Y = 0. Rewrite the exact sequence as

0→ S → OX → f∗OY → 0

Taking OY as the structure sheaf on Y , f : Y → X is a closed immersion. In particular,
Y is a closed subscheme.

#

32



Algebraic geometry Lecture 12

Corollary 11.5. If X = SpecA, then we have a 1-1 correspondence

{ closed subschemes of X } ⇐⇒ { ideals of A }.

Proof. Just apply the previous theorem. #

Lecture 12: October 31

Suppose S =
⊕

d≥0 Sd is a graded ring, and M =
⊕

`∈ZM` a graded S-module (an

S-module such that Sd ·M` ⊂ Md+` – note that negative degrees exist). Define M̃ on
X = ProjS as

M̃(U) = {s : U →
⊔
p∈U

M(p) : (∗)}

where the conditions (*) are, as before,

• For every p, s(p) ∈M(p).
• For every p, there is some neighborhood W ⊂ U of p and some m ∈ M , a ∈ S

that are homogeneous of the same degree, such that s(q) = m
a ∈ M(q) for all

q ∈W .

Then M̃ is an OX -module. In particular, S̃ = OX .

Theorem 12.1. We have the following properties:

(1) M̃P
∼= M(P )

(2) For all b ∈ S homogeneous of positive degree, then M̃ |D+(b)
∼= M̃(b).

(3) M̃ is quasicoherent.

Proof. (1) and (2) are the same as the case M = S.

(3) follows from (2), because the open sets D+(b) form a cover of X. #

Definition 12.2 (M(n);OX(n);F(n)). Let S be a graded ring. If M is a graded S-
module, define M(n) to be the module whose degree-` elements are Mn+`.

We define OX(n) = S̃(n).

We define F(n) = F ⊗OX OX(n) for any OX -module F .

It is easy to see that M(n) = M ⊗S S(n).

Definition 12.3. An OX -module L is invertible if for all p ∈ X, there is some open U 3 p
such that L|U ∼= OU . (This is the analogue of line bundles.)
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Theorem 12.4. Let S =
⊕

d≥0 Sd be a graded ring which is generated by S1 as an S0-

algebra (for example, a polynomial ring). Then,

(1) OX(n) are invertible sheaves;

(2) If M,N are S-modules, then M̃ ⊗OX Ñ ∼= M̃ ⊗S N .

(3) If M is an S-module, then M̃(n) ∼= M̃(n) and

OX(m)⊗OX OX(n) ∼= OX(m+ n)

.
(4) If α : S → T is a surjective graded homomorphism (one that preserves degrees)

of graded rings, and f : Y = ProjT → X = ProjS is the corresponding closed
immersion, then

• f∗L̃ = L̃⊗S T
• f∗L̃ = .̃SL
• f∗OX(n) = OY (n)
• f∗OY (n) = f∗OY ⊗OX OX(n)

Proof. (1) If b ∈ S1 then

OX(n)|D+(b)
∼= S̃(n)|D+(b)

∼= S̃(n)(b)

But we have an isomorphism S(n)(b) → S(b), that sends a
br 7→

a
br+n

(because a and br have
the same degree). Check using commutative algebra that this is an isomorphism (using
the fact that deg b = 1). So,

OX(n)|D+(b)
∼= S̃|(b) = OD+(b)

Since S is generated by elements of S, such D+(b) cover all of X.

(2) We define a homomorphism

M̃(D+(b))⊗OX(D+(b)) Ñ(D+(b))→ M̃ ⊗S N(D+(b))

where b ∈ S1. This is the same as a homomorphism

M(b) ⊗S(b)
N(b) → (M ⊗S N)(b)

Define this by sending
m

br
⊗ n

br′
7→ m⊗ n

br+r′

Since such D+(b) give a covering of X, the above homomorphism determines a homomor-
phism

M̃(U)⊗OX(U) Ñ(U)→ M̃ ⊗S N(U)

for all open U ⊂ X. You have to show that this is compatible on restrictions. The
homomorphism just defined (for D+(b)) is an isomorphism of S(b)-modules. This means
that the morphism

M̃ ⊗OX Ñ → M̃ ⊗S N
determined by the above homomorphism is an isomorphism.
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(3) Apply (2):

M̃(n) := M̃ ⊗OX OX(n) ∼= M̃ ⊗OX S̃(n) ∼= ˜M ⊗S S(n) ∼= M̃(n)

Moreover,

OX(m)⊗OX OX(n) ∼= S̃(m)⊗OX S̃(n) ∼= ˜S(m)⊗S S(n) ∼= ˜S(m+ n) ∼= OX(m+ n)

where the penultimate isomorphism comes from the map S(m)⊗S S(n)→ S(m+n) given
by a⊗ a′ 7→ a · a′.

(4) We define a homomorphism

(f∗L̃)(D+(c))→ L̃⊗S T (D+(c))

(c ∈ T, deg c = 1. Also take b ∈ S1, with b→ c.) That is,

(f∗L̃)(D+(c)) = (f∗L̃)|D+(c)(D+(c)) = (f∗(L̃|D+(b)))(D+(c))

noting that f−1D+(b) = D+(c), and that we have a map D+(c)
f→ D+(b) induced from

f : Y → X.

· · · ∼= ˜L(b) ⊗S(b) T(c)(D+(c)) ∼= L(b) ⊗S(b) T(c)

and
˜(L⊗S T )(D+(c)) ∼= (L⊗S T )(c)

and we define
L(b) ⊗S(b) T (c)→ (L⊗S T )(c)

by sending
`

br
⊗ t

cr′
7→ `⊗ t

cr+r′

which is an isomorphism. Gluing together all such homomorphisms determines an isomor-

phism f∗L̃ ∼= L̃⊗S T .

Similarly, prove f∗K̃ ∼= .̃SK.

Now,

f∗OX(n) = f∗S̃(n) ∼= ˜S(n)⊗S T ∼= T̃ (n) ∼= OY (n)

Similarly,

f∗OY (n) = f∗T̃ (n) = .̃ST (n) ∼= ˜.ST ⊗S S(n) ∼= f∗OY ⊗OX(n)

#

Definition 12.5. Let X = ProjS, F an OX -module. Define Φ∗(F) =
⊕

n∈ZF(n)(X)
which is an S-module via the maps

OX(d)(X)⊗F(n)(X)→ F(d+ n)(X)

Sd → OX(d)(X)
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Remark 12.6. Suppose S is a graded ring generated as an S0-algebra by finitely many
elements of degree 1. (The most important example is the polynomial ring S0[t0, · · · , tn],
or a quotient of it.)

(1) If F is a quasicoherent OX -module, then F ∼= Γ̃∗(F). (But there could be many
different modules that define the same sheaf.)

(2) If S = S0[t0, · · · , tn], and I a quasicoherent ideal sheaf, then one can show that

I := Γ∗(I) ⊂ Γ∗(OX) = S

Then I = Ĩ. Every closed subscheme is defined by some homogeneous ideal.
(3) If S0 is Noetherian, then for each coherent sheaf F , there is a morphism⊕

finite

OX � F(n)

for some n. Equivalently, ⊕
finite

OX(−n) � F

Lecture 13: November 2

Definition 13.1. Suppose (X,OX) is a ringed space, F ,G are OX -modules. We say that
F is locally free of rank n if, for every x ∈ X, there is some neighborhood U ⊂ X of x
such that

F|U ∼= OU ⊕ · · · ⊕ OU
n times

These are the analogues of vector bundles in differential geometry.

If F is locally free of rank n = 1, we call F invertible. These are the analogues of line
bundles.

We define HomOX (F ,G) as

HomOX (F ,G)(U) =

{
ϕ : F|U → G|U :

ϕ is a morphism

of OX -modules

}
Definition/ Theorem 13.2. Let (X,OX) be a ringed space. Then, the set of invertible
sheaves (up to isomorphism) forms an abelian group called the Picard group of X and
denoted by Pic(X).

Proof. Defining the group operation: If L, M are invertible, define the product to be
L ⊗M. Note that, for all x ∈ X, there is some neighborhood U of x such that L|U ∼=
OU ∼=M|U . Thus

L ⊗OXM|U ∼= L|U ⊗OU M|U ∼= OU ⊗OU OU ∼= OU
So the tensor product is an invertible sheaf as well. The identity element is just OX : for
any OX -module F , we have F ⊗OX OX ∼= F .
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Defining inverses: For any invertible sheaf L, define L−1 = HomOX (L,OX). You should
think of this as the dual of a vector space. First define a homomorphism

L−1(U)⊗OX(U) L(U)→ OX(U)

for each U , to be the evaluation map: ϕ⊗s 7→ ϕU (s). This gives a morphism L−1⊗OXL
Λ→

OX . Now Λ is an isomorphism as we can check locally: for all x ∈ X, there is some W 3 x
such that L|W ∼= OW ; then

L−1|W ⊗OW L|W
Λ|W→ OW is the same as OW ⊗OW OW ∼= OW → OW

that is an isomorphism.

Finally, it is easy to check that if L, M, N are invertible, then L ⊗OX (M⊗OX N ) ∼=
(L ⊗OXM)⊗OX N and L ⊗OXM⊗M⊗OX L. #

Example: remember that OX(n) from the previous lecture are invertible sheaves.

Definition 13.3 (Cartier divisors and divisor class group). Let X be an integral scheme,
η ∈ X is the generic point, K = Oη is the function field. (For ease of notation, instead of
(OX)P we just write OP .)

Recall, for any open U ⊂ X, the natural map OX(U)→ K is injective. (This comes from
the fact that the map from an integral domain to its field of fractions is injective.) So just
regard the elements of OX(U) as elements of K.

A Cartier divisor D is a system (Ui, fi) where X =
⋃
Ui, the Ui are open, and 0 6= fi ∈ K,

such that fi
fj

and
fj
fi
∈ OX(Ui ∩ Uj). (This is analogous to meromorphic functions in

complex analysis: on a neighborhood, two of them have the same zeroes and poles.) Two

systems (Ui, fi) and (Vα, gα) define the same Cartier divisor if for all i, α, fi
gα

and gα
fi

are

in OX(Ui ∩ Vα).

We say that a Cartier divisor D = (Ui, fi) is equivalent to 0 (written D ∼ 0) if D = (X, f)
for some f ∈ K.

If D = (Ui, fi) and E = (Vα, gα), then define D + E = (Ui ∩ Vα, figα).

For a Cartier divisor D = (Ui, fi), define −D = (Ui,
1
fi

).

We say D ∼ E if D − E = D + (−E) ∼ 0.

Define the divisor class group to be

Div(X) = abelian group generated by Cartier divisors

/
∼

where ∼ is the equivalence relation defined above.
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Definition/ Theorem 13.4. Let X be an integral scheme. Then,

(1) For each Cartier divisor D = (Ui, fi), we define an OX -module OX(D) as:

OX(D)(U) = {h ∈ K : hfi ∈ OX(U ∩ Ui) ∀i}
and OX(D) is invertible. (Actually, every invertible sheaf can be constructed this
way, but we won’t prove this here.)

(2) If D,E are Cartier divisors, OX(D)⊗OX OX(E) ∼= OX(D + E).
(3) OX(D)−1 ∼= OX(−D).
(4) D ∼= E ⇐⇒ OX(D) ∼= OX(E)

For (3), show that OX(−D) satisfies the property of being an inverse. For (4), replace D
with D − E and E with 0, so wlog D ∼= 0.

Proof. (1) It is easy to see that OX(D) is an OX -module (the restriction maps are just
induced by K).

OX(D) is invertible: this is a local statement, so we can replace X by some Ui and hence
assume that D = (X, f). Now define

OX(D)(U)→ OX(U) where h 7→ hf

for all open sets U ⊂ X; it is easy to see that this is an isomorphism.

(2) For each open U ⊂ X, define

OX(D)(U)⊗OX(U) OX(E)(U)→ OX(D + E)(U) where h⊗ e 7→ he

If D = (Ui, fi) and E = (Vα, gα), then hfi ∈ OX(Ui ∩ U) and egα ∈ OX(U ∩ Vα) so
hefigα ∈ OX(U ∩ Ui ∩ Vα) for all i, α, so he ∈ OX(D + E)(U).

So we get a morphism OX(D) ⊗OX OX(E) → OX(D + E) which we can check to be an
isomorphism locally, hence globally.

(3) OX(−D)⊗OX OX(D) ∼= OX(0) ∼= OX . So OX(−D) = OX(D)−1 because inverses are
unique in Pic(X).

(4) The claim is the same as showing that D ∼ 0 ⇐⇒ OX(D) ∼= OX . (D ∼= E ⇐⇒
D−E ∼= 0, and by the above, OX(D)⊗OX(−E) ∼= Id ⇐⇒ OX(D−E) ∼= Id, so replace
D with D − E and E with 0).

( =⇒ ) D = (X, f). Then define a homomorphism OX(D)(U)→ OX(U) sending h 7→ hf ,
which is an isomorphism, hence giving an isomorphism OX(D) ∼= OX .

( ⇐= ) Conversely, assume OX(D) ∼= OX , and say D = (Ui, fi). Pick an isomorphism
ϕ : OX → OX(D). Let f ∈ OX(D)(X) be the image of 1 ∈ OX(X). Then, fi

f−1 = ffi ∈
OX(Ui) for all i. On the other hand, ϕ gives an isomorphism OX(Ui) → OX(D)(Ui).
Now 1

fi
∈ OX(D)(Ui). There must be some gi that maps to 1

fi
. So 1

fi
= gif , and so

f−1

fi
= 1

fif
∈ OX(Ui). That is, D = (Ui, fi) = (X, f−1) and so D ∼ 0.
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#

Lecture 14: November 5

Sheaf of differential forms.

Definition 14.1. Suppose B is an A-algebra. For each b ∈ B let db be a symbol. Define

ΩB/A = Free B-module generated by all db

/
N

where N is generated by the following elements:

• da (for all a ∈ A)
• d(b+ b′)− d(b)− d(b′) (for all b, b′ ∈ B)
• d(bb′)− bd(b′)− b′d(b) (for all b, b′ ∈ B)

We call ΩB/A the module of differentials of B over A. The module ΩB/A satisfies the
following universal property: if α : B → M is any map from B to a B-module M such
that α(a) = 0 for all a ∈ A, α(b + b′) = α(b) + α(b′), and α(bb′) = α(b)b′ + bα(b′), then

there is a unique B-homomorphism ΩB/A
β→M such that we have a commutative diagram

B
b7→db //

α
��

ΩB/A

β
||

M

Example 14.2. Suppose B = A[t1, · · · , tn]. Then ΩB/A is free, generated by dt1, · · · , dtn.
To see this, define

α : B →M =
n∑
1

B · dti

free module

where α(f) =
∑ ∂f

∂ti
dti

where ∂
∂ti

is taken as in calculus. Then α(ti) = dti. Then, by the universal property of
ΩB/A we have a diagram

B
ti 7→dti //

α
��

ΩB/A

β
||

M

It is easy to see from the definition of ΩB/A that ΩB/A is generated as a B-module by
dt1, · · · , dtn. Now β is a surjective homomorphism, and M is free, so β is an isomorphism,
and ΩB/A is free.

Definition 14.3. Assume f : X → Y is a morphism of schemes. If Y = SpecA and

X = SpecB, then we define ΩX/Y = Ω̃B/A (a sheaf on X).
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In general, when X and Y are not affine, cover Y by open affine schemes Ui, and cover each
f−1Ui by open affine schemes Vi,α. Now for each i, α we have ΩVi,α/Ui and we glue them

all together to form a sheaf ΩX/Y on X. (One has to check that ΩVi,α/Ui are compatible

intersections.)

We call ΩX/Y the sheaf of relative differential forms of X over Y .

Example 14.4. Let X = AnA, Y = SpecA. Then ΩX/Y = ˜ΩA[t1,··· ,tn]/A =
⊕n

1 OX . (This
is a free sheaf.)

Example 14.5. LetX = PnA := ProjA[t0, · · · , tn], Y = SpecA. CoverX byD+(T0), · · · , D+(tn).
For each i, D+(ti) ∼= AnA, so ΩD+(ti)/Y is free.

We glue all the sheaves ΩT+(ti)/Y together to get ΩX/Y . This doesn’t say much: do you
have global sections? Who knows.

Theorem 14.6. Let Y = SpecA, X = PnY = PnA. Then, we have an exact sequence

0→ ΩX/Y →
n+1⊕

1

OX(−1)→ OX → 0

The proof of this theorem is not examinable. Let S = A[t0, · · · , tn]; X = ProjS. Define

L =

n+1⊕
1

S(−1)

Note that if e0 = (1, 0, 0, · · · ), and e1 = (0, 1, 0, · · · ), etc., are of degree 1 (ei ∈ L), then

L =
∑n

0 Sei. Now L̃ =
⊕n+1

1 OX(−1), S̃ = OX . Define α : L→ S by α(
∑
giei) =

∑
giti

(note that this preserves degrees). Put M = kerα. So, we have an exact sequence

0→M → L
α→ S Then, we get an exact sequence

0→ M̃ → L̃ =

n+1⊕
1

OX(−1)→ S̃ = OX → 0

That is, L → S is not surjective, but L̃ → S̃ is; note that this can never happen in the
affine case. But it’s true here, because L(ti) → S(ti) is surjective for all ti (and surjectivity
is a local statement).

It is enough to show that ΩX/Y
∼= M̃ . For each ti, ΩX/Y |D+(ti) is free, and M̃ |D+(ti)

∼=
M̃(ti). Write B = A[ t1t0 , · · · ,

tn
t0

]. We will define a morphism

ΩX/Y |D+(t0) → M̃ |D+(t0)

(one can define similar morphisms for each other ti). This is the same as

˜
Bd

t1
t0

+ · · ·+Bd
tn
t0
→ M̃(t0)
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and this we define by

Bd
tn
t0

+Bd
tn
t0

λ0→M(t0) where

n∑
1

fid
ti
t0
7→
(
− t1
t20
f1 − · · · −

tn
t20fn

)
e0 +

f1

t0
e1 + · · ·+ fn

t0
en

If the RHS=0, then all the fi’s are zero; so this is surjective. I claim it’s also surjective.

Suppose g0t0+···+gnen
tr0

∈M(t0) (assume deg(giei) = r). SinceM(t0) = ker
(⊕n+1

1 S(−1)(t0)

)
→

S(t0),
g0t0 + · · ·+ gntn

tr0
∈ S(t0).

Now, by some magic, we can check that

λ0(
g1

tr−1
0

d
t1
t0

+ · · ·+ gn

tr−1
0

d
tn
t0

)

=

(
− t1
t20

g1

tr−1
0

+ · · ·+ tn
t20

gn

tr−1
0

)
e0 +

g1

tr0
e1 + · · ·+ gn

tr0
en

=
1

t0

(
− t1g1

tr0
− · · · − tngn

tr0

)
e0 + · · ·

=
1

t0

t0g0

tr0
e0 + · · · = g0e0

tr0
+ · · ·+ gnen

tr0
= ω.

The way the λi’s are defined gives a compatible way of gluing all the isomorphisms

ΩX/Y |D+(ti) → M̃ |D+(ti) into a global isomorphism ΩX/Y → M̃ . #

Corollary 14.7. Under the same assumptions as in the theorem, we have ΩX/Y (X); i.e.
there is no global differential on PnA.

Proof. By the theorem,

ΩX/Y (X) ⊂
n+1⊕

1

OX(−1)(X).

But I claim the second sheaf doesn’t have any global sections (second example sheet). #

Before next lecture: go learn some category theory.

Lecture 15: November 7

RECALL: a category has a collection of “objects” and for each two objects A, B, it has
a set of “morphisms from A to B”.

An abelian category, in this course, means one of the following:

• the category of abelian groups (denoted Ab), where the objects are abelian
groups, and the morphisms are homomorphisms of abelian groups;
• the category of modules over a ring A (denoted M(A));
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• the category of sheaves on a topological space X (denoted by Sh(X)), where the
objects are sheaves, and morphisms are morphisms of sheaves.
• the category of OX -modules on a ringed space (X,OX) (denoted M(X));
• the category of quasicoherent sheaves on a scheme X (denoted by Qcoh(X)).

Definition 15.1. Suppose A is an abelian category. Then:

• A complex is a sequence

A• : · · · → A−1 → A0 d0→ A1 d1→ · · ·
such that di+1 ◦ di = 0.
• For a complex A• we define the ith cohomology of A•:

hi(A•) = ker di/ imi−1

(i.e. this measures how far your sequence is from being exact: A• is exact at Ai
⇐⇒ hi(A•) = 0.).
• A chain map between two complexes A• and B• is a commutative diagram

· · · // Ai−1 //

��

Ai //

��

Ai+1 //

��

· · ·

· · · // Bi−1 // Bi // Bi+1 // · · ·
• A chain map A• → B• induces maps hi(A•)→ hi(B•). (check this)
• An exact sequence of complexes is a sequence 0 → A• → B• → C• → 0 such

that, for every i, the sequence 0→ Ai → Bi → Ci → 0 is exact.
• For an exact sequence 0→ A• → B• → C• → 0 we get a long exact sequence (in

a natural way)

· · · → hi−1(C•)→ hi(A•)→ hi(B•)→ hi(C•)→ hi+1(A•)→ hi+1(B•)→ · · ·
(Check this by diagram chase.)

Definition 15.2. Suppose that F : A → B is a covariant functor between abelian cat-
egories. (For example, if A = Sh(X), and B = Ab, then there is a functor F : A → B
defined by F (F) = F(X).) We say that F is additive if the induced map Hom(A,A′) →
Hom(F (A), F (A′)) is a homomorphism of abelian groups.

We say that F is left exact if it is additive and such that, for every exact sequence
0→ A′ → A→ A′′ → 0, the sequence

0→ F (A′)→ F (A)→ F (A′′)

is exact.

Similarly, we can define a right exact functor. A functor is exact if it is both right and
left exact. (For example, the global sections functor is left exact but not right exact.)
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Definition 15.3. Suppose that A is an abelian category. An object I ∈ A is called
injective if, for every diagram

0 // A′

��

// A

~~

I

of solid arrows that is exact (i.e. A′ → A is injective), there is a map A→ I that makes the
diagram commute. (These are good for proving theorems, but are useless for computing
anything.)

Example 15.4. If A = Ab, then Q is injective.

Definition 15.5. For an object A, an exact sequence

0→ A→ I0 → I1 → · · ·
is called an injective resolution if all the Ii are injective objects.

We say that A has enough injectives if every object in A has an injective resolution.

Definition 15.6. Suppose F : A → B is a covariant left exact functor (you should be
thinking of the global sections functor Sh → Ab). Suppose A has enough injectives (we
will show in the next lecture that Sh does). For each object A in A, we take an injective
resolution

0→ A→ I0 → I1 → · · ·
and apply F to get a complex

(15.1) 0
d−1

→ F (I0)
d0→ F (I1)

d1→ · · ·
(This will not, in general, be exact.)

Define RiF (A) = hi((15.1)) = ker di/ im di−1. Then RiF : A → B are functors that are
called the right derived functors. (You can check that this does not depend on the injective
resolution chosen.)

Remark 15.7.

(1) Any morphism A→ A′ induces a morphism RiF (A)→ RiF (A′).
(2) For any exact sequence 0→ A′ → A→ A′′ → 0 we get a long exact sequence

0→ · · · → Ri−1F (A′′)→ RiF (A′)→ RiF (A)→ RiF (A′′)→ Ri+1F (A′)→ · · ·
For any diagram

0 // A′ //

��

A //

��

A′′

��

// 0

0 // B′ // B // B′′ // 0
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where the top and bottom are exact, we get a diagram

· · · // RiF (A′) //

��

RiF (A) //

��

RiF (A′′) //

��

· · ·

· · · // RiF (B′) // RiF (B) // RiF (B′′) // · · ·

(3) If A is injective, then RiF (A) = 0 for all i > 0 (because you can just take the
trivial resolution).

(4) R0F (A) = F (A)

Definition 15.8. We say that J is F -acyclic if all RiF (J) = 0 for all i > 0 (e.g. if J is
injective).

Remark 15.9. For any A and resolution

0→ A→ J0 → J1 → · · ·
where the J i are F -acyclic, then

RiF (A) = hi(0→ F (J0)→ F (J ′)→ · · · )
(i.e. we can use F -acyclic resolutions instead of injective resolutions to compute cohomol-
ogy).

Lecture 16: November 9

Let X be a topological space, and {Fi}i be a family of sheaves on X. Then we can define
the product

∏
Fi by (

∏
Fi)(U) =

∏
Fi(U). This is a sheaf, and for each j we have a

natural projection map
∏
Fi → Fj given by the projection

∏
Fi(U) → Fj(U). For any

sheaf G, we have
Hom(G,

∏
Fi) =

∏
Hom(G,Fi).

Theorem 16.1. Suppose (X,OX) is a ringed space, and ModOX (X) is the category of
OX-modules. Then, ModOX (X) has enough injectives (every object has an injective res-
olution).

Proof. Pick an OX -module F . We will find an injective resolution for F . For every x ∈ X,
Fx is an Ox-module (recall notation Ox = (OX)x). Use the following commutative algebra
fact:

Fact 16.2. If A is a ring, and M an A-module, then there is an injective homomorphism
M → I where I is an injective module in the category of A-modules.

So, we can find an injective Ox-module Ix and an injective homomorphism Fx ↪→ Ix.

Denote the inclusion map {x} ↪→ X by fx. The module Ix can be considered as a sheaf
on {x}. Define I =

∏
x∈X(fx)∗Ix. We will show that I is injective.
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For any OX -module G, we have

HomOX (G, I) ∼=
∏

HomOX (G, (fx)∗Ix).

On the other hand,
HomOX (G, (fx)∗Ix) = HomOx(Gx, Ix)

(this is a special case of problem 10 on example sheet 2). In particular, using the homo-
morphisms Fx ↪→ Ix, we get a morphism F → I; this morphism is injective, as can be
checked on the stalks.

Now we show that I is an injective object in ModOX (X). Suppose we have a diagram

(16.1) 0 // G
ϕ
//

��

H

I
where the top sequence is exact (i.e. ϕ is injective). We get a diagram on stalks

0 // Gx
ϕ

//

��

Hx

zz

Ix = Ix

Since Ix is an injective object, the dotted arrow exists. By the remarks above, all the
homomorphisms Hx → Ix determine a morphism H → I that sits in the commutative
diagram (16.1).

To get an injective resolution of F , argue as follows:

Pick an injective I0 and an injective homomorphism F ↪→ I0. (So we have an exact
sequence 0→ F → I0.) Put F0 = I0/F (thinking of F as a subsheaf of I0), and we have
an exact sequence

0→ F → I0 → F0 → 0.

Now pick an injective homomorphism F0 → I1 where I1 is injective. Then we get an
exact sequence

0→ F → I0 → I1

(where the last map factors through F0). Now put F1 = I1/F0 and continue the process
to get an injective resolution. #

Corollary 16.3. Let X be a topological space. Then Sh(X) has enough injectives.

Sh(X) are OSpecZ-modules, in the sense that rings are Z-modules.

Proof. Let OX be the constant sheaf associated to Z. Then, (X,OX) is a ringed space and
Sh(X) = ModOX (X) (this is analogous to saying that every abelian group is a module
over Z). Now apply the previous theorem. #

Definition 16.4. Let (X,OX) be a ringed space. Let F : ModOX (X) → Ab be the
functor F : F → F(X) (the global sections functor). This is left exact. We will denote
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H i(X,F) = RiF (F). We take an injective resolution 0 → F → I0 → I1 → · · · in
ModOX (X) and apply F to get a complex

0 // F (I0) // F (I1) // · · ·

0 // I0(X)
d0 // I1(X)

d1 // · · ·

and then H i(X,F) = ker di/ im di−1 is the ith cohomology group of F .

We will see later that H i(X,F) depends only on X and F (not OX).

If we have an exact sequence
0→ F → G → H → 0

in ModOX (X) then we get a long exact sequence

0→ H0(X,F)→ H0(X,G)→ H0(X,H)→ H1(X,F)→ · · ·
For topological spaces we care about, we will see that this sequence reaches 0 after finitely
many terms.

Remark 16.5. Note that H0(X,F) = F(X).

This is the cohomology theory we will mostly use, but there are other ways to define
related cohomology constructions.

Example 16.6. Let (X,OX) be a ringed space, and L an OX -module. Define G :
ModOX (X) → Ab by G(G) = HomOX (L,G). This is a left exact functor (but we
won’t prove that here). So we can define the right derived functors of G (denoted
ExtiOX (L,G) := RiG(G)). In particular, if L = OX then G = F and RiF = RiG.

Example 16.7. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Define
E : ModOX (X) → ModOX (Y ) by E(E) → f∗E . Check that E is a left exact functor.
Define the functor RiE, denoted Rif∗E = RiE(E). (Note that RiE(E) is an OY -module
rather then just an abelian group.)

Definition 16.8. Suppose X is a topological space, and F is a sheaf on X. We say that
F is flasque if for all U ⊂ X, the restriction map F(X)→ F(U) is surjective.

We will show that if (X,OX) is a ringed space and I ∈ModOX (X) is injective, then I is
flasque.

These are not necessarily injective, but they have trivial cohomology (H i(X,F) = 0 for
i > 0). So we can use resolutions by flasque sheaves to calculate H i(X,−). In particular,
this depends only on X, not OX .
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Lecture 17: November 12

Theorem 17.1. Let (X,OX) be a ringed space, and I an injective OX-module. Then, I
is flasque.

Proof. Pick an open U ⊂ X and t ∈ I(U). We should find s ∈ I(X) restricting to t.
Define LU by

LU (W ) =

{
0 if W 6⊂ U
OX(W ) if W ⊂ U

Define a morphism LU → I by

LU (W )→ I(W ) =

{
0 if W 6⊂ U
a 7→ at|W if W ⊂ U

Now that we have a diagram

0 // LU

��

� � // OX

||
I

of solid arrows, we have a morphism OX → I making the diagram commutative, because
I is injective. We get a commutative diagram

LU (X) //

�� %%

OX(X)

%%yy

I(X)

%%

LU (U) //

��

OX(U)

yy

I(U)

Since t is in the image of the red arrows, it is also in the image of the blue arrows:

LU (X) //

�� ""

1

��||
s

##

1 //

��

1

��
t

and in particular there is some s ∈ I(X) making everything commute.

Equivalently, there is a surjection

I(X) = HomOX (OX , I)→ HomOX (LU , I) = I(U).

#

Theorem 17.2. (X,OX) is a ringed space, and F is a flasque OX-module. Then H i(X,F) =
0 if i > 0.
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Proof. We have an exact sequence

0→ F → I ϕ→ G → 0

when I is injective and G = I/im(F). We will show that G is flasque, and that α is
surjective in the sequence

0→ F(X)→ I(X)
α→ G(X)

(the exactness of the above sequence comes for free). In general, you can’t put 0 at the
right end of this sequence; the term on the right is H1(X,F). So we are proving that
H1(X,F) = 0.

Pick t ∈ G(X); we want to find a preimage in I(X). Since ϕ : I → G is surjective, for
all x ∈ X there is some open U ⊂ X containing x and some s ∈ I(U) such that s 7→ t|U
(because ϕx : Ix → Gx is surjective). Consider pairs (U1, s1) and (U2, s2) where si ∈ I(Ui)
and si 7→ t|Ui . First consider the black labels and arrows in the diagram:

0 F(U1 ∩ U2) I(U1 ∩ U2) G(U1 ∩ U2)

I(U1) G(U1)

I(U2) G(U2)F(U2)

γ s1 − s2 0

qp

s2 + q

s1

s1

∃ b/c of exactness

∃ b/c F flasque

By construction s1 and s2 map to the same element (t|U1∩U2) in G(U1∩U2). So s1−s2 = 0
in G(U1 ∩ U2) and by exactness there is an element γ ∈ F(U1 ∩ U2) mapping to s1 − s2.

Because F is flasque, F(U) � F(V ) is a surjection. Show that flasque is equivalent to:
for all V ⊂ U , F(U) � F(V ) is a surjection. So γ has a preimage p ∈ F(U2).

Recall the aim was to get a global section in I(X) mapping to t. You can’t glue s1 and
s2, because s1− s2 might not be 0 in I(U1 ∩U2). Let q be the image of p in F(U2). Then

s2 + q|U1∩U2 = s2 + s1 − s2 = s1|U1∩U2 .

So s2 + q and s1 glue together to give a section s ∈ I(U1 ∪ U2). Define an ordering:
(U, s) ≤ (U ′, s′) if U ⊂ U ′ and s = s′|U , where s ∈ I(U) maps to t|U , and s′ ∈ I(U ′) maps
to t|U ′ . Now by Zorn’s lemma there is a maximal element (U, s) among such pairs.

We will show that U = X. Assume not. Then pick x ∈ X − U . Since ϕ is surjective,
there is some U ′ ⊂ X and s′ ∈ I(U ′) such that s′ 7→ t|U ′ . By the arguments above we
get a section ` ∈ I(U ∪ U ′) such that ` 7→ t|U∪U ′ . In other words, (U ∪ U ′, `) is a pair
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as defined above. We have (U, s) ( (U ∪ U ′, `) and this contradicts the fact that U is
maximal. Therefore, U = X and s ∈ I(X) maps to t ∈ G(X). So α is surjective.

The same arguments show that I(V )→ G(V ) is surjective for all open V ⊂ X. (Flasque-
ness is preserved when you restrict from X to V .)

Now we apply induction on i. Recall, cohomology in this context is H i(X,A) = RiF (A)
where F is the global sections functor Sh→ Ab. The short exact sequence 0→ F → I →
G → 0 of sheaves gives rise (by 15.7(2)) to a long exact sequence:

0 // H0(X,F)

F(X)

// H0(X, I)

I(X)

α // H0(X,G)

G(X)

// H1(X,F)
∼= // H1(X, I)

0

// H1(X,G)

// H2(X,F)
λ // H2(X, I)

0

// · · ·

(where on the first line H0(X,A) = R0F (A) = F (A) = A(X) (where F is the global sec-
tions functor) by 15.7(4)). We know that α : I(X)→ G(X) is surjective and H1(X, I) = 0,
since I is injective. This immediately gives H1(X,F) = 0.

To show G is flasque, look at the second square in the commutative diagram: we want to
show that the last vertical arrow is a surjection.

0 // F(X)

����

// I(X)

����

// G(X) //

��

0

0 // F(U) // I(U) // G(U) // 0

I(U)→ G(U) is surjective, so we can pull an element of G(U) all the way back to x ∈ I(X)
this way; so the image of x in G(X) is the thing we’re looking for.

We showed above that H1(X,F) = 0. F was an arbitrary flasque sheaf, so H1(X,G) = 0
as well. Since H2(X, I) = 0, the exact sequence shows that H2(X,F) = 0.

Now keep going with this argument, showing that H2(X,G) = 0, etc. Step by step one
shows that H i(X,F) = 0 and H i(X,G) = 0 for all i > 0. #

Corollary 17.3. Let (X,OX) be a ringed space, F an OX-module, and O′X the constant
sheaf associated to Z. (Note (X,O′X) is a ringed space). Then H i(X,F) is the same
whether calculated using ModOX (X) or ModO′X (X), a.k.a. Sh(X).
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Proof. Remember that H i(X,F) is calculated as follows (using ModOX (X)). Take an
injective resolution

0→ F → I0 → I1 → I2 → · · ·
We don’t know if the Ii’s are injective in ModO′X . But we proved that every injective

is flasque, so the sequence above is a resolution by flasque sheaves. We just proved
that H i(X, Ij) = 0 (calculated using ModO′X (X) = Sh(X)). By the first lecture on

cohomology, H i(X,F) (calculated using ModO′X (X)) is given as follows:

H i(X,F) = ker di/ im di−1

where the morphisms come from

0→ I0(X)
d0→ I1(X)

d1→ I2(X)→ · · ·
Since Ij are injective in ModOX (X), H i(X,F) (calculated using ModOX (X)) is given
by ker di/ im di−1. #

I think what’s meant here is: H i(X,F) w.r.t. ModOX (X) is calculated using the injective
resolution

0→ F → I0 → I1 → I2 → · · · .
This might not be an injective resolution w.r.t. ModO′X (X), but it is a flasque resolution,

and flasque-ness doesn’t depend on the ambient category ModOX (X) vs. ModO′X (X).

Since it suffices to use a flasque resolution instead of an injective one, this is equally valid
when the category is ModO′X (X).

Lecture 18: November 14

Cohomology of affine schemes.

Theorem 18.1. Suppose that X is a Noetherian scheme. Then, TFAE:

(1) X is affine;
(2) H i(X,F) = 0 for all i > 0, for every quasicoherent sheaf F ;
(3) H i(X, I) = 0 for all i > 0, for all coherent ideal sheaves I.

Definition 18.2. Suppose X is a scheme, b ∈ OX(X). Define

D(b) = {x ∈ X : b is invertible in Ox}
(a.k.a. b is not in the maximal ideal of Ox, a.k.a. b does not vanish at x). Locally on
affine open sets D(b) is the same as before, so D(b) is an open subset of X.

Fact 18.3. X is a Noetherian scheme. Then X is affine ⇐⇒ there are b1, · · · , bn ∈
OX(X) such that the D(bi) are affine and 〈b1, .., bn〉 = OX(X).

Proof. Problem 11 on example sheet 3. #
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Definition 18.4. Suppose X is a scheme. A point x ∈ X is called closed if {x} is a closed
subset of X.

For example, 〈t− a〉 ∈ SpecC[t] is a closed point but 0 is not a closed point.

Remark 18.5. Suppose X is Noetherian and Z ⊂ X is a closed subset. Then, there is
some closed point x ∈ X such that x ∈ Z. Choose an open affine set U ⊂ X such that
U ∩Z 6= ∅. If Z 6⊂ U , replace Z with Z ∩ (X\U). Do “induction” (this is possible because
X is Noetherian – you can’t have an infinite sequence of closed sets). If Z ⊂ U , then Z is
affine. Say U = SpecA. Then there is some ideal I ≤ A such that Z = V (I). If x is any
maximal ideal such that I ⊂ x, then x is a closed point of X ({x} is a subset of Z, which
implies that it is also a closed subset of X).

Proof of Theorem. (1) =⇒ (2): Suppose X = SpecA, and F is quasicoherent (i.e.

F = M̃). In the category of A-modules we an find an injective resolution

0→M → I0 → I1 → · · ·
from which we get an exact sequence

(18.1) 0→ F = M̃ → Ĩ0 → Ĩ1 → · · ·

There is no reason why Ĩ should be injective. But:

Fact 18.6. If A is a Noetherian ring and I is an injective A-module then Ĩ is a flasque
sheaf.

(See Hartshorne, Proposition III.3.4. Note this is not necessarily true when the Noetherian
hypothesis is removed: see e.g. http: // stacks. math. columbia. edu/ tag/ 0273 .)

Thus, we can use (18.1) to calculate H i(X,F). In this case, (18.1) being exact implies
that

0 // F // Ĩ0(X) // Ĩ1(X) // · · ·

0 // M // I0 // I1 // · · ·
So H i(X,F) = 0 for all i > 0.

(2) =⇒ (3): Obvious.

(3) =⇒ (1): Pick a closed point x ∈ X. We want to find b ∈ OX(X) such that D(b) is
affine and x ∈ D(b). Choose an open affine U ⊂ X such that x ∈ U and let Y = X\U . Y
and Y ∪ {x} are both closed subsets of X.

Claim 18.7. If Z ⊂ X is any closed subset we can put a (not necessarily unique) closed
subscheme structure on Z.

Proof. Define the ideal sheaf IZ by

IZ(W ) = {a ∈ OX(W ) : a is not invertible in Oz ∀z ∈ Z ∩W}.
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If W = SpecB then IZ |W = Ĩ where I ≤ B is the largest ideal such that Z ∩W = V (I) ⊂
SpecB. IZ is quasicoherent, so IZ gives the subscheme structure on Z that we wanted.

#

We apply this construction to define IY and IY ∪{x} to get closed subscheme structures
on Y and Y ∪ {x}. Since Y ⊂ Y ∪ {x}, IY ∪{x} ⊂ IY . We get an exact sequence

(18.2) 0→ IY ∪{x} → IY → L := IY
/
IY ∪{x} → 0

By construction IY ∪{x}|X\{x} = IY |X\{x}. So L|X\{x} = 0. So L is the skyscraper sheaf
on X at x defined by the residue field k(x) at x.

By assumptions, H1(X, IY ∪{x}) = 0. From (18.2), we get a long exact sequence

0→ H0(X, IY ∪{x})→ H0(X, IY )
α→ H0(X,L)

k(x)

→ H1(X, IY ∪{x})
0

→ · · ·

Since H0(X,L) = k(x) and α is surjective, there is some b ∈ H0(X, IY ) with b
α7→ 1.

Since IY ⊂ OX , H0(X, IY ) ⊂ H0(X,OX) = OX(X) and we can consider b ∈ OX(X).
Since b 7→ 1 ∈ k(x), b gives an invertible element in Ox. In particular, x ∈ D(b). By
construction, D(b) ⊂ U , which implies that D(b) is affine.

We proved, for every closed point x ∈ X, there is some global section b ∈ OX(X) such
that x ∈ D(b) and D(b) is affine. This implies that there is a family {bi} ⊂ OX(X) such
that

⋃
iD(bi) contains all closed points (and D(bi) is affine). So X =

⋃
D(bi), otherwise

there is a closed point in X\
⋃
D(bi) which is not possible. Since X is Noetherian we can

assume that there are finitely many bi’s, say b1, · · · , bn.

It remains to show that the bi’s generate OX(X). Define a morphism

OX ⊕ · · · ⊕ OX
n copies

ϕ→ OX where (s1, · · · , sn)

on W

7→
∑

sibi|W

ϕ is surjective as a morphism of sheaves; check this locally. (ϕx is surjective for all x
because, for all x ∈ X there is some bi such that bi is invertible in Ox.) It suffices to show
that this is a surjection on global sections. Let F = kerϕ. We get an exact sequence

0→ F → OX ⊕ · · · ⊕ OX
ϕ→ OX → 0

Define a filtration

0
G0
⊂ OX ⊕ 0⊕ · · · ⊕ 0

G1

⊂ OX ⊕OX ⊕ 0⊕ · · ·
G2

⊂ · · · ⊂
n⊕
1

OX

Gn

.

Put Fn = F . Let Fn−1 = ker
(
Fn → Gn

/
Gn−1

)
and inductively define

Fi−1 = ker (Fi → Gi/Gi−1)

The Fi are quasicoherent. Also, Fi/Fi−1 injects into Gi/Gi−1
∼= OX so Fi/Fi−1 can be

considered as a quasicoherent ideal sheaf.
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So H1(X,F0) = H1(X, 0) = 0. The short exact sequence

0→ Fi−1 → Fi → Fi/Fi−1 → 0

yields an exact sequence

0 = H1(X,Fi−1)→ H1(X,Fi)→ H1(X,Fi/Fi−1) = 0

and so, by induction, H1(X,Fi) = 0 for all i. In particular,

H1(X,Fn) = H1(X,F) = 0.

Now the sequence

0→ H0(X,F)→ H0(X,Gn)
β→ H0(X,OX)

OX(X)

→ H1(X,F) = 0

is exact and β : Gn(X) =
⊕n

1 OX(X) → OX(X) is surjective. Hence 〈b1, · · · , bn〉 =
OX(X). #

Lecture 19: November 16

Čech cohomology.

Definition 19.1. Let X be a topological space, and F a sheaf on X. Let U = (Ui)i∈I
be a collection of open subsets covering X that are indexed by a well-ordered set I.

For i0, · · · , ip, let Ui0,··· ,ip = Ui0 ∩ · · · ∩ Uip . Let Cp(U ,F) =
∏
i0<···<ip F(Ui0,··· ,ip). An

element of Cp(U ,F) is denoted by (si0,··· ,ip) (this is a collection of elements si0,··· ,ip , one
for every intersection of p+ 1 sets). Define a complex

C•(U ,F) : 0→ C0(U ,F)
d0→ C1(U ,F)

d1→ · · ·
where dp(si0,··· ,ip) = (ti0,··· ,ip+1) such that

ti0,··· ,ip+1 =

p+1∑
`=0

(−1)`si0,··· ,î`,··· ,ip+1

∣∣
Ui0,··· ,ip+1

It is easy to see that dp+1dp = 0. (So C•(U ,F) is indeed a complex.)

We define the pth Čech cohomology

Ȟp(U ,F) = ker dp/ im dp−1

Theorem 19.2. With the above notation, we have Ȟ0(U ,F) = F(X) = H0(X,F).

Proof. By definition,

Ȟ0(U ,F) = ker d0/ im d−1 ∼= ker d0 = {(si) : si − sj |Ui∩Uj = 0}
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By the sheaf condition, the si glue together to give a global section s ∈ F(X) such that
si = s|Ui . Conversely, any s ∈ F(X) gives the element (si) ∈ ker d0 where we put si = s|Ui .
The equality, F(X) = H0(X,F) was proved in earlier lectures. #

Example 19.3. Let k be a field, X = P1
k = Proj k[t0, t1], U0 = D+(t0), U1 = D+(t1), I =

{0, 1} (with the obvious ordering), and F = OX . Then we have

C0(U ,OX) = OX(U0)⊕OX(U1) = k[t0, t1](t0) ⊕ k[t0, t1](t1)

C1(U ,OX) = OX(U0,1 = U0 ∩ U1) = k[t0, t1](t0t1)

(since U0 ∩ U1 = D+(t0) ∩D+(t1) = D+(t0t1)), and

Cp(U ,OX) = 0 ∀p > 1

Introduce u = t1
t0

and v = t0
t1

. Then the Čech complex can be written as

0
d−1

→ k[u]⊕ k[v]
d0→ k[u]u

d1→ 0

where the differential sends (f, g) 7→ f − g = f(u) − g( 1
u), because uv = 1 on U0 ∩ U1.

When is f − g = 0? f has nonnegative degree in u, and g has nonpositive degree in u, so
f = g only when f and g were originally (the same) constant. So

ker d0 = {(f, g) : f − g = 0 in k[u]u} = {(f, g) : f = g in k} ∼= k

So
Ȟ0(U ,OX) = ker d0/ im d−1 ∼= ker d0 ∼= k

Now calculate Ȟ1: since U only has two open sets, C2 = 0, so

ker d1 = C1(U ,OX) = k[u]u = k[u, 1
u ] = im d0

and
Ȟ1(U ,OX) = ker d1/ im d0 ∼= C1(U ,OX)/C1(U ,OX) ∼= 0.

Example 19.4. The data is the same as previously, except F = ΩX/Y where Y = Spec k.

There is a natural map X = P1
k → Y = Spec k.

The open sets are U0
∼= A1

k and U1
∼= A1

k as above. We have

C0(U ,ΩX/Y ) = ΩX/Y (U0)⊕ ΩX/Y (U1)

= k[u]du⊕ k[v]dv

C1(U ,ΩX/Y ) = ΩX/Y (U0 ∩ U1) = k[u]udu

The Čech complex is
0→ k[u]du⊕ k[v]dv → k[u]udu

where d0 : (f du, g dv) 7→ f du − g dv. To write this in terms of only one variable,
notice that uv = 1 on U0 ∩ U1, so dv = − 1

u2
du. Thus our map is d0 : (f du, g dv) 7→

f(u)du+ g( 1
u) · 1

u2
du. Now

ker d0 = {(f du, g dv) : f(u)du+ g 1
u ·

1

u2
du = 0}
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= {· · · : (f(u) + g( 1
u) · 1

u2
)du = 0}

= {(0, 0)} ∼= 0

(again by issues with degree) So

Ȟ0(U ,ΩX/Y ) = ker d0/ im d−1 ∼= 0

(You can divide 0 by 0. If you don’t believe me you need to take another course in algebra.)

Remember that we proved that H0(X,ΩPnk/Y ) = 0, so this calculation is not surprising in
view of Theorem 19.2.

Now calculate H1. As before, we can write the second nontrivial term as k[u, 1
u ]du.

Exercise: any monomial except 1
u can be given by the image of something in k[u]du⊕k[v]dv.

So the quotient ker / im is a vector space that is generated by one element 1
u , and hence

is isomorphic to k:

Ȟ1(U ,ΩX/Y ) = ker d1/ im d0 = C1(U ,ΩX/Y )
/

im d0 ∼= k

Example 19.5. Take the same data as before, except F is the constant sheaf defined by
Z. We have

0→ C0(U ,F)

Z⊕Z

d0→ C1(U ,F)

Z

d1→ 0

(every open set is irreducible, so the section is just Z). Then d0 : Z ⊕ Z → Z is given by
(m,n) 7→ m− n.

So

Ȟ0(U ,F) ∼= F(X) ∼= Z
Ȟ1(U ,F) = ker d1/ im d0 = Z/Z ∼= 0

Example 19.6. Let X = S1 be the circle. Let α be the north pole, and β to be the south
pole. Define U0 = X\{α} and U1 = X\{β}, so X is covered by U0 and U1. Let F be the
constant sheaf defined by Z.

The complex is
0→ C0(X,F)

Z⊕Z

→ C1(U ,F)

Z⊕Z

→ 0

because the intersection is not irreducible this time. The differential d0 : Z⊕ Z→ Z⊕ Z
is given by (m,n) 7→ (m− n,m− n), and

Ȟ0(U ,F) ∼= Z
Ȟ1(U ,F) ∼= Z.

Lecture 20: November 19
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Čech cohomology on schemes.

Definition 20.1. Let X be a topological space, U = (Ui)i∈I finite, and F ∈ Sh(X).
Denote the inclusion U ↪→ X by f (for any U). Define

Cp(U ,F) =
⊕

i0<···<ip

f∗F|Ui0,··· ,ip

Define morphisms
Cp(U ,F)→ Cp+1(U ,F)

as in the previous lecture. We then form the Čech sheaf complex :

C•(U ,F) : 0→ C0(U ,F)
d0→ C1(U ,F)

d1→ · · ·
As we said before, dp+1dp = 0. This is the same as taking the Čech complexes on all
the open sets of X. So this makes a complex of sheaves, instead a complex of groups, as
before.

Define a morphism F → C0(U ,F) by defining F(W ) → f∗F|Ui(W ) to be s 7→ s|Ui∩W .
Then we have a sequence

(20.1) 0→ F → C0(U ,F)
d0→ C1(U ,F)→ · · ·

Theorem 20.2. The sequence (20.1) is exact.

Proof. The exactness of

0→ F → C0(U ,F)→ C1(U ,F)

is just the sheaf condition of F . (Exactness on the first map is saying that a collection
of zero sections lifts to the zero section; the second map is the sheaf condition about
intersections.) To prove exactness of the rest of (20.1) use stalks.

Fix x ∈ X. We will show that Cp−1(U ,F)x → Cp(U ,F)x → Cp+1(U ,F)x is exact for all
p ≥ 1. Exactness is local around x, and we can throw away any Ui such that x /∈ Ui. By
replacing X, and all the Ui by U0∩U1 ∩ · · · ∩Un we can assume X = U0 = U1 = · · · = Un.

The magician’s hat: for each p ≥ 1, we define a map ep : Cp(U ,F)x → Cp−1(U ,F)x by
sending (W, s = (si0,··· ,ip)) to (W, t = (ti0,··· ,ip−1)) by:

ti0,··· ,ip−1 =

{
s0,i0,··· ,ip−1 if i0 6= 0

0 otherwise

A routine calculation shows that we have a formula

(20.2) dp−1ep + ep+1dp = identity map of Cp(U ,F)x.

(This trick comes from algebraic topology. Claim that the zero chain map is homotopic
to the identity chain map.)
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Pick (W, s) ∈ Cp(U ,F)x which belongs to the kernel of Cp(U ,F)x → Cp+1(U ,F) (we
have to show this comes from something in Cp−1). Applying (20.2), we get

dp−1
x

(
ep((W, s))

)
+ ep+1

(
dpx((W, s))

)
0

= (W, s)

So (W, s) ∈ im dp−1
x . Therefore we have exactness of the desired sequence. #

Theorem 20.3. Let the setting be as above. Assume that F is flasque. Then, Ȟp(U ,F) =
0 for all p ≥ 1.

Proof. We have the exact sequence

(20.3) 0→ F → C0(U ,F)→ C1(U , F )→ · · · .
Since F is flasque, it is easy to see that each Cp(U ,F) is flasque. Therefore, (20.3) is a
resolution of F by flasque sheaves. Apply the global sections functor to get a sequence

(20.4) 0→ C0(U ,F)(X)→ C1(U ,F)(X)→ · · ·
that calculates Hp(X,F). On the other hand, (20.4) is, by definition, the Čech complex,
so its cohomology is also Ȟp(U ,F). Thus Ȟp(U ,F) = Hp(X,F), and this is equal to
zero by Theorem 17.2. #

Theorem 20.4. Let X be a Noetherian scheme, and U = (Ui)i∈I be a finite cover by
affine subschemes (even if they aren’t affine to begin with, you can get a subcover by affine
subschemes, and since X is Noetherian, you can ensure that this is still finite). Let F be
a quasicoherent sheaf. We assume that if V,W ⊂ X are open affines, then V ∩W is also
affine.

Then, Ȟp(U ,F) ∼= Hp(X,F).

Remark 20.5. All quasi-projective schemes over a Noetherian ring satisfy the last condi-
tion about intersections of open affines.

Proof. Consider the exact sequence

(20.5) 0→ F → C0(U ,F)→ C1(U ,F)→ · · ·
We will show that this is an acyclic resolution: that H`(X,Cp(U ,F)) = 0 for all ` > 0,
p ≥ 0. Equivalently, we need to show that H`(X, f∗F|Ui0,··· ,ip ) = 0 for all ` > 0, and for

all Ui0,··· ,ip . (Just apply the global sections functor to get the cohomology of X.)

The main assumption of the theorem says that Ui0,··· ,ip =: U is affine. Since F is quasico-

herent, F|U is also quasicoherent. In particular, H`(U,F|U ) = 0 for all ` > 0.

Take a resolution
0→ F → I0 → I1 → · · ·

where the Ij are quasicoherent and flasque. (We know that this exists: if F|U = M̃ , then
take an injective resolution of M , and apply tildes to the resulting Ii’s). The complex

(20.6) 0→ I0(U)→ I1(U)→ · · ·
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calculates H`(U,F|U ) = 0. Now the complex

(20.7) 0→ f∗F → f∗I0 → f∗I1 → · · ·
is exact (this is problem 2 on the fourth example sheet). Trivially, f∗Ij are flasque; they
are quasicoherent by an earlier theorem. (A morphism from a Noetherian scheme to
something else, push-downs of quasicoherent sheaves are quasicoherent). So (20.7) is a
flasque resolution of f∗F . The complex

0→ (f∗I0)(X)→ (f∗I1)(X)→ · · ·
calculates H`(X, f∗F); this is the same as complex (20.6). Since the cohomology of (20.6)
is zero, the cohomology here is also zero.

This implies that (20.5) is an acyclic resolution of F . The complex

0→ C0(U ,F)(X)→ C1(U ,F)(X)→ · · ·
calculates H`(X,F). But this is just

0→ C0(U ,F)→ C1(U ,F)→ · · ·
and this calculates the Čech cohomology groups Ȟ`(U ,F).

Therefore, Ȟ`(U ,F) ∼= H`(X,F). #

Lecture 21: November 21

Cohomology of Pn.

Theorem 21.1. Let k be a field, and X = Pnk := Proj k[t0, · · · , tn]. Then

(1) H0(X,OX(d)) is the k-vector space generated by monomials in t0, · · · , tn of degree
d.

(2) Hp(X,OX(d)) = 0 if p > n. (More general phenomenon: once you pass the
dimension of your scheme (whatever that means), the cohomology is trivial.)

(3) dimkH
n(X,OX(d)) = dimkH

0(X,OX(−d− n− 1)) <∞
(4) Hp(X,OX(d)) = 0 if 0 < p < n.

Fact 21.2. The intersection of any two open affine subsets of Pnk is again affine.

Proof. See last example sheet. #

Proof of Theorem 21.1. (1) By Fact 21.2, we may invoke Theorem 20.4 (equivalence of
Hp and Ȟp under certain conditions) and calculate Čech cohomology instead. Let Ui =
D+(ti) ⊂ Pnk , and let U = (Ui)i∈{0,··· ,n} be the covering by the Ui. An element s ∈
H0(X,OX(d)) can be identified with (si) where si ∈ OX(d)(Ui) and si|Ui∩Uj = sj |Ui∩Uj
for all i, j. Remember, OX(d)(Ui) = S̃(d)(Ui) = S(d)(ti). Put si = fi

t`i
where fi is
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homogeneous of degree d+ ` as an element of S.

fi

t`ii

∣∣∣∣
Ui∩Uj

=
fj

t
`j
j

∣∣∣∣
Ui∩Uj

⇐⇒ fi

t`ii
=
fj

t
`j
j

in S(d)(titj) = OX(d)(Ui ∩ Uj)

⇐⇒ fi

t`ii
=
fj

t
`j
j

in S(titj) ⊂ k(t0, · · · , tn)

⇐⇒ fit
`j
j = fjt

`i
i in k[t0, · · · , tn]

Since k[t0, · · · , tn] is a UFD (it’s not a UFO!), t
`j
j | fj and t`ii | fi, so there is some

homogeneous degree-d polynomial g such that g = fi

t
`i
i

= si for all i.

Conversely, any homogeneous g of degree d gives a section s = (si) in OX(d)(X) where
we can put si = g

1 . In particular, if d < 0, H0(X,OX(d)) = 0. And if d = 0, then

H0(X,OX(d)) = H0(X,OX) ∼= k.

(2) Since Hp(X,OX(d)) ∼= Ȟp(U,OX(d)), and since the number of the Ui is n + 1,
Cp(U,OX(d)) = 0 if p > n (there aren’t enough open sets to intersect). Hence Ȟp(U,OX(d)) =
0 and so Hp(X,OX(d)) = 0 when p > n.

(3) We only prove the case when d ≥ −n−1 (the other cases are similar, but require more
combinatorics). We use Čech cohomology. The end of the Čech complex looks like

· · · → Cn−1(U,OX(d))∏
i0<···<in−1

S(d)(ti0 ···tin−1
)

δn−1

→ Cn(U,OX(d))

S(d)(t0···tn)

→ 0

To calculate Hn(X,OX(d)) = Ȟn(U,OX(d)) we need to calculate im δn−1. To do this, we
will try to find elements outside the image.

It’s enough to consider elements α =
t
m0
0 ···t

mn
n

(t0···tn)`
∈ S(d)(t0···tn) where

∑
mi = d + (n + 1)`.

If mi ≥ `, then we could cancel ti from the denominator. But then this element would
definitely be in the image (it comes from the factor of Cn−1 corresponding to a missing
Ui). So we can assume mi < ` for all i. Also, 0 < ` and assume there is some i such that
mi = 0: otherwise, we can make ` smaller.

So
d+ (n+ 1)` =

∑
mi ≤ n(`− 1) = n`− n

so d + ` ≤ −n. By the assumption that d ≥ −n − 1, we have that ` = 1. Then there is
only one possibility: mi = 0 for all i, and α = 1

t0···tn . (This happens when d = −n− 1.)

I claim that α is not in the image (we showed that everything else is). Finish this yourself.
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To summarize:

H0(X,OX(d)) = Ȟn(U,OX(d)) =

{
0 if d > −n− 1

k if d = −n− 1

(4) Let I = 〈tn〉/S and let Y be the closed subscheme defined by I = Ĩ; this is a coherent
ideal sheaf. (Recall that closed subschemes are in 1-1 correspondence with ideal sheaves.)
Let f : Y → X be the corresponding closed immersion. We then have an exact sequence

(21.1) 0→ I → OX → f∗OY → 0

(surjectivity by definition of being a closed immersion). This can be written as

0→ 〈̃tn〉 → S̃ → T̃ → 0

where T = S/ 〈tn〉.

We have an isomorphism S(−1)
∼=→ 〈tn〉 where s 7→ tn · s (the rings are all integral

domains). The −1 is there to make the degrees work out: when you multiply by tn, the
degree increases by 1.

(21.1) can be written as

0→ S̃(−1)
−·tn→ S̃ → T̃ → 0

We get
0→ OX(−1)→ OX → f∗OY → 0

Now tensor with OX(d) (this is an invertible sheaf; it is locally free of rank 1 and when
you tensor, you’re just tensoring by the ring itself):

0→ OX(d)⊗OX OX(−1)→ OX(d)⊗OX OX → OX(d)⊗OX f∗OY → 0

which can be rewritten as

0→ OX(d− 1)→ OX(d)→ f∗OY (d)→ 0

Recall Y ∼= Pn−1
k , because T ∼= k[u0, · · · , un−1]. (TBC)

Lecture 22: November 23

(Proof of theorem, continued): X = Pnk = ProjS, S = k[t0, · · · , tn], Ui = D+(ti). We’re
proving Hp(X,OX(d)) = 0, for all 0 < p < n and all d.

Let Y be the closed subscheme defned by 〈tn〉, and f : Y ↪→ X be the inclusion. We have
an exact sequence

0→ IY = 〈̃tn〉 = OX(−1)→ OX → f∗OY → 0

After tensoring with OX(d) we get

0→ OX(d− 1)→ OX(d)→ f∗OY (d)→ 0
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Recall that Y = ProjT where T = S/ 〈tn〉. We get a long exact sequence

0→ H0(X,OX(d− 1))→ H0(X,OX(d))→ = H0(X, f∗OY (d))

H0(Y,OY (d))

β→ H1(X,OX(−1))
α→ H1(X,OX(d))→ · · ·

· · · → Hn−1(X,OX(d))→ = Hn−1(X, f∗OY (d))

Hn−1(Y,OY (d))

α′→ Hn(X,OX(d))→ = Hn(X, f∗OY (d))

0

See example sheet 3, problem 8 for the equalities. (The last term is zero because you
can write it as cohomology of Y , by the problem set, and Y has dimension < n.) We
know the dimensions of the first three and last four terms (by last lecture). In particular,
α and α′ are injective. Also β is zero, and H1(X,OX(−1)) = 0. By induction on n,
Hp(Y,OY (d)) = Hp(X, f∗OY (d)) = 0 for all p, 0 < p < n− 1 and all d.

Thus all the maps Hp(X,OX(d− 1))
βp→ Hp(X,OX(d)) are isomorphisms, for every p, 0 <

p < n. The goal is to prove that one of these spaces is zero. Using Čech cohomology, we
can see that βp is induced by the maps

OX(d− 1)(Ui0,··· ,ip)→ OX(d)(Ui0,··· ,ip)

which can be written as a map

S(d− 1)(ti0 ···tip ) → S(d)(ti0 ···tip )

But this map is simply multiplication by tn (because we said earlier that the isomorphism
S(−1) → 〈tn〉 was multiplication by tn). From the Čech complexes we deduce that βp is
also multiplication by tn.

Let F =
⊕

d∈ZOX(d) = ˜⊕
d∈Z S(d). We will calculate the Čech complex of F .

F(Ui0 , · · · , ip) =
⊕
d∈Z

S(d)(ti0 ···tip )

∼=→ Sti0 ···tip

where the isomorphism is (λd) 7→
∑
λd (the second localization includes only fractions of

total degree zero, while the third one does not). The Čech complex is then

0→ C0(U ,F)∏
Sti0

→ C1(U ,F)∏
Sti0 ti1

→ · · ·

Now localize this complex at tn (check that (
∏
Sti0 )(tn) =

∏
Sti0 tn):

0→
∏

Sti0 tn →
∏

Sti0 ti1 tn

This is simply the Čech complex of F|Un using the cover U ′ = (U0 ∩ Un, · · · , Un ∩ Un).

But Un is affine, F|Un is quasicoherent, so

Ȟp(U ′,F|Un) = Hp(Un,F|Un) = 0 ∀p > 0

so
Hp(X,F)tn = 0 ∀p, 0 < p < n.
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Equivalently, for all w ∈ Hp(X,F), then there is some r such that trnw = 0. Since
Hp(X,F) =

⊕
d∈ZH

p(X,OX(d)), for all w ∈ Hp(X,OX(d)).

Recall that the βp were all multiplication by tn. By what we just showed, βp eventually
kills every element. In order for these to be an isomorphism,

Hp(X,OX(d− 1)) ∼= Hp(X,OX(d)) = 0

for all p, 0 < p < n, for all d.

Theorem 22.1. Let k be a field, X
f
↪→ Pnk a closed subscheme of Pnk (i.e. X is projective),

and F is a coherent sheaf on X. Then

Hp(X,F(d)) = 0

for all p > 0, d� 0, where F(d) = F ⊗OX(d) and OX(d) = f∗OPn(d).

Proof. We have (exercise) f∗(F(d)) = (f∗F)(d) := f∗F ⊗OPn(d). Since cohomology does
not change when you push down – Hp(X,F(d)) ∼= Hp(Onk , (f∗F)(d)) – we can replace X
by Pnk and F by f∗F , and thereby assume that X = Pnk . Remember the fact:

Fact 22.2. There are some m, ` (depending on the sheaf and the space) and an exact
sequence ⊕̀

1

OX → F(m)→ 0

(This should remind you of the following fact: if A is a ring, M is a finitely-generated

A-module, then there is some ` such that
⊕`

1A→M → 0.)

Let G = kerϕ. We have the exact sequence

0→ G →
⊕̀

1

OX
ϕ→ F(m)→ 0

Tensor the sequence with OX(d−m) to get

0→ G(d−m)→
⊕̀

1

OX(d−m)→ F(d)→ 0

Then, the long exact sequence of the above gives

Hp(X,G(d−m))→ Hp(X,
⊕
OX(d−m))→ Hp(X,F(d))→ Hp+1(X,G(d−m))

If p > 0 and d is sufficiently large, by the theorem we proved in the previous lecture
Hp(X,

⊕
OX(d−m)) = 0.

Apply decreasing induction on p; we getHp+1(X,G(d−m)) = 0, if p+1 > n. Hp+1(X,L) =
0 for every quasicoherent L because of Čech cohomology (because you don’t have any more
open sets to intersect). This forces Hp(X,F(d)) = 0, for p > 0 and d sufficiently large.

#

Theorem 22.3. Take the same setting as the previous theorem. Then Hp(X,F) is a
finite-dimensional k-vector space for every p.

62



Algebraic geometry Lecture 23

Proof. Almost identical to the previous proof: take d = 0, and try to trap your ring in
between two zero rings. #

Lecture 23: November 26

Euler characteristic and Hilbert polynomial.

Definition 23.1. Let X be a subscheme of Pnk (k is a field), OX(d) = f∗OPnk (d), and f :
X → Pnk a closed immersion. For a coherent sheaf on X we define the Euler characteristic
as

χ(X,F) =
∑
p≥0

(−1)p dimkH
p(X,F)

If 0→ F1 → F2 → F3 → 0 is an exact sequence of coherent sheaves on X, then we get a
long exact sequence

0→ H0(X,F1)→ H0(X,F2)→ H0(X,F3)→ H1(X,F1)→ · · · → Hn(X,F3)→ 0.

From simple linear algebra, we get

dimkH
0(X,F1)− dimkH

0(X,F2) + · · · = 0

So
χ(X,F2) = χ(X,F1) + χ(X,F3)

We can generalize this to a longer exact sequence.

Proposition 23.2. If
0→ F1 → F2 → · · · → Fm → 0

is an exact sequence of coherent sheaves on X, then we have a similar formula:

χ(X,F1)− χ(X,F2) + · · · = 0.

Proof. Proof by induction on m: if G = im(F2 → F3), then we have the two exact
sequences

0→ F1 → F2 → G → 0

0→ G → F3 → F4 → · · · → Fm → 0

so
χ(X,F1)− χ(X,F2) + χ(X,G) = 0

and by induction,
χ(X,G)− χ(X,F3) + · · · = 0

Subtracting the second sequence from the first gives the result. #

If F is coherent on X, then for d sufficiently large we have

χ(X,F(d)) = dimH0(X,F(d))
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Theorem/ Definition 23.3. Let F be coherent on X, a subscheme of Pnk . Then, the
function

χ(X,F(−)) : Z→ Z where d 7→ χ(X,F(d))

is a polynomial in Q[d]. This polynomial is called the Hilbert polynomial of F .

(Note that this polynomial depends on F , X, and the embedding f : X ↪→ Pnk .)

Proof. By replacing X by Pnk , and replacing F by f∗F , we can assume that X = Pnk
(show on the example sheet that pushing down doesn’t change cohomology). Now do
induction on n. Let Y be the closed subscheme of X defined by the ideal 〈tn〉, where
Pnk = Proj k[t0, · · · , tn]. Let g : Y ↪→ Pnk be the closed immersion. Since Y is defined by

one equation, Y ∼= Pn−1
k .

If n = 0, χ(X,F(d)) = χ(X,F) is constant. So we can assume n > 0. We have the exact
sequence

0→ 〈̃tn〉 ∼= OX(−1)→ OX → g∗OY → 0

(where 〈tn〉 means the ideal tn · k[t0, · · · , tn]). Tensor the sequence with F to get

0→ G → F(−1)→ F → g∗OY ⊗F → 0

where G is just the kernel of F(−1)→ F . Now tensor with OX(d):

0→ G(d)→ F(d− 1)→ F(d)→ g∗OY ⊗F(d)

=g∗((g∗F)(d))

→ 0

Take Euler characteristic:

χ(X,F(d))− χ(X,F(d− 1)) = χ(X, g∗(g
∗F)(d))− χ(X,G(d))

If we can show that each of the terms on the right are polynomials, then the LHS is a
polynomial. This is sufficient, by Hartshorne I, 7.3.

χ(X, g∗(g
∗F)(d)) = χ(Y, (g∗F)(d))

so this is a polynomial in Q[d] by induction.

So now it is enough to show that χ(X,G(d)) is in Q[d]. For any OX -moduleM, we have
a natural homomorphismM→ g∗g

∗M (special case of example sheet 2, problem 10). We
have the following exact sequences

0→ G1 = kerϕ→ G ϕ→ g∗g
∗G → 0

0→ G2 = kerϕ1 → G1
ϕ1→ g∗g

∗G1 → 0

(Surjectivity of ϕ can be seen by looking at it locally.) If we show that G` = 0 for some `,
then we are done by tensoring each of the sequences with OX(d): look at

0→ G`(d)→ G(d)→ g∗(g
∗G)(d)→ 0

If the first term is zero, then G(d) ∼= g∗(g
∗G)(d).
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We argue locally: for example, D+(t0) ∼= Spec k[u1, · · · , un] where ui = ti
t0

. Suppose

G|D+(t0)
∼= G̃ for some module G. Then the above sequences are given on D+(t0) as

0→ 〈̃un〉G→ G̃→ ˜G/ 〈un〉G→ 0

0→ 〈̃u2
n〉G→ 〈̃un〉G→ ˜〈un〉G/ 〈u2

n〉G
etc. On the other hand, by construction, G|D+(tn) = 0 which implies that G|D+(tn)∩D+(t0) =

0. So Gun = 0 which implies that there is some ` such that
〈
u`n
〉
G = 0. Furthermore,

〈umn 〉G = 0 for any m ≥ `.

So G`|D+(t0) = 0 for all ` sufficiently large. The same arguments show that G`|D+(ti) = 0
for all `� 0, and for all i. So G` = 0 for all `� 0. #

Example 23.4. Let X = Pnk , F = OX . If d� 0,

χ(X,OX(d)) = dimkH
0(X,OX(d))

= # monomials of degree d in t0, · · · , tn

=

(
d+ n

d

)
=

(d+ n)!

d!n!
=

1

n!
(d+ n) · · · (d+ 1)

(If you have two polynomials that are equal for an infinite number of integers, then they
are equal.) In particular, deg χ(X,OX(d)) = n.

Example 23.5. Let F be a homogeneous polynomial of degree r, and X the closed sub-
scheme of Pnk defined by 〈F 〉. Let F = OX . We have the following exact sequence

0→ 〈̃F 〉 ∼= OPn(−r)→ OPn → f∗OX → 0

Tensor with OPn(d):

0→ OPn(d− r)→ OPn(d)→ f∗OX(d)→ 0

We can calculate the Euler characteristic of X:

χ(X,OX(d)) = χ(Pn, f∗OX(d)) = χ(Pn,OPn(d))− χ χ(Pn,OPn(d− r))

=
1

n!
(d+ n) · · · (d+ 1)− 1

n!
(d− r + n) · · · (d− r + 1)

We can see χ(X,OX(d)) is of degree n− 1. If you define dimension precisely, you will see
that X has dimension n− 1.

Now assume n = 2: then

χ(X,OX(d)) =
1

2
rd+ 1− 1

2
(r − 1)(r − 2)

Observations:

• r = degF appears in the leading coefficient.
• 1

2(r−1)(r−2) arising in the constant term is called the genus of X. For example,
if k = C, and if X is smooth (i.e. ΩX/Spec k is locally finite), then X is a Riemann
surface with the complex topology. Then the genus is the number of holes in the
Riemann surface.
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Lecture 24: November 28

Duality and Riemann-Roch Theorem.

Definition 24.1. Throughout this lecture, k will be an algebraically closed field.

• A quasi-projective variety over k is an integral scheme X with a quasi-projective
morphism X → Spec k.
• A projective variety over k is an integral scheme X with a projective morphism
X → Spec k.
• We say that a quasi-projective variety is smooth if the following equivalent con-

ditions hold:
– Ox is a regular ring for every x ∈ X
– ΩX/ Spec k is a locally free sheaf on X

• The dimension of a quasi-projective variety X is

dimX = max{dimOx : x ∈ X}
(where dimension is Krull dimension).

If X = SpecA, then dimX = dimA. In particular, dimPnk = dimAnk = 1. If X =
V (〈f〉) ⊂ An (where f 6= 0 and is not a unit), then dimV (I) = n− 1.

Theorem 24.2 (Duality). Assume that X is a smooth projective variety over k of dimen-
sion n. Then, there is a Cartier divisor KX (called a canonical divisor) such that, for
every locally free sheaf F on X we have

dimkH
p(X,F) = dimkH

n−p(X,OX(KX)⊗OX F
∨)

where we define F∨ = HomOX (F ,OX).

In particular, if F = OX(D) then the theorem says that

dimkH
p(X,OX(D)) = dimkH

n−p(X,OX(KX −D)).

Definition 24.3 (Weil divisors). Suppose X is a quasi-projective variety. Then a Weil
divisor on X is of the form M =

∑
finitemiMi where mi ∈ Z and Mi is a closed subscheme

of X which is a quasi-projective variety of dimension dimX − 1.

Now assume that X is smooth, and that D = (Uα, fα) is a Cartier divisor on X. Then
we can define a Weil divisor M associated to D informally as the collection of zeroes and
poles of fα, counted with multiplicity. More precisely, for each Uα, we define a Weil divisor
for fα and the M will be the divisor obtained by putting together all the divisors on Uα.
Define the divisor of fα to be

Mα =
∑

Mi,α⊂Uα
codim. 1

mi,αMi,α

and mi,α = vi,α(fα) where vi,α is the function K(ηi,α)\{0} → Z where ηi,α is the generic
point of Mi,α as follows:
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(1) if 0 6= g ∈ Oηi,α , then put vi,α(g) to be the largest ` such that g ∈ (mOηi,α )`

(2) for general 0 6= h ∈ K(ηi,α), write h = g/` for some g, ` ∈ Oηi,α and put vi,α(h) =
vi,α(g)− v`,α(`)

This is well-defined because Oηi,α is a regular Noetherian ring of dimension 1 (Oηi,α is a
DVR).

Now further assume dimX = 1 and X is projective. We define degD =
∑
mi where

M =
∑
miMi is the Weil divisor associated to D. One can show that

D ∼ D′ =⇒ degD = degD′.

In particular, if D ∼ 0 then degD = 0. (Think of a compact Riemann surface and a
meromorphic function.)

Theorem 24.4 (Riemann-Roch). Suppose X is a smooth projective variety of dimension
1. For every Cartier divisor D we have

χ(X,OX(D)) = dimkH
0(X,OX(D))− dimkH

0(X,OX(KX −D))

by the duality theorem. Then

χ(X,OX(D)) = degD + 1− dimkH
0(X,OX(KX)) = genus.

Sketch of proof. This is not examinable.

χ(X,OX(D)) = dimkH
0(X,OX(D))− dimkH

1(X,OX(1))

duality
= dimkH

0(X,OX(1))− dimkH
0(X,OX(KX −D))

Note that OX(KX) = ΩX/ Spec k in dimension 1. Also note that OPnk (KPnk ) = OPnk (−n−1).

For the second equality, here is a sketch. Pick any closed point x ∈ X. We will construct
a Cartier divisor D′ such that M ′ = the Weil divisor of D, which is just x. Since Ox is a
DVR, the maximal ideal is 〈t〉 for some t ∈ Ox. Then find some open affine U ⊂ X such
that x ∈ U , t ∈ OX(U), VU (t) = {x}. Put W = X\{x}, and define D′ to be given by
(U, t) and (W, 1). Then M ′ is the Weil divisor of D′, which is just x (the only point you
need to worry about vanishing is x).

We next define a morphism OX(D′)→ F , where F is the skyscraper sheaf at x define by
K(x) = k. Define the morphism on open sets:

OX(D′)(C)→ F(C) is

{
0 if x /∈ C
e 7→ image of et in K(x) in K(x)

under the map OX(C ∩ U)→ K(x)
if x ∈ C

It is easy to see that kerϕ = OX and then ϕ is surjective.

Then we get an exact sequence

0→ OX → OX(D′)
ϕ→ F → 0

By tensoring we get
0→ OX(D)→ OX(D +D′)→ F → 0
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(because F is concentrated in only one point). Tensor again:

0→ OX(D −D′)→ OX(D)→ F → 0

So the theorem holds for D iff it holds for D +D′ iff it holds for D −D′.

Now, deg(D + D′) = degD + 1, and deg(D − D′) = degD − 1. Applying the above
sequences finitely many times, we arrive at the case where M = the Weil divisor of D is
zero.

So we only have to do the case where D ∼ 0. Then OX(D) = OX . But in this case,

χ(X,OX) = dimkH
0(X,OX)− dimkH

1(X,OX)

duality
= dimkH

0(X,OX)− dimkH
0(X,OX(KX))

It also turns out that dimkH
0(X,OX), because X is projective and integral, so we have

· · · = 1− dimkH
0(X,OX(KX)).

#

Appendix A: Examples classes

Here are my notes from this course’s two examples classes, in which Prof. Birkar presented
his solutions to many of the exercises on the examples sheets.

Example sheet 1

Question 7: Take Y to be one point, and OY a DVR R. There is no ring A such
that (Y,OY ) = (X = SpecA,OX). If there were, then A has only one prime ideal. But
OX(X) = A = OY (Y ) = R. This is a contradiction because R has two prime ideals.

Question 11: Prime ideals of Fp[t] = {0, 〈f〉} for f irreducible. dim k[t] = 1 (no nontrivial
prime is contained in another); so there can be no more primes.

If x = 0 then Ox is the fraction field of Fp[t], i.e. Fp(t). The maximal ideal is (t), so the
residue field is just Fp.

If x 6= 0 then K(x) = Ox/mx = Fp[t]x/xx = Fp[t]/x is a field. If x = 〈f〉, then K(x) =
Fp[t]/ 〈f〉 the natural homomorphism Fp → K(x) = Fp[t]/ 〈f〉 is a finite extension. If

Fp is the algebraic closure of Fp, K(x) can be injected into Fp (the image of t gives an

element of Fp). Conversely, if we pick w ∈ Fp, then w has a minimal polynomial, say h
irreducible, and x = 〈h〉 is a prime ideal of Fp[t] with K(x) ∼= Fp(w).

Question 12: If P ∈ SpecZ[t], then P = 0, P = 〈p〉 (where p ∈ Z is prime), P = 〈f〉
where f is irreducible, or P = 〈p, f〉 for p ∈ Z prime and f monic, irreducible (mod p).
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This is sufficient, because dimZ[t] = 2 (note dimR[t] = dimR+ 1 where R is Noetherian
and finite-dimensional). Why monic? P/ 〈p〉 is a prime of Fp[t], say 〈g〉, and g ∈ P .

Consider the morphism SpecZ[t] → SpecZ induced from Z → Z[t]: 0 7→ 0, 〈p〉 7→ 〈p〉,
〈f〉 7→ 0 (no nonzero multiple of f is an integer), and 〈p, f〉 7→ 〈p〉 (otherwise the next
bigger “prime” is Z, but 1 is not in this ideal).

Question 13:

SpecR[t1, t2] = {0, 〈f〉 , 〈t1 − a1, t2 − a2〉 , 〈f, g〉 : deg f = 1,deg g = 2}
where f, g are irreducible. Suppose p ∈ SpecR[t1, t2]. If dimR[t1, t2]/p = 2 then p = 0.
If dimR[t1, t2]/p = 1 then p = 〈f〉 (for an irreducible f). If dimR[t1, t2]/p = 0 then
R → R[t1, t2]/p is a finite extension of degree 1 or 2 (this is where the last two terms in
the set come from).

SpecC[t1, t2] = {0, 〈h〉 , 〈t1 − b1, t2 − b2〉}
where h is irreducible. This is simpler than the above, because C is algebraically closed,
so any 〈f, g〉 as above can be factored into some 〈h〉.

Suppose q 7→ p under the morphism SpecC[t1, t2]→ SpecR[t1, t2]. If q = 0, then p = 0. If
q = 〈h〉 is nonzero, then I claim p = 〈f〉 for some f . If h = h′ + ih′′ (for real polynomials

h′, h′′), then h′2 + h′′2 ∈ P . If these are nonzero, then there must be at least one nonzero
element in P . So P 6= 0. We have the map R[t1, t2]/p ↪→ C[t1, t2]/q where the latter is
one-dimensional. Now what to do?

Question 15: Define a map f : SpecAb → D(b) where Pb 7→ P . This s a 1-1 map. f
is also continuous: f−1(D(c)) = D( c1) ⊂ SpecAb (where D(c) ⊂ D(b)). (Remember that

D(c) ⊂ D(b) ⇐⇒
√
〈c〉 ⊂

√
〈b〉.) f−1 is also continuous for similar reasons. Define

ϕ : OD(b) → f∗OSpecAb

by defining it on sets of the form D(c) ⊂ D(b). Do this by considering Ac = OD(b)(D(c))→
f∗OSpecAb(D(c)) = OSpecAb(D(c)) = (Ab)c = Ac (last equality because

√
〈c〉 ⊂

√
〈b〉

means c = dbr). So there is an isomorphism OD(b)D(c)→ f∗OSpecAbD(c) induced by the
identity Ac ∼= Ac. So ϕ can be extended to every open set and it is an isomorphism.

Y is a scheme, and U ⊂ Y is an open subset. Let p ∈ U . By the definition of schemes,
there is an open affine scheme V ⊂ Y such that p ∈ V = SpecB. There is some b ∈ B
such that p ∈ D(b) ⊂ U ∩ V . Take W = D(b) which is affine because D(b) ∼= SpecBb.

Question 16: (i) Assume that α is injective. For any a ∈ A, Aa = OX(D(a)) →
f∗OY (D(a)) = OYD(α(a)) = Bαa . We know that Aa ↪→ Bα(a) is injective. So |oX →
f∗OY is injective (because the sets D(a) form a base for the topology on X).
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Assume ϕ : OX → f∗OY is injective. Then it is injective on global sections A = OX(X) ↪→
f∗OY (X) = OY (Y ) = B.

(ii) Assume α is surjective. Then there is some I ⊂ A such that B = A/I. f is just
the closed immersion SpecA/I → SpecA. So f is a homeomorphism onto V (I), and ϕ is
surjective.

Now assume f is a homeomorphism onto Z ⊂ X, and ϕ is surjective. Let I = kerα.

Then we have morphisms SpecB
g→ SpecA/I

h→ SpecA where the composition is f .
(A/I → B is injective.) By (i), OSpecA/I → g∗OSpecB is injective. Since OSpecA →
h∗OSpecA/I is surjective and OSpecA → f∗OSpecB = h∗(g∗ SpecB) is surjective, we have
that OSpecA/I → g∗OSpecB is surjective. Together with (), OSpecA/I → g∗OSpecB s an
isomorphism. B = A/I and therefore α : A→ B is surjective.

Question 17: Define f : U → ProjS where p 7→ α−1P . Define ϕ : OProjS → f∗OU by
considering open sets of the form D+(b) and diagrams

S(b) = OProjSD+(b) //

++

T(α(b)) = OProjT (D+(α(b)))

restr.
ss

f∗OU (D+(b)) = OProjT (U ∩D+(α(b)))

Example: Let T = C[t1, t2], S = T except T1 = 0. If Sd → Td is an isomorphism for d ≥ n
(for fixed n), then U = ProjT and f is an isomorphism.because for any b homogeneous of
degree ≥ 2, D(b) for such b cover Proj(S) and coker ProjT and S(b)

∼= T(b). (If t
br ∈ T(b)

then t
br ∈ S(b).)

More generally, you can drop as many degrees as you want (finite), and this will still work
as an example.

Question 18: Let X = Spec(K⊕K) for a field K; this consists of two points {a, b}. But
Ox = K for all x ∈ X. So Ox is an integral domain, but X is not integral because OX(X)
is not integral.

Question 20: Let K be a field. Take X = Spec(K ⊕ K[t]/
〈
t2
〉
). This consists of

two points {a, b} (where a is the prime ideal corresponding to K, and b comes from
SpecK[t]/

〈
t2
〉
). Oa = K (an integral domain), but Ob =

(
K[t]/

〈
t2
〉)
〈t〉 has a nilpotent

element (the class of t).

Another example: X = SpecC[t1, t2]/
〈
t21, t1t2

〉
, where the anomalous point is the origin.

Example sheet 2
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Question 3: We have a diagram

Xy
//

��

X

f

��

SpecK(y) // Y

We get a map h : Xy → f−1{y}. Since these are all continuous maps, we get that h is
continuous. We need that h is a homeomorphism. This is a local problem, so we can
assume that Y = SpecA, X = SpecB. Then we have the diagram

By/myBy Byoo Boo

K(y)

OO

Ayoo

OO

Aoo

OO

where my ⊂ Ay is the maximal ideal. The fibre is given by the prime ideals of By/myBy.
This is in 1-1 correspondence with

{primes Py ⊂ By : myBy ⊂ Py}
and this is in 1-1 correspondence with

{primes P ⊂ B : f(p) = y} = f−1{y}.
This shows that h is a 1-1 map.

To show h is a homeomorphism, it is enough to show that h−1 is continuous (the image
of any closed [open] set is closed [open]). Take a closed subset of Xy which is of the form
V (Iy/myBy) for some ideal I ⊂ B.

h(V (Iy/myBy)) = {P ⊂ B : I ⊂ P, f(P ) = y} = f−1{y} ∩ V (I)

and that’s closed.

Question 4: Assume X → Y is an open immersion. We have a diagram

g−1X //

��

Z

g

��

X
f
// Y

For any scheme W and a diagram

W
e //

��

Z

g

��

X
f
// Y
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we get a larger diagram (since e(W ) ⊂ g−1X)

W

))

��

""

g−1X //

��

Z

��

X // Y

so g−1X satisfies the universal property of products, so g−1X = X ×Y Z.

Now assume X → Y is a closed immersion: to show X ×Y Z → Z is a closed immersion
is a local problem. So we can assume X = SpecC, Y = SpecA, Z = SpecB. Moreover,
we can write C = A/I. So X ×Y Z → Z is just

SpecB/IB = Spec(A/I ⊗A B)→ SpecB

So X ×Y Z → Z is a closed immersion.

Question 5: The diagram

A[t0, · · · , tn] // Z[t0, · · · , tn]

A

OO

Zoo

OO

gives (using problem 8 on the first sheet)

PnA = ProjA[t0, · · · , tn] //

��

ProjZ[t0, · · · , tn] = PnZ

��

SpecA // SpecZ

By the universal property of products, I get a diagram

PnA

++

��

h

%%

Y × PnZ = PnY //

��

PnZ

��

Y = SpecA // SpecZ

It is enough to show that h is an isomorphism. This can be done locally on the open sets
D+(ti). This boils down to

SpecZ[u1, · · · , un]×SpecZ SpecA ∼= Spec(Z[u1 · · · , un]⊗Z A) ∼= SpecA[u1, · · · , un]

Question 6: The fibre Yy over y = 〈s− a〉 is, by definition,

SpecK(y)×A1
kY

= Spec(K(y)⊗k[s] k[s, t1, t2]/ 〈h〉)
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K(y) = k[s]/ 〈s− a〉 ∼= k via s 7→ a. So Yy can be rewritten

Spec k[t1, t2]/
〈
t22 − t1(t1 − 1)(t1 − a)

〉
So this is naturally a closed subscheme.

Question 7: We show that the map D(t)
f
↪→ A1

k = Spec k[t] is not projective. Assume
that f is projective: there is a diagram

D(t)
g
//

f
!!

PnA1
k

��

A1
k

for some map where g is a closed immersion. f corresponds to the homomorphism

k[t]t ← k[t] = A

Let y = 〈t〉. The homomorphism A→ Ay gives a diagram

PnZ = Z × PnA1
//

��

PnA1
k

��

Z ×A1 D(t) //

cl.imm.
55

open
imm. ))

D(t)

g
==

f

!!

Z = SpecAy = Spec k[t]〈t〉 // A1
k

k[t]〈t〉 is a DVR so Z ×A1 D(t) = SpecL where L is the fraction field of Ay. So we have

SpecL
e //

op.imm.
d

##

PnZ
π

��

Z

Since e is a closed immersion, x = h(SpecL) is a closed point n PnZ . But the image in Z
is not a closed point.

It is enough to show that π(x) is a closed point, because then we get a contradiction, since
d(SpecL) is the generic point.

Take an affine neighborhood U of x (U = SpecB) and consider the diagram

B

��

L Ay

β

OO

α
oo

B contains x, the inverse image of the zero ideal in L. kerα is a maximal ideal β−1x which
implies that π(x) is a closed point.
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Question 8: Proposition 3.2 in Hartshorne chapter II.

Question 10: The idea is that there are naturally-defined morphisms as follows:

f∗f∗F
ϕ→ F

G ψ→ f∗f
∗G

Then you can define maps

HomOX (f∗G,F)→ HomOY (G, f∗F)

where
(f∗G → F)→ (f∗f

∗G → f∗F)→ composition with G → f∗f
∗G

In the other direction,

(G → f∗F)→ f∗G → f∗f∗F → composition with f∗f∗F → F

Question 13: The general case is treated in Hartshorne (II, Prop. 5.7).

Assume that X is Noetherian. We can assume that X = SpecA, where A is Noetherian.

By assumption, F = M̃ , E = Ñ , for some A-modules M and N . We have the exact
sequence

0→M = F(X)→ G(X)→ N = E(X)→ H1(X,F)

But H1(X,F) = 0 when X = SpecA and A is Noetherian. Then we get

0 // M̃ //

∼=
��

G̃(X) //

ϕ

��

Ñ //

∼=
��

0

0 // F // G // E // 0

using question 12. So ϕ is an isomorphism.
Question 17: It’s a local issue, so assume X = SpecA,F = M̃ ; assume we’re in some

D(b) so elements of M̃(D(b)) correspond to elements of M

•
⊕n

1 OX =
⊕n

1 m
′
i · OX ∼= Mx

•
⊕n

1 A→M = F(X) (send (a1, · · · , an) 7→
∑
aimi)

• ϕ :
⊕n

1 OX → F by Question 12

• Kernel and cokernel are K̃ and C̃ become zero after localizing, so are zero on some
neighborhood.

Question 18: This is a local problem, so we can assume that X and Y are both affine:

Y = SpecA, X = SpecB, G =
⊕n

1 OY =
⊕̃n

1 A. Then f∗G = ˜(
⊕
A)⊗A B ∼=

⊕̃n
1 B =⊕n

1 B̃ =
⊕n

1 OX .
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Question 19: Take S = C[t0, t1], P1
C = ProjS. N = S, M = S with degree 1 stuff

removed (i.e. declare S1 = 0). So M̃ = Ñ = OP1
k
, because for any homogeneous b ∈ S of

degree ≥ 2, M(b)
∼= N(b); so the morphism M̃ → Ñ is an isomorphism.

Question 20: Straightforward – take a covering by open affines.

Example sheet 3

Question 2: It is enough to find D such that OX(D) ∼= OX(1) (then take tensor powers).
X = Proj k[x0, · · · , sn]. Let Ui = D+(si) and fi = s0

si
∈ K. Let D = (Ui, fi); this is the

right Cartier divisor. Let K be the function field. By definition

OX(D)(Ui) = {h ∈ K : h
s0

si
∈ OX(Ui)}

and OX(1)(Ui) = S(1)si . Define a morphism

ϕi : OX(D)(Ui)→ OX(1)(Ui)

by sending h 7→ h · s0. Write h = F
G where F,G are homogeneous of the same degree. The

ϕi give isomorphisms
ϕ̃i : OX(D)|Ui → OX(1)|Ui

which are compatible on Ui ∩ Uj and this gives an isomorphism OX(D)→ OX(1).

Question 3: Let X = Y = Proj k[s0, · · · , sn]/S. Define a homomorphism α : S → S
where si 7→ smi . If α preserved degrees then O(1) would pull back to O(1); but that’s not
what we want. This induces a morphism f : X → Y . Recall from Q2, if D = (Ui,

s0
si

) then

OX(D) ∼= OX(1). Now f−1Ui = Ui because Ui = D+(si), so

f−1D+(si) = D+(α(si)) = D+(smi ) = D+(si) = Ui

So, f∗D = (Ui,
(
s0
si

)m
) and so OX(f∗D) ∼= OX(m). Then f∗OX(D) ∼= OX(m).

Question 4: First we show Pic(An) = 0. By problem 1, it suffices to show Div(An) = 0.
Let D = (Ui, fi) be a Cartier divisor on An. Let K be the function field k(t1, · · · , tn); every
fi is just a quotient of polynomials. By Noetherian-ness, there are finitely many Ui’s. We
can find h ∈ k[t1, · · · , tn] such that hfi ∈ OAn(Ui) (clearing denominators). In particular,
OAn(−D) ⊂ OAn . This is a coherent ideal sheaf so there is some ideal I ≤ k[t1, · · · , tn]

such that Ĩ = OAn(−D). Since Ĩ is an invertible sheaf, I is locally principal.

Let Z be an irreducible component of Spec k[t1, · · · , tn]/I, where Z has the unique struc-
ture of an integral scheme. Z corresponds to some prime ideal P ≤ k[t1, · · · , tn]. Since I
is locally principal, dimZ = dimAn−1 = n−1 (by commutative algebra). P is principal:
pick any irreducible e ∈ P ; 〈e〉 is prime, so we have 0 ⊂ 〈e〉 ⊂ P and that can only happen
if 〈e〉 = P . By construction, V (P ) ⊂ V (I), so

〈e〉 = P =
√
P ⊃

√
I ⊃ I.
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Now
J = {a ∈ k[t1, · · · , tn] : ae ∈ I}

is an ideal. So J̃ is an ideal sheaf which is OAn(−D′) where D′ = (Ui,
fi
e ). Repeat the

argument until the ideal J is prinicpal. This finishes the proof becauseD ∼ 0 ⇐⇒ D′ ∼ 0.

Now we show that Pic(Pnk) = Z. Again by problem 1 and theorems in lectures, Pic(Pnk) ∼=
Div(Pnk). So it’s enough to show Div(Pn) = Z. Let D be a Cartier divisor on Pn. Since
Div(An) = 0 and Ui = D+(si) ∼= An we can write D = (Ui, fi). We could also assume

f0 = 1 (this is true up to linear equivalence). By definition, fi
f0
, f0fi ∈ OPn(U0 ∩ Ui). Note

Ui\U0 = V (s0). By arguments similar to the case An, we could assume fi =
(
s0
si

)mi
for

some mi ∈ Z since fi
fj

and
fj
fi
∈ OPn(Ui ∩ Uj). (So this has an inverse.) This implies that

mi = mj for all i, j. So there is some m ∈ Z such that D = (Ui, fi) = (Ui,
(
s0
si

)m
).

From problem 2, we see that OPn(D) = OPn(m). So, Pic(Pn) is generated by the single
element OPn(1). To show that Pic(Pn) = Z, it suffices to show that OPn(1) is not torsion;
that is, that there is no ` ∈ Z such that OPn(1)⊗` ∼= OPn : otherwise we could choose ` < 0
and so

0 = H0(Pn,OPn(`)) = H0(On,OPn) = k

which is a contradiction.

Question 5: Let S = k[s0, s1]. Remember that there is an exact sequence

0→ ΩX/Y → OX(−1)⊕OX(−1)→ OX → 0

which is constructed by the homomorphism

S(−1)⊕ S(−1)
α→ S

(F0, G1) 7→ F0s0 + F1s1

And ΩX/Y
∼= k̃erα. If (F0, F1) ∈ kerα then there is some G such that (F0, F1) =

(Gs1,−Gs0). So we can get an isomorphism

S(−2)→ kerα

H 7→ (Hs1,−Hs0)

So ΩX/Y
∼= S̃(−2) ∼= OX(−2).

Question 6: See solutions on Prof. Birkar’s webpage.

Question 9: Let K be the constant sheaf defined by K. Then K is a flasque sheaf because
X is integral hence irreducible. In fact K/OX is also a flasque sheaf. Let U ⊂ X be an
open set. If U = X then (K/OX)(X)→ (K/OX)(U) is surjective. If U 6= X then, since K
is algebraically closed, by a change of variables we can assume U ⊂ D+(s0) ∼= A1 where U

is affine. If A = OX(U) then K/OX |U = K̃/A, and also K(U) → K/OX(U) is surjective.
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So we have
K(X)

����

// K/OX(X)

����

K(U) // // K/OX(U)

So

0→ OX
d0→ K d1→ K/OX → 0

is a flasque resolution. We can use this to calculate cohomology: In general we know
H0(X,OX) = ker d0. It is not hard to show that d0 is surjective. This shows that
H1(X,OX) = 0.

Question 10: Trivial, since F is flasque.

Question 12: Let X = A1
C = SpecC[t]. Let x = 〈t〉, y = 〈t− 1〉, and f : {x} → X and

g : {y} → X be the closed immersions. Let G be the constant sheaf on X defined by Z.
Now we have natural morphisms

G → f∗f
−1G = f∗Gx

G → g∗g
−1G = g∗Gy

So we get a surjective morphism

G ϕ→ f∗Gx ⊕ g∗Gy
giving an exact sequence

0→ F → G ϕ→ f∗Gx ⊕ g∗Gy → 0

where F is defined to be the kernel. I claim F has the required property.

By the long exact sequence of cohomology,

0→ H0(F)→ H0(G)

Z

→ H0(f∗Gx ⊕ g∗Gy)
Z⊕Z

→ H1(F)→ H1(G)

0

→ · · ·

Since Z→ Z⊕ Z can’t be surjective, we have H1(F) 6= 0.

Question 15: Take any X and F such that H1(X,F) 6= 0. For example, take X = P1,
F = OX(−3); by calculations we’ve done on projective space, this is H0(OX(−2+3)) 6= 0.
Now let U = (X) be the covering given by X alone. Then Ȟp(U ,F) = 0 for all p > 0.

Question 16: Take an open affine cover {Ui = SpecAi} of X (by finitely many open

sets). Let F be a quasicoherent sheaf over X. Then F |Ui = M̃i. By commutative algebra,

there is an injective Ai-module Ii such that Mi ⊂ Ii. Now Ii = Ĩi is injective in Qcoh(Ui).
Moreover, fi∗Ii is injective in Qcoh(X): suppose we are given

0 //M //

��

N

fi∗Ii
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Restrict to Ui to get

0 //M|Ui //

��

N|Ui

{{

Ii
where the dotted arrow exists by injectivity of I. We have

0 //M

��

// N

��

0 // fi∗M|Ui //

��

fi∗N|Ui

yy

fi∗Ii
which gives a morphism ψ : N → fi∗N|Ui → fi∗Ii. Finally we have

0→ F →
⊕

fi∗Fi|Ui ⊂
⊕

fi∗Ii
and the last term is injective in Qcoh(X).

Question 17: First we show that if

(A.1) 0→M→N → L → 0

is exact in Qcoh(X) then

0→ f∗M→ f∗N → f∗L → 0

is exact in Qcoh(Y ). This is a local problem: pick an open affine set U ⊂ Y . By
assumption, V = f−1U is affine. Now

0→M|V → N|V → L|V → 0

is exact corresponding to an exact sequence

0→M → N → L→ 0

of OX(V )-modules. Now take tildes:

0→ f∗M|U → f∗N|U → f∗L|U → 0

is an exact sequence considered as a sequence of OY (U)-modules.

This is exact for all open affine sets, and therefore it’s exact globally:

0→ f∗M→ f∗N → f∗L → 0

We can take an injective resolution 0→ F → I0 → I1 → · · · in Qcoh(X). By the proof
of Question 16, we can assume the Ii’s are also flasque. So,

0→ f∗F → f∗I0 → f∗I1 → · · ·
is a flasque resolution of f∗F . The following complexes are identical:

0→ I0(X)→ I1(X)→ · · · (calculates Hp(X,F))
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0→ f∗I0(Y )→ f∗I1(Y )→ · · · (calculates Hp(Y, f∗F))

so Hp(X,F) ∼= Hp(Y, f∗F).

Question 19: Let S = k[s0, s1, s2]. The ideal sheaf of X is 〈̃F 〉. We have the exact
sequence

0→ 〈F 〉 → S → S/ 〈F 〉 → 0

which is isomorphic to

0→ S(−d)
−×F→ S → S/ 〈F 〉 → 0

We get the exact sequence

0→ OP2(−d)→ OP2 → f∗OX → 0

where f : X → P2 is the closed immersion. By the long exact sequence of cohomology,

0→ H0(OP2(−d))

0

→ H0(OP2)

k

α→ H0(f∗OX)
Q8
= H0(OX)

→ H1(OP2(−d))

0

→ H1(OP2)

0

→ H1(f∗OX) = H1(OX)

β→ H2(OP2(−d))→ H2(OP2) = 0

so α and β are isomorphisms.

So dimkH
0(OX) = 1 and

dimkH
1(OX) = dimkH

2(OP2(−d)) = dimkH
0(OP2(d− 3))

= # monomials of degree d− 3

=
1

2
(d− 1)(d− 2)

Question 20: You can omit this question.

Example sheet 4

Question 1: In the sequence

(A.2) 0→ O∗X → K∗ → K∗/O∗X → 0

note that the group structure is multiplicative. A Cartier divisor D is written as (Ui, fi)
for fi ∈ K. We also determine H∗(K∗/O∗). Pick s ∈ H∗(K∗/O∗). There is an open
cover X =

⋃
Vα and tα ∈ K∗(Vα) such that tα 7→ s|Vα . Of course s is determined by the

Vα and tα. Since tα|Vα∩Vβ and tβ|Vα∩Vβ both go to s|Vα∩Vβ . So tα
tβ

and
tβ
tα

both map to

1 ∈ K∗/O∗(Vα ∩ Vβ), and hence they are in O∗X(Vα ∩ Vβ). Then s determines the Cartier
divisor (Vα, tα).
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This gives the 1-1 correspondence between Cartier divisors and elements in H0(K∗/O∗).
The long exact sequence of cohomology of (A.2) gives

0→ H0(O∗X)→ H0(K∗)
K∗

→ H0(K∗/O∗X)→ H1(O∗X)→ H1(K∗) = 0

where K∗ is flasque. Then

Div(X) = Cart. div.
/
∼

∼= H0(K∗/O∗X)/ imϕ ∼= H1(O∗X).

Question 2: The problem is local, so we could replace X by some open affine set V ⊂ X;
here we need to replace U by U ∩V , which is (by assumption) affine. So we could assume
from the start that X is affine, say X = SpecA. Let U = SpecB. The exact sequence

0→ F ′ → F → F ′′ → 0

corresponds to an exact sequence

(A.3) 0→M ′ →M →M ′′ → 0

of B-modules, where F ′ = M̃ ′, etc. Now if we consider this as an exact sequence of
A-modules, we deduce that the sequence

0→ f∗F ′

.AM̃ ′

→ f∗F
.AM̃

→ f∗F ′′

.AM̃ ′′

→ 0

is exact because it corresponds to (A.3) as A-modules.

Question 3: By assumption V,W are open subschemes of X, and we have inclusions

X
open
↪→ X

closed
↪→ PnA.

So V,W are open subschemes of X. V ∩W is the same inside X or X, so we can replace
X by X. That is, we could assume X is a closed subscheme of Pnk .

We have
X �
�

//

%%

PnA

��

Y = SpecA

By the universal property of products we get ∆ : Pn → Pn×Pn, where, given any diagram

?

  ~~

Pn

  

Pn

~~

Y

we get a map ? → Pn × Pn. Applying this to ? = Pn (with identity maps to Pn on each
side), we get the diagonal map ∆ : Pn → Pn × Pn.
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It turns out that ∆ is a closed immersion.

Similarly, we get a morphism ∆X : X → X ×Y X. One can check (using the universal
property of products) that we have a diagram

X

∆X $$

∼= // pullback //

∆X

��

Pn

∆
��

X ×X // Pn × Pn

If you have a closed immersion, and take the product with any other scheme, you get a
closed immersion. So ∆X is also a closed immersion.

Then V ∩W ∼= V ×W ∩ ∆(X); since ∆(X) is closed, V ∩W can be identified with a
closed subscheme of V ×W .

Question 4: The main point is that Pn is covered by Ui = D+(si). We have n+ 1 open
sets U0, · · · , Un. If you have any closed subscheme, take intersections with these open
sets to get a cover with at most n+ 1 open sets. Now apply Čech cohomology (the Čech
complex will stop at Cn).

Question 5: Take one point.

Question 6: Remember some facts: Hp(OX(m)) = 0 if p 6= 0, n, and by duality,
dimkH

n(OX(m)) = dimkH
0(OX(−n− 1−m)) for all m ∈ Z.

Remember that the exact sequence

0→ ΩX/Y → OX(−1)n+1 → OX → 0

The long exact sequence gives

0→ H0(ΩX/Y )→ H0(OX(−1)n+1)

0

→ H0(OX)

K

→ H1(ΩX/Y )→ H1(OX(−1)n+1)

0

→ H1(OX)

0

→ · · ·

· · · → Hn−1(OX(−1)n+1)→ Hn−1(OX)

→ Hn(ΩX/Y )→ Hn(OX(−1)n+1)→ Hn(OX)

0

→ 0

(The rest is zero.) Since the second term is zero, so is the first. Hn−1(OX) = 0 unless
n = 1. Hn(OX(−1)) = 0 by duality.

If 1 < p < n then we have

Hp−1(OX)

0

→ Hp(ΩX/Y )→ Hp(OX(−1))

0

→ Hp(OX)

0

so Hp(ΩX/Y ) = 0. The only thing that remains is H1; but H1(ΩX/Y ) ∼= H0(OX) ∼= K.
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Now calculate the Euler characteristic:

χ(ΩX/Y ) =
∑
p=0

(−1)p · dimkH
p(ΩX/Y ) = −1

To calculate the Hilbert polynomial, consider the exact sequence

0→ ΩX/Y (d)→ OX(d− 1)n+1 → OX(d)

We understand the middle and right sheaves:

Hilbert polynomial of ΩX/Y = Hilbert polynomial of OX(−1)n+1 −Hilbert polynomial of OX
In other words, the Hilbert polynomial of ΩX/Y is

χ(ΩX/Y (d)) = χ(OX(d− 1)n+1)− χ(OX(d))

Do the calculations to get a polynomial in terms of d.

Question 7: This is the case most of the time; just don’t pick something trivial.

Question 8: Let P1 = Proj k[s0, s1], P1 = Proj k[u,u1], P3 = Proj k[t0, t1, t2, t3]. Let
Sd be the degree-d part of k[s0, s1], and Ud be the degree-d part of k[u0, u1]. Let R =⊕

d≥0 Sd ⊗ Ud (this is not the tensor product of rings!). We have D+(s0u0), D+(s0u1),

D+(s1, u0), and D+(s1u1) in ProjR, and these give a cover of ProjR. Now

D+(s0u0) ∼= SpecR(s0u0)
∼= Spec k[

s1

s0
,
u1

u0
]

∼= A2 ∼= D+(s0)×D+(u0) ⊂ P1 × P1

We have similar isomorphisms D+(siuj) → some open set in P1 × P1. It is not hard to
glue all these isomorphisms to get an isomorphism

ProjR
∼=→ P1 × P1

We have a diagram of homomorphisms

k[t0, · · · , t3] //

**

R

T = k[t0, · · · , t3]/ 〈t0t1 − t2t3〉

α

55

t0 7→ s0u0

t1 7→ s0u1

t2 7→ s1u0

t3 7→ s1u1

This is the Segre embedding.
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After a bit of elementary calculation, you can see that α is an isomorphism. We then get
a corresponding morphism of schemes

P1 × P1 → ProjR
∼=→ X = ProjT

that is an isomorphism.

Let Vi = D+(si), Wi = D+(ui). Then P1 × P1 is covered by the Vi ×Wj , all of which are
isomorphic to A2. So Div(Vi ×Wj) = 0 by some problem on Example sheet 3.

Any Cartier divisor D on P1 × P1 can be written as a system (Vi × Wj , fij). We can
assume f00 = 1 in OV0×W0(V0 × W0) (after multiplying by a rational function). Now
P1 × P1\V0 ×W0 = F ∪G where F = P1 × ∗, G = ∗ × P1. Define

ϕ : Div(P1 × P1)→ Z⊕ Z
D 7→ (νF (f11), νG(f11))

where νF (f11) is the vanishing order of f11 along F . (This is calculated using the fact that
(OP1×P1) gen. pt.

of F
is a DVR.)

ϕ is injective: If ϕ(D) = 0, then f11 is a unit in the local rings of F and G, so there
are finitely many closed points x1, · · · , x` ∈ P1 × P1 such that D|P1×P1\{x1,··· ,x`} ∼ 0. So
the fij are units in OP1×P1(Vi ×Wj). (Don’t worry about this if you’re not familiar with
valuations.)

ϕ is surjective: We have a diagram

G �
�

//

∼= **

P1 × P1

&&{{

F = fibre_?
oo

∼=ttP1 P1

which can be used to get a D such that ϕ(D) = (m,n) for any given m,n ∈ Z.

Now we have to calculate H1(X,OX(D)) where D corresponds to D′ on P1 × P1, and
ϕ(D′) = (1, 1). OP3(1) pulls back to OX(1) on X, and OX(1) ∼= OX(1). From the exact
sequence

0→ OP3(−2)→ OP3 → f∗OX → 0

where f : X → P3. Tensor with OX(1):

0→ OP3(−1)→ OP3(1)→ f∗OX(1)→ 0

The long exact sequence contains:

H1(OP3O(1))

0

→ H1(OX(1))→ H2(OP3(−1))

0

so H1(OX(1)) = 0.

Question 9: Let X = Proj k[s0, · · · , sn]. Pick a closed point x = 〈s1, · · · , sn〉, and let f :
〈x〉 → X be the closed immersion. Let F = f∗O{x}. Now dimkH

0(F) = dimkH
0(O{x}) =
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1. Let U = X\{x}. Then F|U = 0 which implies F∨|U = 0. Tensoring doesn’t change
this property: F∨(−n− 1)|U = 0. Since this sheaf is trivial outside the point x, it comes
from a sheaf on x: that is, there is some sheaf G on {x} such that f∗G = F∨(−n− 1). So

dimkH
n(F∨(−n− 1)) = dimkH

n(G) = 0

Question 10: Algebraic topology.

Question 11: Straightforward.
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