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Geometry of manifolds Lecture 1

Lecture 1: September 4

Let U, V ⊂ Rn be open subsets. A smooth map ϕ : U → V is called a diffeomorphism if
it has a smooth inverse ϕ−1 : V → U .

Lemma 1.1. ϕ is a diffeomorphism iff it is bijective and DϕX : Rn → Rn is invertible for
all x.

This is a consequence of the inverse function theorem.

Example 1.2. Rn\{0} is diffeomorphic to {x ∈ Rn : a < |x| < b} for 0 < a < b.

Suppose U ⊂ Rm and V ⊂ Rn and I want to understand a smooth map f : U → V . There
is a linear map Dfx : Rm → Rn associated to every point.

Theorem 1.3 (Theorem of constant rank). Let U ⊂ Rm be an open subset and f :
U → Rm be a smooth map such that the rank of Dfx is constant. Choose x0 ∈ U, y0 =
f(x0). Then there are open neighborhoods x0 ∈ V ⊂ U , y0 ∈ W and diffeomorphisms

ϕ : (V, x0)→ (Ṽ , 0), ψ : (W, y0)
∼=→ (W̃ , 0) such that ψ ◦ ϕ−1 is a linear map.

See Bröcker-tom Dieck chapter 5.

Remark 1.4. The most frequent application is when rank(Dfx) is maximal, because that
is an open condition (i.e. the space of matrices with that rank is open). If Dxf is surjective
[injective] for all x ∈ U , f is called a submersion [immersion].

Proof. By reduction to the inverse function theorem. To simplify write f : Rm → Rn,
and assume x0 = f(x0) = 0. All the argument will (implicitly) be local near the origin in

both source and target spaces. We will also assume that (Df)0 is a block matrix

(
Ir 0
0 0

)
.

Take ϕ : Rm → Rm, ϕ(x1, · · · , xm) = (f1(x), · · · , fr(x), xr+1, · · · , xm). (This makes sense
because r ≤ m and r ≤ n.) Then ϕ(0) = 0, (Dϕ)0 = Im hence locally near 0 there is an
inverse ϕ−1.

(Rm, 0)
f(x)

//

(f1(x),··· ,fr(x),xr+1,··· ) %%

(Rn, 0)

(Rm, 0)
g=f◦ϕ−1

99

By construction g is the identity on the first r coordinates.

(Dg)0 =

(
I 0
∗ ∗

)
We know rank(Dg)x = r. This allows us to say the bottom right of this matrix is zero
(otherwise if something was nonzero you would get another vector that is linearly inde-
pendent, making the rank r + 1). So gr+1 doesn’t depend on xr+1, etc. So we can write
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Geometry of manifolds Lecture 2

g(x) = (x1, · · · , xr, gr+1(x1, · · · , xr), · · · , gn(x1, · · · , xr)). The image is a graph; we have
to make another change of variables to flatten it out.

Define ψ : (Rn, 0)→ (Rn, 0) where

ψ(y1, · · · , yn) = (y1, · · · , yr, yr+1 − gr+1(y1, · · · , yr), · · · , yn − gn(y1, · · · , yr)).
Then ψ ◦ g = ψ ◦ f ◦ ϕ−1 = (x1, · · · , xr, 0, · · · , 0). �

Submanifolds. Take an open subset U ⊂ Rn. A closed subset M ⊂ U is called a
k-dimensional submanifold of U if “it locally looks like a flat subspace” – if for each x ∈M
there is an open neighborhood x ∈ V ⊂ U and a diffeomorphism ϕ : (V, x)→ (Ṽ , 0) such

that ϕ(M ∩ V ) = (Rk × 0) ∩ Ṽ .

Lemma 1.5. If f : U → Rn is a submersion, all the fibres f−1(y) are submanifolds of U .

This follows from the constant rank theorem.

Example 1.6. Fix λ1, · · · , λn. The subspace of matrices with eigenvalues {λi} is a sub-

manifold of Rn2
of dimension n2 − n. To do this, take the map A 7→ coefficients of the

characteristic polynomial det(I −A).

Lecture 2: September 6

Let U ⊂ Rm be an open set, f : U → Rn be smooth. If f is a submersion then for all y,
f−1(y) ⊂ U is a submanifold. Call y ∈ Rn a regular value if Dfx is onto for all x ∈ f−1(y)
(otherwise it’s a critical value).

Lemma 2.1. If y is a regular value, f−1(y) is a submanifold.

Definition 2.2. Let U ⊂ Rn be open. A closed subset M ⊂ U is called a smooth
neighborhood retract if there is an open set V with M ⊂ V ⊂ U and a smooth map
r : V → V with r(V ) = M and r|M = Id.

Lemma 2.3. A smooth neighborhood retract is automatically a submanifold.

This follows from the theorem of constant rank.

Let Gr(k,m) be the set of k-dimensional linear subspaces of Rn. To give it a topology,

we can identify it with the subset of R(n2) consisting of symmetric matrices that satisfy
A2 = A and have rank k. (A is just projection onto a k-dimensional subspace.)

Take
M = {A ∈ R(n2) : rankA = k,A2 = A},
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Geometry of manifolds Lecture 2

which sits inside

U = {A ∈ R(n2) : k eigenvalues in (1
2 ,

3
2) and n− k eigenvalues in (−1

2 ,
1
2)}

and there is a smooth retraction U → M : take the eigenvalues in the first range and
replace them by 1, and take the eigenvalues in the second interval and replace them by 0.

The retraction is constructed by spectral projection:

r(A) =
1

2πi

∮
dz

z · Id−A
where the integral is taken over the counterclockwise circle of radius 1

2 around 1. None of
the eigenvalues lie on the circle, so you can invert the matrix in the denominator. Recall
that

1

2πi

∮
dz

z − λ
=

{
1 if λ is inside the circle

0 otherwise
.

This moves the eigenvalues as desired and is smooth.

Lemma 2.4. Let U ⊂ Rm, V ⊂ Rn be open subsets, and i : U → V a proper injective
immersion. Then i(U) ⊂ V is a submanifold.

In the case of the hypotheses of this theorem we say that i is an embedding.

This follows from the theorem of constant rank.

Example 2.5. Take the injective immersion R → R2 where R loops around but doesn’t
self-intersect. This is not proper.

Let U ⊂ Rm be open, M ⊂ U be a submanifold. At x ∈ M we have a tangent space
TxM ⊂ Rm that we will define in three ways. First choose a neighborhood V so x ∈ V ⊂ U ,

and a diffeomorphism ϕ : V → Ṽ so ϕ(x) = 0, ϕ(M ∩ V ) = (Rm × 0) ∩ Ṽ . Define
TxM = Dϕ−1

x (Rm × 0).

Alternatively, define

TxM = {ξ ∈ Rm : if f : U → R is smooth and vanishes along M then Dfx(ξ) = 0}.
If we just required the functions to be defined in small neighborhoods then this is the
pullback of the previous. This is not a problem: you can always extend a function to U .

Alternatively, define TxM to be the set {ξ = c′(0) : c : (−ε, ε) → U, c(0) = x, c(t) ∈
M ∀t}. This is the same as the first definition: for every path you get a tangent direction
and vice versa. However, this is not obviously a linear subspace (how do you add paths?).

Transversality. Let U ⊂ Rm, V ⊂ Rn, f : U → V and a submanifold N ⊂ V . We
say that f is transverse to N if for all x such that f(x) = y ∈ N , (Dfx) + TNy = Rn.
This is a weakening of the notion of regular value.
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Geometry of manifolds Lecture 3

Lemma 2.6. If f is transverse to N then f−1(y) is a submanifold of U .

(This generalizes the theorem about the regular value.)

Proof. Without loss of generality N = Rk × 0 ⊂ Rn. Write f = (f1, f2) : U → Rk ×Rn−k.
Then (Df2)x is onto so 0 is a regular value of f2. �

Let M be a submanifold in U ⊂ Rm. Then TxM ⊂ Rm, and Rm/TxM = νxM is called
the normal space. (Think about this as the orthogonal complement of TxM . . . but this
isn’t always useful because diffeomorphism don’t preserve orthogonality.)

Then the transversality condition is that Rm Dxf→ Rn proj→ νyN is onto.

Bump functions and cutoff functions. The classic bump function is

k(t) =

{
0 t ≤ 0

e−
1
t2 t > 0.

From this, construct `(t) = k(t+1)k(1−t)
k(1)2

; this is nonzero only on (−1, 1). Also consider

m(t) =

∫ t
−1 `(y)dy∫∞
−∞ `(y)dy

which is nonzero on (−1,∞) and constant on [1,∞]. This is called a cutoff function.
Finally, we can get an improved bump function

n(t) = m(3− 2|t|)
that is nonzero on (−2, 2) and constant = 1 on (−1, 1).

Since k was smooth, all of these functions are smooth.

Lecture 3: September 9

Proposition 3.1. Let U ⊂ Rn be open, M ⊂ U a closed subset. Suppose there is an
open neighborhood V with M ⊂ V ⊂ U and a smooth retraction r : V → M (that is,
r(V ) = M and r|M = Id, which implies r is idempotent).

Then M is a submanifold.

Proof. Pick x ∈ M and a small neighborhood W 3 x in V . Since r is idempotent,
Drx ◦Drx = Drx so Drx is an idempotent matrix, say of rank r. For y ∈W , rank(Dry) ≥
r. If additionally y ∈M ∩W , rank(Dry) = r, because Dry is idempotent (two idempotent
matrices near each other have the same rank – if A is an idempotent matrix then tr(A) =
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Geometry of manifolds Lecture 3

rank(A)). In fact, equality (of rank) holds for all y ∈ W , since Drr(y) ◦Dry = Dry and
rank(Dry) ≤ r (because Drr(y) has rank r). �

(Source: Bröcker-Jänich, chapter 4 and 7.)

More about bump functions. Recall we had a smooth map ψ : Rn → [0, 1] such
that ψ(0) > 0 and ψ(x) = 0 outside (−2, 2). We also had an improved bump function
satisfying ψ(x) = 1 for ‖x‖ ≤ 1 and ψ(x) = 0 for ‖x‖ ≥ 2. These are useful for “smearing
functions”. Let f : Rn → R be continuous, and let ψ be a bump function. Write ψr(x) =

ψ(x
r

)∫
Rn ψ( z

r
)dz

(the denominator is just a normalization factor). This is supported in B2r(0).

Then the convolution

(f ∗ ψr) =

∫
Rn
f(x− y)ψr(y)dy

is smooth and, as r → 0, this converges to f uniformly on compact subsets (using uniform
continuity).

Why is it smooth? Change variables from y to y + x

(f ∗ ψr)(x) =

∫
f(−y)ψr(y + x)dy

Use the derivative of ψ to come up with the putative derivative of the convolution, and
then show it’s actually the right thing.

Definition 3.2. Let U be a topological space. A cover of U is a collection (Vα)α∈A of
open subsets such that

⋃
α∈A Vα = U . We say that (Wβ)β∈B refines (Vα)α∈A if for all

β ∈ B there is some α such that Vβ ⊂ Vα.

A cover (Vα)α∈A is called locally finite if each point has a neighborhood that intersects
only finitely many Vα.

A Hausdorff space U is called paracompact if every open cover has a locally finite refine-
ment.

Theorem 3.3 (Stone). Metric spaces are paracompact.

In particular, open subsets of Rn are paracompact. (Even better – they’re locally com-
pact.)

Lemma 3.4. Let U ⊂ Rn be an open subset. Then every cover (Vα)α∈A has a locally
finite refinement of the form (W1 = Br1(x1),W2 = Br2(x2), · · · ) where (B ri

3
(xi)) is still

an open cover.

Sketch of proof. Step 1: write U =
⋃
Ki where each Ki is compact and Ki ⊂ int(Ki+1).

For example, Ki = {x ∈ U : ‖x‖ ≤ i, dist(x,Rn\U) ≥ 1
i }.

9



Geometry of manifolds Lecture 4

Step 2: Cover Ki+1\int(Ki) with a union of balls such that each ball lies in some Vα and
is also contained in int(Ki+1)\Ki−1 (this eventually guarantees local finiteness).

Step 3: Do the same thing with finitely many balls for each i.

Step 4: Take the balls for all i together.

We haven’t shown the last statement in the lemma; you have to be careful in step 2. �

Take a topological space U with an open cover (Vα)α∈A. A partition of unity subordinate
to (Vα)α∈A is a collection of functions fβ : U → [0, 1] such that:

• for all β there exists α such that supp(fβ) ⊂ Vα (the support is the closure of the
set of points where fβ is nonzero)

• each point has neighborhood on which all but finitely many fβ vanish

•
∑

β∈B fβ(x) = 1 for all x.

Note that the second condition guarantees that the sum in the third condition is not
infinite.

Theorem 3.5. If U is paracompact then every cover has a subordinate partition of unity.

The converse is also true. (Given a cover (Vα)α, consider sets Aβ = {x : fβ(x) 6= 0};
these form a locally finite refinement of (Vα)α.)

Corollary 3.6. Let U be paracompact, X,Y ⊂ U disjoint closed subsets. Then there
exist continuous functions f : U → [0, 1] if f |X = 0 and f |Y = 1.

Spaces satisfying the corollary are called T4.

Proof of corollary. Take the cover {U\X,U\Y } and find a subordinate partition of unity
(fβ)β∈B. Write B = BX t BY such that β ∈ BX , supp(fβ) ⊂ U\Y , β ∈ BY , supp(fβ) ⊂
U\X. �

Write
1 =

∑
β∈B

fβ =
∑
β∈BX

fβ +
∑
β∈BY

fβ.

The first sum vanishes on Y and the second sum vanishes on X. So the first sum is 1 on
X and the second sum is 1 on Y .

Lecture 4: September 11
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Geometry of manifolds Lecture 4

Lemma 4.1. Let Y ⊂ Rm be a open subset, (Vα)α∈A a cover of U . Then there is a
countable partition of unity (f1, f2, · · · ) consisting of smooth functions subordinate to
(Vα)α∈A.

Proof. We know (from last time) that (Vα)α∈A has a refinement of the form (Br1(x1), Br2(x2), · · · )
which is locally finite and such that the B ri

3
(xi) still cover U . Take a smooth bump func-

tion ψ : Rm → [0, 1] where

ψ(x) > 0 if ‖x‖ ≤ 1

ψ(x) = 0 if ‖x‖ ≥ 2

Set ψi(x) = ψ
(

3i
(
x−xi
ri

))
. Then supp(ψi) ⊂ Bri(xi) an ψi > 0 on B ri

3
(xi). For each

point of U there is a neighborhood where only finitely many ψi are nonzero (each point has
a neighborhood that intersects finitely many balls, and there are correspondingly finitely
many functions that are nonzero). On the other hand, ψ =

∑
i ψi > 0 everywhere. Set

fi = ψi
ψ . This is a smooth partition of unity subordinate to the cover of balls, and hence

to the original open cover. �

Corollary 4.2. Let U ⊂ Rn be open, X,Y ⊂ U closed and disjoint. Then there is a
smooth f : U → [0, 1] such that f |X = 0 and f |Y = 1.

(You can also prove the zero set is exactly X, but that is much harder to prove.)

Corollary 4.3. Let U ⊂ Rm be an open subset. Then there is a proper smooth function
f : U → [0,∞) (the preimage of compact sets is compact).

This is obvious when U is a ball, but open sets can be weird. . .

Proof. Let (f1, f2, · · · ) be a smooth partition of unity such that supp(fi) is compact. (Take
a cover of U by bounded open sets, or go back to the construction and notice that the
functions are supported on balls which are clearly compact.) Set

f = f1 + 2f2 + 3f3 + 4f4 + · · ·
=
∑
fi + (

∑
fi − f1) + (

∑
fi − f1 − f2) + · · ·

= 1 + (1− f1) + (1− f1 − f2)

This is well-defined by local finiteness. If x is not in the support of the first N , then the
first N terms are N , so f(x) ≥ N . This shows that {x : f(x) ≤ N} is compact. �

Theorem 4.4 (Approximating continuous functions by smooth functions). Let U ⊂ Rm
be open, f : U → R be continuous. For each ε > 0 there is a smooth g : U → R such that
|f(x)− g(x)| < ε for all x.

11



Geometry of manifolds Lecture 4

If we want this on a compact set, this is easy – convolution with a bump function. Here’s
a stronger version.

Theorem 4.5. Let ε : U → (0,∞) be continuous. Then there is a smooth function
g : U → R such that |f(x)− g(x)| < ε(x). for all ε.

Proof. Fix a locally finite cover of U by balls Bri(xi) so that the B ri
3

(xi) still cover U . On

each B 3
4
ri

(xi) we find a smooth map gi : B 3
4
ri

(xi) → R such that |gi(x) − f(x)| < ε and

x ∈ B 2
3
ri

(xi) (using convolution with a bump function, defined on a slightly smaller ball).

(In the book, they make the balls small enough that you can approximate by a constant
function.) Take a partition of unity by functions fi so that supp(fi) ⊂ B 2

3
ri

(xi) and set

g =
∑
figi. Then |f(x)− g(x)| ≤

∑
i fi(x)|f(x)− gi(x)| ≤ ε

∑
i fi(x) = ε. �

Measure zero and Sard’s theorem.

Definition 4.6. A subset C ⊂ Rm has measure zero if for each ε > 0 there is a countable
collection of cubes (Q0, Q1, · · · ) such that C ⊂

⋃∞
i=0Qi and

∑
i vol(Qi) < ε.

Lemma 4.7. If C has measure zero, its complement is everywhere dense.

This amounts to showing that an open ball does not have measure zero.

Lemma 4.8. A countable union of measure zero sets has measure zero.

Cantor diagonalization argument: cover the first measure zero set with balls of total
volume < ε

2 , cover the second measure zero set with balls of total volume < ε
4 , etc. The

total volume will be < ε.

Lemma 4.9. Let U ⊂ Rm be open. f : U → Rm is C1. If C ⊂ U has measure zero then
so does f(C).

Proof. Without loss of generality there are compact sets K1,K2 such that K1 ⊂ int(K2) ⊂
K2 and C ⊂ K1. We know that Rm can be covered by countably many Ki; we will show
this is true for C ∩K1 and then use the previous lemma.

Write C ⊂
⋃∞
i=1Qi, where

∑
vol(Qi) < ε and Qi ⊂ K2 (decompose Q into smaller cubes to

make this work). On K2, ‖Df‖ ≤ A for some A > 0, hence by MVT, f(Qi) is contained
in a cube Q′i of size A times the size of Qi. (Recall: differentiable almost everywhere
implies Lipschitz on compact subsets.) Therefore f(C) ⊂

⋃
Q′i. Then

∑
vol(Q′i) ≤∑

Amvol(Qi) = Am · ε. �

(This rules out things like the plane-filling curve.)
12



Geometry of manifolds Lecture 5

Corollary 4.10 (Trivial Sard’s theorem). If U ⊂ Rm is open and f : U → Rn is smooth
for m < n, then f(U) has measure zero.

(Consider the map Rn−m → U
f→ Rn.)

Lecture 5: September 13

Lemma 5.1. Let U ⊂ Rm be open, f : U → Rn be a smooth function. Assume n ≥ 2m.
Then f can be approximated arbitrarily closely (in the sense of Cr-convergence (first r
derivatives converge) on compact subsets, for any r) by immersions.

It’s clear this doesn’t work for functions R → R – if there’s a local maximum, then any
perturbation still has a local maximum near there. But if it’s a function R→ R2 then you
can ensure that the components of the derivative aren’t zero at the same time.

Proof. We will construct f = g0, g1, g2, · · · : U → Rn such that(
∂gi
∂x1

, · · · , ∂gi
∂xi

)
are everywhere linearly independent. Then gm is an immersion.

Step 1. Consider ∂f
∂x1

= ∂g0
dx1

: U → Rn. Since U ⊂ Rm for m < n, the image of this map

has measure zero. Find small v1 ∈ Rn, v1 /∈ im( ∂g0∂x1
) and set g1(x) = g0(x)− v1x1. Then

∂g1
∂x1

= ∂g0
∂x1
− v1 is nowhere zero.

Step 2. Consider R× U → Rn given by

(λ1, x) 7→ λ1
∂g1

∂x1
+
∂g1

∂x2
. (5.1)

The image of this again has measure zero (by dimension counting). Take a small v2 /∈
im(5.1). Set g2 = g1 − v2x2. Then

∂g2

∂x1
=
∂g1

∂x1

is everywhere nonzero, and ∂g2
∂x2

= ∂g1
∂x2
− v2. If ∂g2

∂x2
is linearly dependent on ∂g2

∂x1
at some

point, then

∂g2

∂x2
= −λ∂g2

∂x1

λ
∂g1

∂x1
+
∂g1

∂x2
= v2

13
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Step 3. Consider R× R× U → Rn given by

(λ1, λ2, x) 7→ λ1
∂g2

∂x1
+ λ2

∂g2

∂x2
+
∂g2

∂x3
.

This works the same way.

Step m − 1. We produce a map Rm−1 × U → Rn; the dimensions work out because
dim(Rm−1 × U) = 2m− 1 and dim(Rn) ≥ 2m. �

Example 5.2. Suppose f = (x1 + x2, ∗, ∗). Then ∂f
∂x1

= (1, ∗, ∗) and ∂f
∂x2

= (1, ∗, ∗). This

is not an immersion iff ∂f
∂x1
− ∂f

∂x2
= 0.

Theorem 5.3. Let U ⊂ Rm be open, f : U → Rn be smooth, n ≥ 2m. Then for every
ε > 0 there is an immersion g : U → Rn such that ‖f(x)− g(x)‖ < ε.

Sketch of proof. Choose a locally finite cover of U by balls Bri(xi) so that the B ri
3

(xi) still

form an open cover of U . Let (ψi) be a collection of functions supported in Bri(xi) so that
ψi|B ri

3
(xi) = 1. Start with f = g0 and construct g1, g2 such that

• gi = gi−1 outside Bri(xi)

• Dgi has maximum rank on B r1
3

(x1) ∪ · · · ∪B ri
3

(xi)

• ‖gi − gi−1‖ < ε · 2−i

The construction is by gi = gi−1 + ψi(hi − gi−1) where hi is an immersion on B ri
3

(xi),

and hi − gi−1 is small (this exists by the previous theorem). (Make an immersion on the
first ball; we still have some leeway to perturb this to make sure it stays an immersion on
the first ball. So perturb it a little bit so that it’s also an immersion on the second ball.
Then you have a very small leeway to perturb it so it stays an immersion on the first and
second balls, etc.) �

Corollary 5.4. Let U ⊂ Rm be open. Then there is a proper immersion U → R2m.

Proof. Take a proper function U
f1→ [0,∞), and set f = (f1, 0, · · · , 0) : U → R2m. Find

an immersion g with ‖f − g‖ < 1 everywhere. (Since g is uniformly close to f , it is also a
proper map.) �

Theorem 5.5. Let U ⊂ Rm be an open subset. Then there is an embedding (a proper
injective immersion) U ↪→ R2m+1.

Proof. You need to check that there are no self-intersections. This is an application of
the Weak Sard theorem. If you have a map f : U → Rn look at f(x) − f(x′) : {(x, x′) ∈

14



Geometry of manifolds Lecture 6

U × U : x 6= x′} → Rn. You need to make some change to f to make sure you never hit
zero. �

Lecture 6: September 16

Theorem 6.1 (Easy Sard). Let U ⊂ Rm be open, f : U → Rm smooth (at least C1).
Then the set of critical values of f ,

f({x : Dfx is not onto })
has measure zero. (Equivalently it’s f({x : det(Dfx) = 0}.)

The set of critical points is not always measure zero! (Consider a constant function.)

Corollary 6.2. For almost all y ∈ Rm, f−1(y) is a discrete subset of U .

(This is what we’d expect for m equations in m variables.)

Corollary 6.3. If f is proper then for almost all y, f−1(y) is a finite set.

Why does the dimension matter in Sard’s theorem? Think about mapping m-dimensional
cubes to n-dimensional cubes. If m < n then a cube of volume εm goes to a smaller cube
of volume εn. If n < m things are harder.

Theorem 6.4 (Sard). Let U ⊂ Rm be open, f : U → Rn be smooth. Then the set of
critical values has measure zero.

Note that in this case you probably need more than 1 derivative. “This is the reason for
ever caring about manifolds: the solution set to a random set of equations is a smooth
manifold, and if it’s not you can jiggle it a little bit so that is the case.”

Corollary 6.5. For almost all y, f−1(y) ⊂ U is a submanifold of dimension m− n.

Proof of Easy Sard. Take a compact subset K ⊂ Crit(f) = {x : Dfx is not onto}. It is
enough to show that f(K) has measure zero. (Closed subsets are the union of countably
many compact ones.)

Claim 6.6. For every ε > 0 there is a δ > 0 such that if Q ⊂ U is a cube of side length
< δ with Q ∩K nonempty then f(Q) is contained in a finite union of cubes whose total
volume is < ε · vol(Q).

15
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By taking ε small enough, I can ensure that for all x ∈ Q, ‖
(
∂f
∂xi

)
x
‖ ≤ C (find a slightly

larger compact subset on containing f(Q); derivatives are bounded there). Then f(Q) is
contained in a cube of size ≤ C ′ · size(Q). There is a point x ∈ Q where Dfx is not an
isomorphism. So there is a ξ ∈ Rm, ‖ξ‖ = 1, Dfx(ξ) = 0. Using uniform continuity of Df
a compact subsets, one can achieve that f(Q) lies in a ball neighborhood of a hyperplane
whose size is < ε · size(Q). (If 〈ξ,Dfx〉 = 0 and p is close to x, then 〈ξ,Dfp(ξ)〉 ≤ ε, so
(the integral) | 〈f(p)− f(x), ξ〉 is small. So you have an n-dimensional cube squashed into
a skinny neighborhood of a hyperplane.) �

Sketch of proof of Sard’s theorem. Let D be the critical point set of f ,

D1 = {x ∈ U : Dfx = 0}
D2 = {x ∈ U : Dfx = 0, D2fx = 0}
· · ·

Claims:

(1) f(D\D1) has measure zero

(2) f(Di\Di+1) has measure zero for all i

(3) f(Dk) has measure zero for large k

(3) is an argument of the kind we’ve seen before. If Q is a small cube intersecting Dk of
size ρ, then f(Q) is contained in a cube of size < ρk (Taylor’s theorem). For large k, (ρk)n

goes to zero faster than ρm (for kn > m).

(2) omitted (same as proof of part (1)).

(1) By induction on m (m = 1 is trivial, since then D = D1). Take a point p in D\D1.
By assumption, Df is nonzero at p. Locally near p, there is a diffeomorphism ψ with
ψ(p) = 0 such that

(f ◦ ψ−1)(x) = (x1 + c, g2(x), · · · , gn(x))

(see Bröcker-Jänich). Then locally,

critical values of f =
⋃
t

{t} × critical values of g(t, (x2, · · · , xm)).

The first column of the Jacobian is (1, 0, · · · ) so the map is not onto iff the remaining
minor is not onto.

Now use Fubini’s theorem (if the set’s intersection with a series of hyperplanes has measure
zero then the set has measure zero). �

Lecture 7: September 18
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Definition 7.1. A topological manifold of dimension n is a second-countable Hausdorff
topological space M which is locally homeomorphic to Rn – that is, for all x ∈ M there
exists U ⊂M containing x such that U is homeomorphic to an open subset in Rn.

Definition 7.2. A space is second-countable if there is a countable collection of open sets
which generates the topology.

Why is Rn second-countable? Take balls of rational radius and rational center.

Hausdorff-ness ensures that a finite set of points in M looks like a finite set of points in
Rn. If you’re using the quotient topology this is something to watch out for. It’s really
hard to come up with a case that’s not second-countable and the other conditions work –
maybe a subset of a non-separable Hilbert or Banach space.

We want functions out of neighborhoods to look like smooth functions out of Rn. To make
this reasonable we have to restrict the kind of local neighborhoods we use.

Let M be a topological n-manifold. A smooth atlas A = (Uα, gα)α∈A consists of an open
cover M =

⋃
α∈A Uα and for each α a homeomorphism gα : Uα → Vα ⊂ Rn (for open Vα),

such that, for every α, β ∈ A, the transition map

hβα = gβ ◦ (gα|Uα∩Uβ )−1

is smooth.

Vα Uα ∩ Uβ
gβ

//
gα

oo Vβ

ga(Uα ∩ Uβ)

(gα|Uα∩Uβ)−1
33

hβα

11

?�

OO

Note:
hβα : gα(Uα ∩ Uβ)→ gβ(Uα ∩ Uβ)

is a homeomorphism. Also note that hαα = 1Vα , and hγβ ◦ hβα = hγα (where both sides
are defined). This is called the cocycle condition. It’s important because otherwise the
definition would be internally inconsistent.

In particular, hαβ and hβα are inverse homeomorphisms. Hence, if they are smooth, they
are diffeomorphisms.

Definition 7.3. Let (M,A = (Uα)α∈A, gα) and (M̃, Ã = (Ũβ, gβ)β∈B) be topological

manifolds with atlases. A continuous map f : M → M̃ is called smooth if

gβ ◦ f ◦ g−1
α : gα(f−1(Ũβ))→ Ṽβ

is smooth for all α, β. This makes sense because the transition maps are assumed to be
smooth.

Definition 7.4. Let M be a topological n-manifold with two smooth atlases A and Ã.

These are equivalent if the identity map (M,A) → (M, Ã) and (M, Ã → (M,A) are
smooth.

17
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Intuition: if you have a smooth map with respect to A, then the second identity gives a

smooth map with respect to Ã, and vice versa.

Definition 7.5. A smooth manifold is a topological manifold with an equivalence class
of atlases.

Lemma 7.6. A and Ã are equivalent iff the disjoint union At Ã is again a smooth atlas.

(This is because we need the transition functions in A to be smooth with respect to Ã.)
Some people say this in terms of a maximal atlas, but that’s such a huge thing. . .

Example 7.7. LetM = R, A = {(1 : R→ R)}, Ã = {x3 : R→ R}. These are inequivalent

atlases, because x
1
3 is not smooth. These manifolds are still diffeomorphic, just not via

the identity.

This does happen occasionally and it is a source of grief.

Tangent space. Let M be a smooth n-dimensional manifold (we usually omit the
notation for atlases). For x ∈ M the tangent space TxM (or written TMx) is an n-
dimensional real vector space, defined below. Elements ξ ∈ TxM are called tangent
vectors. Take an atlas (Uα, gα)α∈A. Let Ax ⊂ A be the subset of those α where x ∈ Uα.
A tangent vector is a collection ξ = (ηα)α∈Ax for ηα ∈ Rn, such that Dgα(x)(hβα)ηα = ηβ.
(So it’s a compatible collection of points in the Euclidean space corresponding to each
neighborhood containing x.) ξ is completely specified by one ηα, which can be arbitrary.
Therefore the set of such ξ = (ηα)α∈A is naturally an n-dimensional vector space.

Why didn’t I just specify the tangent vector to be one ηα? It is nicer to add them this
way.

A smooth map f : M → M̃ has derivatives Dfx : TMx → TM̃f(x), defined by the action
of

D(g̃β ◦ f ◦ g−1
α ).

The chain rule ensures that the compatibility condition is satisfied on the target space.

In particular, a smooth path (−ε, ε) γ→M yields Dγ0 : R→ TMγ(0). Conversely, a smooth
function f : M → R yields Dfx : TMx → R hence an element of (TMx)∨.

You can use both approaches to give alternative definitions of the tangent space. If you
define it in terms of paths, it’s clear that you get all the tangent vectors this way, but it’s
not clear why it’s a vector space.

NO CLASS ON FRI.

Lecture 8: September 23
18
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Let M be a smooth manifold with atlas (Uα, gα). General principle: define objects that
live on a manifold by their local counterparts and transition rules.

Definition 8.1. Let x ∈ M . A tangent vector at x is given by (ξα)α, where ξα ∈ Rn for
each α ∈ A such that x ∈ Uα satisfying

ξβ = D(hβα)gα(x)ξα

where hβα = gβg
−1
α .

Note that any ξα determines all the others.

Tangent vectors at x form a vector space TxM of dimension n.

A cotangent vector (an element of TxM
∗ (the dual vector space)) is given by a collection

(ηα)α for ηα ∈ Rn satisfying
ηα = D(hβα)tgα(x)ηβ.

For ξ ∈ TxM and η ∈ TxM∗, the pairing

〈η, ξ〉 = ηtα · ξα ∈ R
is well-defined (independent of the choice of α):

〈ηβ, ξβ〉 ηtβξβ = ηtβD(hβα)ξα

= (D(htβαηβ)tξα)

= ηtαξα.

Let M be a manifold, x ∈ M . Consider smooth paths (i.e. smooth maps of manifolds)
c : (−ε, ε) → M with c(0) = x. Two such paths c, d are called tangent at x if for some
(hence every) gα : Uα → Vα, x ∈ Uα,

d

dt
gα(c(t))|t=0 =

d

dt
gα(d(t))|t=0.

(Note that this requires the tangent vectors to be the same, not just parallel; maybe we
should just call this equivalent.)

Definition 8.2. TxM is the set of tangency equivalence classes of paths at x.

This is equivalent to the previous definition: take a path c and map it to the collection
(ξα = d

dtgα(c(t))|t=0)α. You need to check this is onto, but you can just construct a path
in some local chart.

Let C∞(M,R) be the algebra of smooth functions on M . Given a point x, we have the
ideal Ix ⊂ C∞(M,R) of smooth functions that vanish at x. Then I2

x is the ideal generated
by products fg where f, g ∈ Ix.

Definition 8.3. T ∗xM is the quotient vector space Ix/I2
x.

19
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Lemma 8.4. Take f ∈ Ix. Suppose that for some chart gα : Uα → Vα the derivative of
f ◦ g−1

α at gα(x) is zero. Then f ∈ I2
x. (The converse is obviously true.)

Using this one shows that the natural pairing

Ix/I2
x × TxM → R where (f, [c]) 7→ d

dt
f(c(t))|t=0

is nondegenerate. This yields Ix/I2
x
∼= TxM

∗.

Let M,N be smooth manifolds, f : M → N a smooth map.

Definition 8.5. f is an immersion if Txf is injective for all x.

f is a submersion if Txf is surjective for all x.

A closed subset P ⊂ M is a k-dimensional submanifold if for each chart (gα) in an atlas
of M , gα(P ∩Uα) ⊂ Vα is a k-dimensional submanifold of Vα (i.e. in the sense of Chapter
1).

Note: around each x ∈ P there is another chart g̃ : h̃ → Ṽ , with g̃(x) = 0, such that

g̃(P ∩ Ũ) = (Rk × 0n−k) ∩ Ṽ .

Lemma 8.6. If P ⊂ M is a submanifold, P itself is a manifold in a way so that its
inclusion into M is an injective immersion.

For example, if your charts were R→ R, t 7→ t3 then this is not an immersion.

Theorem 8.7. If f : M → N is a proper injective immersion, then f(M) ⊂ N is a
submanifold.

Theorem 8.8. If f : M → N is a submersion and y ∈ N is arbitrary, then f−1(y) ⊂ M
is a submanifold of dimension dimM − dimN .

Given f : M → N , y ∈ N is called a regular value of f if Txf is onto for all x ∈ f−1(y).

Theorem 8.9. If y is a regular value, then f−1(y) is a submanifold.

If P ⊂ N is a submanifold, then TxP ⊂ TxN . Define the normal space at x ∈ P to be

νxP = TαN/TxP.

(You want to say it’s the orthogonal directions, but that isn’t preserved across different
charts.)

20
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Definition 8.10. Let f : M → N be a smooth map, and P ⊂ N a submanifold. Then f
is transverse to P if for all x ∈ f−1(P ),

im(Txf) + Tf(x)P = Tf(x)N

or equivalently, TxM
Txf→ Tf(x)N

proj→ νf(x)P is onto.

Theorem 8.11. If f : M → N is transverse to P then f−1(P ) is a submanifold of
dimension dimM − dimN + dimP .

This follows from the corresponding local result.

For example, two surfaces meeting transversely intersect in a smooth path.

Lecture 9: September 27

Constructions of submanifolds:

• If f : M → N is an embedding (proper injective immersion), then f(M) ⊂ N is
a submanifold

• If f : M → N is a submersion, then f−1(y) is a submanifold for all y (also,
generalizations)

• Suppose M ⊂ N is a closed connected subset. Suppose there is an open neigh-
borhood M ⊂ U ⊂ N and a smooth map f : U → U , r(U) = M , r|M = 1M .
Then M is a submanifold. (The converse is true but we can’t prove it yet. Also
notice that this doesn’t work if the retraction is just continuous, not smooth –
there is a continuous retraction of the figure 8.)

Definition 9.1. Let M be a Hausdorff space. An action of a group G on M is called
properly discontinuous if for all x, y ∈M there are neighborhoods x ∈ U, y ∈ V such that

g(U) ∩ V = ∅
for all but finitely many g ∈ G.

“It should actually be called discontinuously proper.”

Remark 9.2. This implies that the G-action has finite stabilizers Gx = {g ∈ G : gx = x}.

Remark 9.3. If G is finite then every G-action is properly discontinuous.

Lemma 9.4. If G acts properly discontinuously then X/G (with the quotient topology)
is Hausdorff.

Proof. Take x, y which do not lie in the same orbit. Choose x ∈ U, y ∈ V such that
g(U) ∩ V 6= ∅ only for g1, · · · , gr ∈ G. Note gi(x) 6= y, hence I can find a Ui 3 gi(x) open,
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Vi 3 y open such that Ui ∩ Vi = ∅. Then

Ũ = U ∩
r⋂
i=1

g−1
i (Ui), Ṽ = V ∩

r⋂
i=1

Vi.

Then g(Ũ) ∩ Ṽ = ∅ for all g. Hence,
⋃
g∈G g(Ũ) and

⋃
g∈G g(Ṽ ) are G-invariant disjoint

open sets, one containing x, the other containing y. �

Theorem 9.5. Let M be a smooth manifold, G a group acting freely and properly dis-
continuously by diffeomorphism of M . Then M/G is a smooth manifold.

That is, π : M → M/G will be a smooth map with Txπ invertible for all x. (So by the
inverse function theorem you can get a local inverse and get charts by composing with the
charts of M .)

Proof. For all x ∈M there is an open neighborhood U 3 x such that U ∩ g(U) = ∅ for all
g 6= e (similar to earlier argument). Use charts whose closure is contained in such U . �

Example 9.6.

• RPn = Sn
/

(Z/2) (quotient by the antipodal map)

• Space forms Sn/G (quotients by a finite subgroup G ⊂ O(n + 1) such that
nontrivial elements of G do not have 1 as an eigenvalue – this guarantees there
are no fixed points).

• A particular example of a space form: S3/G where G ⊂ SU(2) is a finite subgroup
(think of S3 as a subset of C2). The finite subgroups of SU(2) correspond (with
one exception) to the Platonic solids.

• Tn = Rn/Zn (Zn acting by translation)

• Given a manifold M and a diffeomorphism f : M → M , the mapping torus is
(R×M)/Z with k ∈ Z acting by (t, x) 7→ (t− k, fk(x)). The point is to change
a discrete action (think of f as a discrete dynamical system) into a continuous
action, with the price that you add an extra dimension.

Partitions of Unity.

Theorem 9.7. Let M be a smooth manifold. Then every open cover of M has a subor-
dinate smooth partition of unity.

Proof. Essentially the same as in the Rn case, except you have to use second-countability.
�
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Corollary 9.8. For every smooth manifold M there is a proper smooth function f : M →
[0,∞).

Corollary 9.9. Any smooth n-manifold has a proper immersion into R2n.

Corollary 9.10. Any smooth manifold M has an embedding into R2n+1.

Theorem 9.11 (Sard). If f : M → N is a smooth map of manifolds, the set of critical
values

{y ∈ N : y = f(x) for some x such that Txf is not onto}
has measure zero.

Note that manifolds don’t have a notion of volume – even locally, this depends on the
chart used. But, measure zero does make sense – it’s a set that has measure zero in every
chart.

There are infinitely many 4-manifolds which are homeomorphic to the 4-sphere.

Lecture 10: September 30

Theorem 10.1 (Ehresmann). Let π : M → N be a proper smooth submersion. For every
x ∈ N there is an open x ∈ U ⊂ N and a diffeomorphism f : U × π−1(y)→ π−1(U) such
that

U × π−1(y)
f

∼=
//

proj

%%

π−1(U)

π
{{

U
commutes.

Corollary 10.2. If ỹ ∈ U , π−1(ỹ) is diffeomorphic to π−1(y).

Corollary 10.3. If N is connected, any two fibers of π are diffeomorphic. (So π is a fibre
bundle with structure group Diff(π−1(y))).

This is a nice property, and it fails in many other settings such as algebraic geometry.

If the dimensions are equal, then every point in N has finitely many preimages, and you
can see pretty easily that it is a finite cover. This is easy because there is no ambiguity in
choosing the trivialization: given a point in one fiber, it is easy to shift it into a nearby
fiber. In the general case, you want to do this locally and patch them together using
partitions of unity. This is kind of annoying – how do you add diffeomorphisms? Fix this
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by generating the diffeomorphisms by integrating vector fields. This has the advantage
that you can add vector fields.

Definition 10.4. Let M be a smooth manifold, with atlas (Uα, gα)α∈A. A smooth vector
field X is a collection of tangent vectors Xx ∈ TxM such that the map gα(Uα) → Rn
sending x 7→ (Xg−1

α (x))α is smooth (where (· · · )α means looking at the value in the αth

chart).

Lemma 10.5. Let N ⊂M be a smooth submanifold. Given a vector field Y on N , there
is a vector field X on M such that X|N = Y .

(What does X|N mean? If y ∈ N then TyN ⊂ TyM .) This is called a vector field extension
property.

Proof. Take an open cover (Uα)α∈A+tA− of M such that

(1) if α ∈ A−, then Uα ∩N = ∅;
(2) if α ∈ A+ then there is a diffeomorphism gα : Uα → Rn, and gα(Uα ∩ N) =

B ∩ (Rm × 0).

Let (ψα) be a subordinate partition of unity. We define our desired extension as X =∑
α ψαXα, where the Xα are vector fields on Uα. This is automatically smooth. If α ∈ A−,

choose arbitrary Xα, and if α ∈ A+, choose Xα such that Xα|Uα∩N = Y |Uα∩N (it is easy
to extend a vector field on Rm × 0 to the rest of Rn). Finally, we need to check that
X|N = Y . But at y ∈ N ,

∑
α ψαXα,y = (

∑
α∈A+ψα

)Yy = Yy. �

Remark 10.6. If X1, · · · , Xm satisfy Xi|N = Y and f1, · · · , fm are functions defined on
them such that

∑m
i=1 fi = 1, then X =

∑
fiXi also satisfies X|N = Y .

Lemma 10.7. Let π : M → N be a submersion. If Y is a vector field on N , there is a
vector field X on M such that Yπ(x) = (Tπ)x(Xx).

This is called a vector field lifting property.

Proof. Solve locally; glue together. (Locally, it looks like linear projection, and is easy.
Then use partition of unity, and it’s easier than before because there are not two types of
neighborhoods.) �

If dimM = dimN then this is unique.

Take M 3 x, X a smooth vector field. The flow line of X through x is a smooth map
c : Ωx →M , where

(1) Ωx ⊂ R is an open interval containing 0
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(2) c(0) = x, dc
dt = Xc(t)

(3) Ωx is maximal among open intervals for which such a c exists

Theorem 10.8. Flow lines exist and are unique.

What happens when you reach the endpoints of the interval? If a = sup Ωx ∈ R then
c(x), x → a− has no convergent subsequence (“goes to ∞”). The same thing is true for
inf.

Corollary 10.9. If M is compact then Ωx = R.

Theorem 10.10. Let X be a smooth vector field on M . Take Ω =
⋃

Ωx×{x} ⊂ R×M .
Then Ω is open, and the map Φ : Ω→M such that Φt(x) := Φ(t, x) = c(t) if c is the flow
line through x, is smooth.

Moreover, Φ0(x) = x and Φs(Φt(x)) = Φs+t(x) wherever defined.

Φ is called the flow of X.

In particular, if Ω = R×M , then each Φt is a diffeomorphism (because Φt ◦ Φ−t = 1).

Lecture 11: October 2

Theorem 11.1 (Ehresmann). Let π : M → N be a proper submersion. For every y ∈ N
there is an open set V ⊂ N around y and a diffeomorphism

V × π−1(y)
∼= //

proj

%%

π−1(V )

π
{{

V

If you drop properness, this is false: just take any immersion of an open subset.

Choose tangent vector fields Y1, · · · , Yn on N (where n = dimN) so that Y1(y), · · · , Yn(y)
is a basis. (Why can you do this? Take a basis at y, extend it locally and then use
bump functions.) For small enough ε we can define a map G : (−ε, ε)n → N which takes

(t1, · · · , tn) 7→ ϕY1
t1
◦ · · · ◦ ϕYntn (y) where ϕYiti is the flow of the vector field Yi at time ti (so

this is a single vector). (Note that this depends on some arbitrary choice of ordering; I
can make the flows pairwise commute if I work harder, but it doesn’t matter.)

This is defined for small times, i.e. you can choose ε so this is well-defined (we’re us-
ing the fact that the domain is open). A diffeomorphism from (−ε, ε)n onto an open
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neighborhood of y ∈ N . The latter statement follows from the inverse mapping theorem.
(If (t1, · · · , tn) = (0, · · · , ti, · · · , 0) then you are just flowing in the direction of Yi; so
∂G
∂ti

(0, · · · , 0) = Yi(y)).

Choose vector fields X1, · · · , Xn on M such that (Tπ)x)(Xi = (Ui)π(x) (lifting theorem).
Define

(−ε, ε)n × π−1(y)
F→M

(t1, · · · , tn, x) 7→ ϕx1
t1
◦ · · · ◦ ϕXntn (x)

Note this is well-defined for small ε: the flow is defined if ti are small, but how small
depends on x. But we’re in a compact set π−1(y), so there’s a nonzero minimum that
makes sense. Also, note that it fits into a commutative diagram

(−ε, ε)n × π−1(y)
F //

proj

��

M

π

��

(−ε, ε)n G // N

Going on the top right solves the same ODE as going through the bottom left, so this
commutes by uniqueness of ODE solutions. So F |{(0,··· ,0)}×π−1(y) is the inclusion, and

T(0,··· ,0,x)F is an isomorphism for all x ∈ π−1(y). (equal dimension + easily seen to be
surjective)

Possibly after making ε smaller, F is a diffeomorphism onto π−1(G((−ε, ε)n)). This uses
properness: suppose you start in one fiber, and move this a little bit by the vector field.
How do you know that you’ve caught everything in the nearby fibers? If not, then there
would be a missing point in the original fiber, and a subsequence in the other fibers
converging to this missing point. So you really need compactness.

If you have a non-submersion, the fiber can be horrible. If I pick a random fiber, then I
get a submanifold, but which?

Manifolds with boundary. Unlike other notions in this course like smoothness and
transversality which could not possibly be improved upon, the notion of manifolds with
boundary is just horrible.

Definition 11.2. A topological n-manifold with boundary is a second-countable Haus-
dorff space M such that each point x ∈ M has an open neighborhood x ∈ U ⊂ M
homeomorphic to an open subset V ⊂ [0,∞)× Rn−1 (i.e. it’s open in [0,∞)× Rn−1).

If ϕ(x) ∈ (0,∞) × Rn−1 we say that x is an interior point. If ϕ(x) ∈ {0} × Rn−1, x is
called a boundary point.

Warning: Needs some work to show it’s a well-defined distinction (i.e. you need to check
there isn’t some homeomorphism that makes a boundary point look like an interior point
or vice versa). This property is called “invariance of domain”.
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Write M = int(M)t ∂M , where int(M) is an n-manifold (without boundary) and ∂M is
an (n− 1)-manifold (without boundary).

Definition 11.3. Let V ⊂ [0,∞) × Rn−1 be an open subset. A map f : V → Rm is

smooth if for each x ∈ V there is an x ∈ Ṽ open and a smooth f̃ : Ṽ → Rm such that

f̃ |
Ṽ ∩V = f .

So smoothness is defined using an extension f̃ of f that is (1) not unique; (2) defined in a
part of the space you don’t want to think about. If you just want functions that are Ck,
then this is definitely the same as the “usual definition”. This is sort of unclear for C∞

functions.

Definition 11.4. Let M be a topological n-manifold with boundary. A smooth atlas
(Uα, gα) is an open cover (Uα) together with homeomorphisms gα : Uα → Vα ⊂ [0,∞) ×
Rn−1, such that the transition maps hβα = gβg

−1
α are smooth.

Now M = int(M) t ∂M , where int(M) is a smooth n-manifold and ∂M is a smooth
(n− 1)-manifold (take the transition maps and restrict to the boundary).

Theorem 11.5 (Collar neighborhood theorem). LetM be a smooth manifold with bound-
ary. Then there is an open subset V ⊂ M containing the boundary, and an open subset
U ⊂ [0,∞)× ∂M containing {0} × ∂M , and a diffeomorphism U → V .

Proof. Same proof as always. Locally, this is certainly true. Find a vector field X on
M which points inwards along the boundary. (This property is invariant under linear
combinations, so you can construct X using partitions of unity.) Integrate that vector
field to get a map C such that C(0, x) = x and T(0,x)C is an isomorphism for all x. The
image is an open neighborhood of ∂M . By making U small, you can guarantee that T(t,x)C
is an isomorphism for all (t, x) ∈ U . �

Lecture 12: October 4

This definition is due to Thom; he first called it “cobordant” but then “co” acquired other
meanings, and so people decided to call it “bordant”.

Definition 12.1. Let M0,M1 be compact n-dimensional manifolds. We say that M0 is
bordant to M1 if M0 tM1 is the boundary of a compact (n + 1)-dimensional manifold
with boundary. More precisely, if there is a compact (n + 1)-manifold with boundary N

and a diffeomorphism ∂N
∼=→M0 tM1.

This is weaker than diffeomorphism: if M0 is diffeomorphic to M1, we can take N =
M0 × [0, 1] (a manifold with boundary) and ∂N = M0 tM0 is diffeomorphic to M0 tM1.
The converse is obviously not true: there is a bordism from S1 to S1 t S1.
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Lemma 12.2. Bordism is an equivalence relation.

Proof. Suppose ∂N0 = M0 tM1 and ∂1 = M1 tM1. We have to show that there is some
N for which ∂N = M0tM2. The answer is to set N = N0∪M1N1 (i.e. N0tN1 where the
copies of M1 in each are identified). But there is an issue with the differentiable structure:
what is a smooth function on an open set including parts of M1 and stuff from both sides?
Use a collar neighborhood, and that gives charts that are easy to glue. This is well-defined
up to diffeomorphism. �

Definition 12.3. Let Ωn be the set of bordism classes of n-dimensional smooth manifolds.

Lemma 12.4. Under disjoint union and Cartesian products, Ω∗ is a graded commutative
ring.

The operation of disjoint union clearly descends to bordism classes, and similarly for
Cartesian products: if M1 tM2 = ∂N then (M1 × P ) t (M2 × P ) = ∂(N × P ). The
product is commutative and distributive w.r.t. disjoint unions. The empty set is “0” (and
can have any dimension).

Remark 12.5. Note M tM is the boundary of M × I, and so it is bordant to ∅. So in
Ω∗, [M ] + [M ] = [M tM ] = 0, so Ω∗ is an algebra over F2.

So even though we say “graded commutative” there actually aren’t signs to worry about.

What is this ring?

Proposition 12.6. Ω0
∼= Z/2

Proof. A compact 0-manifold is a finite set. We’ve already shown that 2 points are bordant
to zero. Why is 1 point not bordant to zero? This depends on the classification of 1-
dimensional manifolds (with boundary) up to diffeomorphism: the circle, real line, closed
interval, and half-open interval. (We won’t do this now; it is trivialized by Riemannian
geometry.) The only compact 1-manifold with boundary is the closed interval, and that
doesn’t make one point bordant to two points. �

Proposition 12.7. Ω1 = 0

Proof. This is true for the same reasons: the only compact 1-manifold is the circle, and
that’s bordant to the empty set (since S1 = ∂D2). �

Proposition 12.8 (Thom or maybe Pontryagin). Ω2
∼= Z/2
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I will not show this (although it’s not all that hard). Later we will show that [RP2] 6= 0,
but there is no completely elementary way to show this. Thom’s thesis determines Ωn for
all n. This is a completely hilarious and known way to classify manifolds. It is the natural
higher-dimensional analogue of counting mod 2. My 1-year-old can currently count to
2; we will see whether he progresses to counting to higher numbers or counting bordism
classes of manifolds.

Theorem 12.9. Let f : M → N be a smooth proper map, and N connected. Then any
two regular fibres π−1(y), for regular values y ∈ N , are bordant.

This is the reason we’re looking at bordism.

Corollary 12.10. If for some regular value y, [π−1(y)] ∈ Ω∗ is nonzero, f must be
surjective.

(If it misses a point, then that point has empty fiber. . . )

Take M,N compact. The maps f0, f1 : M → N are homotopic if there is a h : M×[0, 1]→
N such that h|{0}×M = f0, h|{1}×M = f1. Homotopy is an equivalence relation. (This is
not totally obvious: due to the differentiable structures you might have to worry about
local patching.)

Let [M,N ] be the set of homotopy classes. Then if N is connected, define a map [M,N ]→
ΩdimM−dimN that sends [f ] 7→ [f−1(y)] for any regular value y. (Apply the theorem to
(t, f(t, x)) : M × [0, 1]→ N × [0, 1].) It’s not just that f must be surjective, but you can’t
deform it into something that isn’t surjective.

It is true, but I’m not going to prove it, that [M,N ] is the same thing as the homotopy
classes of continuous maps (use patching to smooth out a merely continuous map).

Definition 12.11. Let M,N be compact n-manifolds, where N is connected. The degree
(mod 2) of a smooth map f : M → N is

deg f = #f−1(y) (mod 2)

where y is any regular value.

Look at x = y2: there are 2 preimages at x > 0, 1 at x = 0, and none at x < 0. But x = 0
isn’t a regular value, and so the number of preimages is always 0 (mod 2).

Corollary 12.12. Let M be a compact n-manifold. Any smooth map M →M which is
homotopic to the identity is onto.

Let’s return to the theorem about bordism classes of fibres. If dimN = 0 then there is
nothing to show. If dimN = 1, then N = S1 or N = R. Then the theorem is obvious: in
the case N = R assume a < b ∈ R are regular values; then f−1([a, b]) is a manifold with
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boundary: use the charts given by the constant rank theorem gives the desired atlas. A
similar argument works for N = S1.

In general, if a, b ∈ N and N is connected, then take the preimage of a path from a to b.
The problem is that it’s possible to choose a path where the preimage is bad. But, the
preimage should be good for a random path.

Lecture 13: October 7

Let f : M → N be a smooth proper map, where N is connected. Let y0, y1 ∈ N be regular
values. We want to show that f−1(y0) and f−1(y1) are bordant: that

f−1(y0) t f−1(y1) = ∂B

for some B. For a smooth path c : [0, 1]→ N (not necessarily embedded) where c(0) = y0,
c(1) = y1, consider

B = {(t, x) ∈ [0, 1]×M : c(t) = f(x).}
B is a manifold with boundary ∂B = f−1(y0) t f−1(y1) if the map

[0, 1]×M → N ×N
(t, x) 7→ (c(t), f(x))

is transverse to the diagonal ∆N ⊂ N × N . (We know in this case that the preimage of
the diagonal is a smooth manifold. If you’re bothered by the fact we have to use this fact
for manifolds with boundary, use (−ε, 1 + ε) instead of [0, 1].)

Example 13.1. Let f : R2 → R2 be given by f(x1, x2) = (x1, x
2
2). In this case we want our

path to cross {y2 = 0} transversely. This gives a cobordism between 2 points and nothing.
But if your path doesn’t cross the line transversely, then at some point the preimage is 1
point at the bad point, and we don’t get a manifold.

In general, you want to “choose a path randomly”: make a finite-dimensional space of
paths, and then choose randomly within that subset.

Take a family of paths γ : U × [0, 1]→ N , where U ⊂ Rp is an open neighborhood of zero,
such that γ(r, 0) = y0, γ(r, 1) = y1 (i.e. they all start at y0 and end at y1), γ(0, t) = c(t)
(the zero-indexed path is c), and: for every (r, t) ∈ U × (0, 1),

∂γ

∂r1
(r, t), · · · , ∂γ

drp
(r, t)

generate TNγ(r,t). (That is, by varying the p possible parameters of r you’re moving the
point in all directions.) For sufficiently large p, one can find such a family using partition
of unity arguments.

Claim 13.2.

η : U × [0, 1]×M → N ×N
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(r, t, x) 7→ (γ(r, t), f(x))

is transverse to ∆N .

At (r, t, x) such that γ(r, t) = f(x), imT(r,t,x)η ⊂ T (N ×N) = TN × TN :

• contains Tf(x)N × {0} if 0 < t < 1 (because of the way the paths were defined)
OR

• contains {0}×Tf(x)N if t = 0, 1 (these points were regular points to begin with).

In each case once you add T∆N you get everything.

Therefore, {(r, t, x) : γ(r, t) = f(x)} is a smooth manifold with boundary U × {0} ×
π−1(y0) t U × {1} × π−1(y1). This is a manifold, but the dimension is huge, and U isn’t
compact. Now use the idea of “random choice”. The projection C → U is a smooth
proper map. Apply Sard’s theorem: if ρ ∈ U is a regular value, then

{(t, x) : γ(ρ, t) = f(x)}
is a compact manifold with boundary π−1(y0) ∩ π−1(y1).

Theorem 13.3 (Thom transversality theorem). Let f : M → N be a smooth map,

P ⊂ N a smooth submanifold. Then there is an f̃ : M → N “arbitrarily close” to f , such

that f̃ is transverse to P .

What do I mean by “arbitrarily close”? If M is compact, in the sense of uniform conver-

gence; in general, take an open set U ⊂ N×N containing ∆N and ask that (f(x), f̃(x)) ∈ U
for all x ∈M .

Application 13.4. Take smooth maps f1 : M1 → N and f2 : M2 → N , where M1 and
M2 are compact. Consider (f1, f2) : M1 ×M2 → N × N . By Thom’s theorem, we can
find a map F : M1 ×M2 → N ×N arbitrarily close to f1 × f2 which is transverse to the
diagonal. Take F sufficiently close (homotopic to (f1, f2)). Then, F−1(∆N ) is again a
compact manifold, where dimF−1(∆n) = dimM1 + dimM2 − dimN (count the number
of constraints for lying in the diagonal).

Proposition 13.5. [F−1(∆N )] ∈ Ω∗ is independent of the choice of F . Also, [F−1(∆N )]
depends only on the homotopy classes of f1, f2.

(Think about two surfaces in R3; in general, their intersection might not be nice, but
we can perturb them a little so the intersection is a curve. This theorem says that the
associated intersection curve is well-defined up to bordism.)

We write [F−1(∆N )] = [f1] · [f2] ∈ Ω∗. In the case dimM1 + dimM2 = dimN , [f1] · [f2] ∈
Z/2.
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Concretely, suppose that (f1, f2) already intersects ∆N transversely. This is the same
thing as saying for all (x1, x2) ∈M1 ×M2 such that f1(x1) = f2(x2), we have imTx1f1 +
imTx2f2 = Tf1(x1)N . Then

[f1] · [f2] = [(f1, f2)−1(∆N )]

and if dimM1 + dimM2 = dimN ,

[f1] · [f2] = #{(x1, x2) : f1(x1) = f2(x2) (mod 2)}.
If this happens to be 1, then no matter how you deform f1 and f2 there will always be
some intersection point.

[f1] · [f2] is called the mod 2 intersection number.

Lecture 14: October 9

Take a compact manifold M , and a smooth map f : M → M . We have embeddings of
submanifolds:

γf : M →M ×M x 7→ (x, f(x))

δ : M →M ×M x 7→ (x, x)

Definition 14.1. The Lefschetz fixed point number (mod 2) of f is [γf ] · [δ] ∈ Z/2.

Lemma 14.2. This is a homotopy invariant of f , and vanishes if f has no fixed points.
In other words, it’s an obstruction to deforming a map to something with no fixed points.

How do you compute this more concretely?

Lemma 14.3. Suppose that every fixed point x of f is nondegenerate, meaning that 1 is
not an eigenvalue of Txf : TxM → TxM . Then

L(f) = # fixed points (mod 2).

(1 not being an eigenvalue is equivalent to γf and δ being transverse.) Algebraic geometry
equivalent: the fixed-point scheme is reduced.

So the strategy is to take a map and homotope it to something where the fixed points
are nondegenerate (the existence of such a homotopy is an application of Sard’s theorem).
Then count the fixed points.

Variations 14.4.

• Compactness ensures there are finitely many fixed points. M could be non-compact, as
long as f(M) ⊂M is compact (and similarly for all maps homotopic to M). Then, the

fixed points are in f(M).
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• M can be a compact manifold with boundary, but the image of f has to avoid the
boundary (and similarly for all maps homotopic to f)

• Actually, you don’t need a manifold at all. Let X be a compact topological space which
is ENR, and f : X → X is a continuous self-map. (ENR = “Euclidean neighborhood
retract”, which means there is an open set U ⊂ Rn and a continuous map U → U such
that r2 = r and r(U) is homeomorphic to X; e.g. finite CW complexes are ENR’s.)
Identify X = r(U). Take

U
r→ X

f→ X
i
↪→ U.

Problem: it’s not smooth. Approximate i ◦ f ◦ r by a smooth homotopic map f̃ (pick
your favorite method for smoothing a continuous function) and set

L(f) := L(f̃).

You have to show that this is independent of how the retraction is chosen, etc. This
has the same fixed points as the original f .

Definition 14.5. Let M be a compact manifold. The mod 2 Euler characteristic of M
is L(1M ) = χ(M) ∈ Z/2.

Example 14.6 (χ(Tn) = 0). Deform 1Tn to x 7→ x+α for α ∈ Rn\Zn. This is fixed-point
free!

Example 14.7 (χ(Sn) = 0). For odd n = 2m− 1, think of S2m−1 ⊂ Cm and deform the
identity to a complex rotation x 7→ ζx, for |ζ| = 1, ζ 6= 1. This is fixed point free.

For all n, there is a map f : Sn → Sn homotopic to the identity, which has 2 nondegenerate
fixed points. Take the sphere, move it up by 1

2 , and project back to the unit sphere: take

f(x) =
x+ (0, · · · , 1

2)

‖x+ (0, · · · , 1
2)‖

.

The fixed points are x± = (0, · · · ,±1). A tangent vector around (0, · · · , 1) ends up getting
scaled by 2

3 , and a tangent vector at (0, · · · ,−1) gets scaled by 2.

Example 14.8 (χ(RP 2) = 1). Recall RP 2 = S2/ antipodal map. Rotation of S2 fixes,
say, (0, · · · ,±1) and induces a map RP 2 → RP 2 with one nondegenerate fixed point
[0 : · · · : 1].

Generalized example 14.9 (χ(figure eight) = 1). Embed this in R2, take the continu-
ous retraction, smooth it out, and count the fixed points. You do it!

Theorem 14.10 (Brouwer). Every continuous map f : B → B (where B ⊂ Rn is a closed
ball) has a fixed point.

Proof. Suppose f has no fixed points.

Step 1: without loss of generality assume f(B) ⊂ B\∂B (slight radial shrinking). If this
has a fixed point, shrink it more, get a convergent subsequence, etc.
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Step 2: without loss of generality f is smooth.

Now L(f) = 0 but f is homotopic to the constant map g(x) ≡ 0 (because the space is
contractible), which has L(g) = 1. Contradiction. �

Remark 14.11. This generalizes to any compact manifold with boundary and any map
homotopic to a constant map (in particular, any map if 1M can be deformed to a constant).

Example 14.12. Take
U = {x ∈ Cn : 1 ≤ |x| ≤ 2}.

Then a complex rotation is fixed-point free. So this has nothing to do with fundamental
group.

If two maps are homotopy-equivalent, then you can show (just by counting points) that
they have the same Lefschetz numbers. Look at Dold’s Lectures on Algebraic Topology.

Lecture 15: October 11

Introductory remark. Given charts for a manifold

M ⊃ Uα
gα→ Vα ⊂ Rn

M ⊃ Uβ
gβ→ Vβ ⊂ Rn

and transition function

hβα = gβ ◦ g−1
α : Vα ∩ gα(Uβ)→ Vβ ∩ gβ(Uα),

D(hβα) can be considered as a map

D(hβα) : Vα ∩ gα(Uβ)→ GL(n,R).

GL(n,R) has a very rich topology: it has two connected components, is not simply con-
nected if n > 1, . . . . We want to impose restrictions on the image of D(hβα), but just
asking the map to be nullhomotopic isn’t very interesting: the domain could just be a
ball. The condition has to involve all charts at the same time. The notion of orientation
is the first nontrivial topological restriction one can impose on these maps.

Definition 15.1. Let M be a topological manifold. A smooth atlas (Uα, gα : Uα → Vα)
is oriented if all the transition maps satisfy

detD(hβα) > 0

everywhere.

There is a notion of equivalence of oriented atlases (two are equivalent if their union is an
oriented atlas).

Definition 15.2. An oriented smooth manifold is a manifold with an equivalence class
of oriented atlases.
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Suppose that M,M̃ are oriented manifolds, and f : M → M̃ is a diffeomorphism. We can
look at this in local coordinates:

Vα
chart← Uα ⊂M

f→ M̃ ⊃ Ũβ
chart→ Ṽβ ⊂ Rn.

There is a partially defined map fβα : Vα → Ṽβ.

Then, the sign of D(fβα) at a point is independent of these choices of oriented charts (the
determinants of the Jacobians of the transition functions are always positive).

These signs give a locally constant function M → {±1}; in particular, if M is connected,
then the sign is always 1 or −1. In the former case we say that the diffeomorphism is
orientation-preserving (and otherwise say it is orientation-reversing). By applying this to
f = 1, we obtain:

Lemma 15.3. IfM admits an orientation, all other choices of orientation are parametrized
by {±1}connected components = {locally constant M → {±1}}.

You can always reverse the orientation – apply a diffeomorphism-reversing diffeomorphism.
Also you can do this just to one connected component.

Remark 15.4. If M is a manifold with boundary (and oriented), then ∂M acquires an
orientation.

The convention is that if M ⊃ Uα → Vα ⊂ (−∞, 0] × Rn−1 is an oriented chart, then
∂M ⊃ Uα ∩ ∂M → Vα ∩ ({0} × Rn−1) ⊂ Rn−1 is an oriented chart.

We’re thinking of manifolds with boundary as living in the left half-space. Note that you
can have a diffeomorphism that maps the right half space to the left half-space that has
positive determinant, but has negative determinant on the boundary. This is bad. So you
have to pick a convention for left vs. right half-space.

Warning. These definitions don’t work well in the lowest dimensions. Try covering
[0, 1] with charts (a0, 1], (a1, a0), etc. with a certain orientation (i.e. “pointing in to the
interval”); once you get to [0, an) the orientation has to be the opposite one (because now
the manifold is on the right hand side as opposed to the left hand side).

An orientation of a 1-dimensional manifold is a function M → {±1}.

Example 15.5. Take M = [0, 1], oriented so that M ⊂ R is orientation-preserving. Then
∂M = {0, 1}, where at 0 the orientation is −1, and at 1 the orientation is +1.

Define
ΩSO
∗ = cobordism ring of oriented manifolds.

Here, we want to say that M0 and M1 (oriented compact manifolds) are bordant if there
is a compact oriented N such that ∂N = M0 tM1. But, this doesn’t make sense: M is
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not bordant to itself because in M × [0, 1] one copy of M is oriented inwards and the other
copy is oriented outwards. So, you have to say ask for N such that ∂N = −M0 tM1,
where −M0 means M0 with the orientation reversed.

In particular, ΩSO
0
∼= Z (count points with sign). Also ΩSO

1 = 0: the circle bounds a disk
so it’s bordant to the empty set. It also turns out that ΩSO

2 = 0.

Lemma 15.6. If M,N are oriented manifolds and f : M → N is a smooth map, then the
regular fibers f−1(y) acquire preferred orientations.

If m > n, in local charts f looks like a map Rm → Rn sending (x1, · · · , xm) 7→ (x1, · · · , xn).
Assume the local charts are oriented; the fiber is locally (0, · · · , 0)×Rm−n and this gives
an oriented atlas. For m = n, assign to a regular point x the sign of det(Dfx) (computed
in oriented charts).

This leads to the oriented degree: if f : M → N is proper where N is connected, then we
get deg f = [f−1(y)] ∈ ΩSO

dimM−dimN . (If dimM = dimN , then deg f ∈ Z.)

(Two fibers are bordant – here, oriented-bordant. Each point in the fiber comes with a
sign; as you wander around, two points with opposite signs can cancel out.)

Example 15.7. Let f : T 2 → T 2 be given by (x, y) 7→ (my, ny) for m,n ∈ Z (where
T 2 = R2/Z2). Equip both copies of T 2 with the same orientation (coming from R2). Then
deg f = mn. This is because every point is a regular point; each point counts as ±1, and

Df =

(
m 0
0 n

)
.

The Lefschetz number L(f) ∈ Z, where M is a compact manifold, does not require M to
be oriented (the same is true for the Euler characteristic χ(M) = L(1)). If you change the
orientation on M , you have the opposite orientation on both domain and target, and that
cancels out. You could try changing the orientation on one component only, but we’re
counting fixed points, so it’s enough to look at components separately.

Concretely, if f has a nondegenerate fixed point (f(x) = x implies 1 is not an eigenvalue
of Tfx : TMx → TMx), then det(1− Tfx) is either positive or negative;

L(f) =
∑

f(x)=x

sign(det(1− Tfx)).

Lecture 16: October 16

Let V be a finite-dimensional real vector space of dimension n > 0. Two bases {e1, · · · , en},
{ẽ1, · · · , ẽn} are said to have the same orientation if ẽi =

∑
aijej , det((aij)) > 0. An

orientation of V is an equivalence class of bases under this relation.
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Definition 16.1. Let or(V ) be the set of orientations of V . This is a set with two
elements, with its nontrivial Z/2 action.

Note: there is a map or(V ) × or(W ) → or(V ⊕ W ) given by sending (e1, · · · , en) and
(f1, · · · , fn) to (e1, · · · , em, f1, · · · , fn). This is not bijective (count the elements). But, if
you quotient by the Z/2 action on or(V ) × or(W ) (swapping orientations on both gives
the same orientation on V ⊕W ), then that’s isomorphic to or(V ⊕W ). With this in mind,
extend this definition to the zero vector space by defining or(0) = {±1}.
Definition 16.2. Let M be a smooth manifold (possibly with boundary) An orientation
of M is a choice of an element in or(TMx) that is locally constant in x (in any chart).

Define
Mor = {(x, o) : x ∈M, o ∈ or(TxM)}

with a natural map π : Mor →M . This is a 2-1 covering that comes with a free Z/2-action
whose quotient is M . One can equip it with the structure of a smooth manifold (with
boundary if M has boundary), such that π is a local diffeomorphism (and the Z/2-action
is smooth).

Lemma 16.3. Mor has a canonical orientation, and the Z/2-action is orientation-preserving.

Proof. TMor
(x,o)Tπ

∼= TMx is oriented by o. �

Lemma 16.4. An orientation of M is the same as a smooth section σ : M →Mor of π.

Corollary 16.5. If M is connected, M admits an orientation iff Mor is disconnected.

(There are the points in the smooth section, and the ones that aren’t. If M is disconnected,
then each component determines a section.)

Mor is called the orientation covering of M . If you don’t like working with an unorientable
manifold M , work with Mor, and then M is just the Z/2-quotient of it.

Example 16.6. If n is even, and M is RPn, one can identify Mor →M with Sn → RPn:
a choice of point in Sn determines an orientation at the corresponding point in RPn (so
we have a map Sn →Mor), and if n is even, the antipodal map is orientation-reversing.

Hence RPn for n even is not orientable. (If n is odd, then the antipodal map is orientation-
preserving, and RPn in this case is orientable.)

Lemma 16.7. If
0→ V1 → V2 → V3 → 0

is a short exact sequence, an orientation of two of the Vi determines uniquely an orientation
of the third.
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Proof. Choose a splitting V2
∼= V1 ⊕ V3 so or(V2) = or(V1) ×Z/2 or(V3) and this is inde-

pendent of the choice of splitting. (The space of splittings is a connected, linear space.)
�

Application 16.8. If M is a manifold with boundary, and x ∈ ∂M we have

0→ Tx(∂M)→ TxM → νx(∂M)→ 0

where νx is the normal space, which has a preferred orientation (outwards). Therefore, an
orientation of M determines one of ∂M .

(This depends on our convention that the normal is oriented outwards, and also conflicts
with a convention on orientation of the boundary introduced before.)

Application 16.9. Let f : M → N be a map between oriented manifolds, with y a
regular value. Then f−1(y) is oriented.

This comes from the sequence

0→ Tx(f−1(y))→ TxM
Txf→ TyN → 0.

Application 16.10. Suppose f1 : M1 → N , f2 : M2 → N are maps of oriented manifolds,
where in addition M1 and M2 are compact.

We can define [f1] · [f2] ∈ ΩSO
dimM1+dimM2−dimN (so it’s an integer if dimM1 + dimM2 =

dimN). You need to make sure the class of the diagonal is oriented.

Remember for compact M , we have the Euler characteristic χ(M) = L(1) ∈ Z.

Proposition 16.11. Suppose dimM = n is odd, and M is boundary-less. Then χ(M) =
0.

Corollary 16.12. Suppose M is a compact even-dimensional manifold with χ(M) ∈ Z/2
nonzero. Then M is not the boundary of a compact manifold.

Corollary 16.13. Ω2i 6= 0 for all i (take RP 2i; then χ(RP 2i) = 1 ∈ Z/2).

There are orientable examples, at least in dimensions 4, 8, 12,. . . .

Sketch proof of Corollary 16.12. Suppose M = ∂N . Consider its “double” N∪MN , which
is a compact odd-dimensional manifold. Consider a collar neighborhood around the shared
glued boundary. Suppose we have a map f : M → M close to the identity that we’re
counting fixed points on. Extend it to the rest of the manifold N ; then any fixed point in
one copy of N also corresponds to a fixed point in the other copy, so you’re adding fixed
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points in pairs. Since we assumed f had an odd number of fixed points, the extension has
an odd number of fixed points on N ∪M N . That is, χ(N ∪M N) = χ(M) (mod 2) is
nonzero, which contradicts the proposition. �

Sketch proof of proposition. Suppose f : M →M is a diffeomorphism close to the identity.
Then I claim

L(f−1) = (−1)nL(f) = −L(f). (16.1)

This, applied to f = 1, shows that χ(M) = −χ(M), so χ(M) = 0.

(Note that we actually needed the Z-Lefschetz number here.)

Proof of (16.1): If A : V → V is an invertible linear map not having 1 as an eigenvalue,
then

sign(det(1−A)) = sign(det(A−1 − 1) detA)

= sign(detA) · sign(det(1−A−1))(−1)n.

Since f is close to the identity we can assume sign(detA) = 1.

It’s not true if M has a boundary; this complicates things about fixed points on the
boundary. �

Remember that you don’t actually need an orientation to define the Lefschetz number.

Lecture 17: October 21

Let M be a smooth manifold (possibly with boundary). A smooth vector bundle of rank
r is:

• a manifold (with boundary if M has boundary) E with a smooth map π : E →M

• the structure of an r-dimensional vector space on each set Ex = π−1(x) given by:
addition: Ex × Ex → Ex

scalar multiplication R× Ex → Ex
satisfying the usual axioms such that, for each x ∈ M there is a neighborhood
U ⊂M and a diffeomorphism ϕ : π−1(U)→ Rr × U

π−1(U) //

π

##

Rr × U

proj
{{

U

which is compatible with the vector space structure.

Remark 17.1. The neutral element 0x ∈ Ex is the image of a smooth section M → E,
where x 7→ 0x.
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The additive inverses Ex → Ex, v 7→ −v form a smooth map E
−→ E compatible with the

projection to M .

Definition 17.2. Suppose that E,F →M are vector bundles. A smooth homomorphism
θ : E → F is a smooth map

E
θ //

π

  

F

η
~~

M

which is fiberwise compatible with the vector space structure.

We get s smooth map Rr × (U ∩ V )→ Rs × (U ∩ V ) via

Rr × (U ∩ V )
∼=← π−1(U ∩ V )

θ→ η−1(V ∩ U)
∼=→ Rs × (V ∩ U)

which is given by (v, x) 7→ (A(x)v, x) where A(x) ∈ Hom(Rr,Rs) (and this is a smooth
function of x).

Definition 17.3. Let π : E →M be a vector bundle of rank r. A subbundle of rank s is
a subset F ⊂ E such that each x ∈M has neighborhood U and a diffeomorphism

π−1(U)
ϕ

//

##

Rr × U

{{

U

compatible with the vector space structure such that ϕ(F ∩ π−1(U)) = Rs × 0r−s × U .

That is, the sub-vector spaces in Rr × U don’t depend on x ∈ U .

Remark 17.4. If F ⊂ E is a subbundle then we can define the quotient bundle F/E with
fibers (E/F )x = Ex/Fx.

Lemma 17.5. Let A(x) ∈ Hom(Rr,Rs) be a family of linear maps smoothly dependent
on x ∈ U , where U ⊂ Rn is a neighborhood of 0. Suppose rankA(x) is constant. Then,
after possibly shrinking U , there are invertible ϕ(x) ∈ Hom(Rr,Rr), ψ(x) ∈ Hom(Rs,Rs)
such that

ψ(x) ·A(x) · ϕ(x) =

(
1 0
0 0

)
for all x.

The proof is the same as for the straight linear algebra statement.

If r = s then the inverses would smoothly depend on x (Cramer’s rule).

Proposition 17.6. Let η : E → F be a homomorphism of vector bundles of constant
rank. Then ker η ⊂ E and im η ⊂ F are sub-bundles, and η induces an isomorphism
E/ ker η → im η.
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This is trivial using the lemma.

Example 17.7. Suppose η : E → F is fiberwise injective. Then im η is a subbundle. (If
it’s fiberwise injective then the rank is constant.) If η is fiberwise surjective then ker η is
a subbundle.

Compare to the definition of an abelian category; once you have the notion of kernel and
cokernel there are two ways of defining the image: E/ ker, or kernel of projection from F
to the cokernel. It is an axiom of abelian categories that these coincide. Unfortunately
these here don’t form an abelian category – kernels etc. only make sense if we’re talking
about constant rank maps.

Example 17.8. Suppose we have η : E → E such that η2 = η. The rank is locally
constant (there are only two eigenvalues, 0 and 1, so you can’t jump randomly between
them). Assuming M is connected, the rank is constant. Then ker η, im η ⊂ E are sub-
vector bundles.

Example 17.9. Suppose η : E → E is a map where η2 = 1 (and M is connected). The
only eigenvalues are −1 and 1. Then ker(1− η), ker(1+ η) ⊂ E (i.e. the two eigenspaces)
are vector sub-bundles.

Example 17.10.

(1) Trivial bundle E = M × Rr

(2) Take M = S1 (thought of as R2/Z2) and E = S1 × R2 ⊃ F where Fx =
R(cos(πx), sin(πx)) ⊂ R2 = Ex. This is the Moebius strip, and it is not iso-
morphic to the trivial bundle. You can see this by removing the zero section; the
complement is connected. (This does not show that it is not diffeomorphic to
R× S1.)

(3) Tangent bundle TM →M (you need to equip the union of fibers with a manifold
structure and equip it with local trivializations)

Lecture 18: October 23

Examples of vector bundles:

• Trivial bundle Rn ×M →M

• Möbius band (nontrivial rank-1 vector bundle over S1)

• Tangent bundle TM →M

• If N ⊂M is a submanifold, then we have a sequence

0→ TN → TM |N → νN → 0

where TN → TM |N is the inclusion and TM |N → νN is the projection to the
quotient. (Here the normal bundle has fibers νNx = TMx/TNx)
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Constructions of vector bundles: (proofs later)

• Direct sum of E →M and F →M is a vector bundle E ⊕ F →M whose fibers

are (E ⊕ F )x = Ex ⊕ Fx. There is an obvious isomorphism E ⊕ F
∼=→ F ⊕ E

• Dual vector bundle: if E → M is a vector bundle then E∗ → M is the vector
bundle with fibers (E∗)x = (Ex)∗. There is a canonical isomorphism E → (E∗)∗.

• Tensor product of vector bundles: if E → M and F → M are vector bundles
then there is a vector bundle E ⊗ F → M whose fibers (E ⊗ F )x are Ex ⊗ Fx.
So every element in (E ⊗ F )x is a finite sum of elements of the form v ⊗ w for
v ∈ Ex, w ∈ Fx
• If E → M and F → M are vector bundles then there is a vector bundle

Hom(E,F )→M , which is isomorphic to the bundle E∗ ⊗ F .

Remark 18.1. Let’s consider line bundles (vector bundles of rank 1). The isomorphism
classes of such bundles form an abelian group under ⊗, called PicR(M). The only nontriv-
ial claim here is that there are inverses. The inverse of a line bundle L→M is L∗ →M ,
because L∗ ⊗ L ∼= Hom(L,L), and I claim the latter is trivial (i.e. R ×M): fiberwise,
there is an isomorphism R→ Hom(Lx, Lx) that sends λ 7→ scalar multiplication by λ.

Remark 18.2. Start with E →M . For any d,

E ⊗ · · · ⊗ E
d times

= E⊗d →M

comes with a canonical action of the symmetric group Sd (permuting the copies of E
in E⊗d). We can decompose E⊗d into isotypical parts (decompose a representation into
irreducible pieces, and then classes of isomorphic pieces are the isotypical parts). Two
such pieces are

Symd(E) = (E⊗d)Sd symmetric product

Λd(E) = alternating product

The first part behaves like the trivial representation, and Λ behaves like the representation
given by the alternating character. So

Λd(E)x =

{
v ∈ E⊗dx :

{
σ(v) = v if σ ∈ An
σ(v) = −v if σ /∈ An

}

Definition 18.3 (Pullback of vector bundles). Let f : M → N be a smooth map, π :
F → N be a vector bundle. Then define

f∗F = {(x, v) ∈M × F : f(x) = π(v)}
where on fibers, (f∗F )x = Ff(x). In particular, we can restrict vector bundles to subman-
ifolds by taking the pullback along an inclusion. So locally, if F looks like Rn × U then
locally f∗F looks like Rn × f−1(U).
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Transition maps. Let E
π→ M be a vector bundle. Take an open cover (Uα)α∈A of M ,

such that E|Uα = π−1(Uα) is trivial. Fix a local trivialization

π−1(Uα)
∼=
ϕα

//

$$

Rr × Uα

{{

Uα

Then the transition maps

Rr × (Uα ∩ Uβ)
ϕα←− π−1(Uα ∩ Uβ)

Uβ−→ Rr × (Uα ∩ Uβ)

are of the form
(v, x) 7→ (ψβα(x)v, x)

where ψβα : Uα ∩ Uβ → GL(r,R) is smooth. (By the previous diagram, this takes fibers
to fibers. The map is linear because the trivializations are required to respect the vector
space structure of the fibers. Because the map is a diffeomorphism, ψβα has to be smooth.)

The transition functions ψβα satisfy the cocycle conditions

ψαα = 1

ψγβ ◦ ψβα = ψγα on Uα ∩ Uβ ∩ Uγ .
Conversely, the datum of (Uα)α∈A, (ψβα) satisfying the cocycle conditions recovers a vector

bundle up to isomorphism. This is called a non-abelian Čech cocycle.

In particular, any smooth group homomorphism

ρ : GL(r,R)→ GL(s,R)

gives you a way to make a rank s vector bundle out of a rank r vector bundle (we just
said that, to make a vector bundle, it suffices to give a cover and transition maps, so now
just compose the transition maps with ρ to get transition maps of a different rank).

Example 18.4.

GL(r,R)→ GL(r,R)

A 7→ (At)−1

corresponds to dualizing vector bundles. This is also a way to show that the double dual
of a vector bundle is itself.

Example 18.5.

GL(r,R)→ GL(

(
r

k

)
,R)

A 7→ Λk(A)

where you have to choose an identification Λk
∼=→ R(rk). Similarly, any smooth group

homomorphism
GL(r,R)×GL(s,R)→ GL(t,R)

gives you a way to make a new vector bundle out of two old ones.
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For example, when r = s = t = 1 this corresponds to maps R× × R× → R×. The multi-
plication map corresponds to tensor product of line bundles. Note that tensor products
of 1× 1 matrices corresponds to ordinary multiplication: if λ : R→ R, µ : R→ R refer to
multiplication maps, there is a commutative diagram

R⊗ R
λ⊗µ

//

∼=
��

R⊗ R

��

R
λµ

// R

Example 18.6.

GL(r,R)×GL(s,R)→ GL(r + s,R)

(A,B) 7→
(
A 0
0 B

)
corresponds to direct sum.

Lecture 19: October 25

Orientation of a vector bundle. There are two equivalent definitions:

Definition 19.1. Let E
π→ M be a vector bundle. An orientation of E is an orientation

of each fiber Ex = π−1(x) which is locally constant in X.

By definition of vector bundles, which locally look like

π−1(U)
ϕ

//

##

Rr × U

{{

U

an orientation of Ex (for x ∈ U) yields an orientation of Rr as vector spaces. The statement
that “these orientations are locally constant in x” needs to be independent of the choice
of ϕ. For a transition map ψ : U ∩ V → GL(r,R), sign(detψ(x)) is locally constant.

Remark 19.2. Take

Eor = {(x, ox) : x ∈M, ox an orientation of Ex}.
One can make Eor into a manifold in a canonical way, so that Eor → M is a local
diffeomorphism (in fact, a 2-1 map). Then, orientations of E correspond bijectively to
smooth sections M → Eor.

Remark 19.3. An orientation of M is the same as an orientation of TM (one of our
previous definitions of orienting M involved orienting TMx consistently).
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Definition 19.4. An orientation of E is given by a cover (Uα)α∈A of M together with

π−1(Uα)
ϕα //

π

$$

Rr × Uα

{{

Uα

that is fiberwise linear, such that the transition maps ψβα : Uα ∩ Uβ → GL(r,R) satisfy

det(ψβα(x)) > 0

for all x and all pars (α, β).

This is the same as before: fix a standard orientation of Rr and transfer it to π−1(Uα);
the condition says that this is independent of choices. This definition is annoying because
it’s hard to say when orientations are the same, but it’s nice because makes it easy to see
when maps of vector bundles preserve orientation.

Remark 19.5. This shows that, if E has an orientation, so does the dual bundle E∗: the
transition maps from E∗ are the transpose inverse of the original ones.

Proposition 19.6. Every short exact sequence of vector bundles splits.

Fix M and a subbundle F of a smooth vector bundle E; we get a sequence

0→ F
i→ E

π→ E/F → 0;

we’re looking for a splitting ρ : E → F such that ρ ◦ i = 1F . (This has the property that
p = i ◦ ρ is an idempotent endomorphism of E because it is projection onto F .) Then

G = ker p = im(1− p)
is again a subbundle of E, and Ex = Fx⊕Gx for all x. Therefore, any sequence looks like
this:

0 // F // E // E/F // 0

0 // F // F ⊕G

∼=

OO

// G

∼=

OO

// 0

Proposition 19.7. By definition of subbundle, E locally looks like Rr × U and F ⊂ E
locally looks like Rs × {0}r−s ⊂ Rr × U . Hence we have a local splitting. Take an open
cover (Uα)α∈A and splittings pα : E|Uα → F |Uα , and a partition of unity (fα) and set

p =
∑
α∈A

fαpα : E → F

where fαpα means the map that is extended by 0 outside Uα. Now

p ◦ i =
∑

fα(pα ◦ i) =
∑

fα · 1F = 1F .

45



Geometry of manifolds Lecture 19

(Justification of the use of partitions of unity: we were trying to solve p ◦ i = 1. If p1

and p2 are solutions, and f1, f2 : M → R satisfy f1 + f2 = 1, then p = f1p1 + f2p2 is a
solution.)

Corollary 19.8. If N ⊂M is a submanifold, then

0→ TN → TM |N → νN → 0.

So
TM |N ∼= TN ⊕ νN

non-canonically.

Proposition 19.9. Any oriented line bundle is trivial.

Proof. We have an oriented line bundle (rank 1 bundle) L → M . We want to find an

isomorphism R×M
∼=→ L which is compatible with orientations. These exist locally, but

in general, you can’t patch them together because the result might not be an isomorphism.
But here, if (sα)α∈A is a collection of local isomorphisms then (by orientability) we can
assume sα is positive; if (fα)α∈A is a partition of unity (also positive values by design)
then the attempted patching

s =
∑

fαsα

is actually an isomorphism because you’re adding only positive things and can’t get zero
that way. �

Corollary 19.10. For any real line bundle L, L⊗ L ∼= R×M .

Idea: you’re squaring the transition functions, so they’re positive.

Corollary 19.11. For any real line bundle L, we have L ∼= L∗.

In other words, PicR(M) is actually a vector space over Z/2.

Definition 19.12. A Euclidean metric on a vector bundle is a family of scalar products

〈−,−〉x : Ex × Ex → R
which depends smoothly on x ∈M .

Any Euclidean metric induces an isomorphism

E → E∗

v 7→ 〈v,−〉 .

Proposition 19.13. Every vector bundle admits a Euclidean metric.
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Corollary 19.14. E ∼= E∗ for any vector bundle E.

Proof of proposition. By partitions of unity. �

Remark 19.15. Given a subbundle F ⊂ E and a Euclidean metric on E, we can look at

F⊥ = {v ∈ E : 〈v, w〉 = 0 ∀w ∈ F}.
This is a subbundle, and E ∼= F ⊕R⊥.

Back to the splitting of short exact sequences: the Euclidean metric determines a particular
splitting. But you also want to be aware of the other ones, which is why we introduced
splittings before Euclidean metrics.

Lecture 20: October 28

The topic for today is about “having enough global sections”. Let E → M be a vector
bundle. A smooth section is a smooth map s : M → E such that π(s(x)) = x for all x.

Lemma 20.1. For any π : E →M , there are smooth sections (s1, .., sm) for some m ∈ N
such that (s1(x), · · · , sm(x)) generate Ex for all x.

Equivalently:

Lemma 20.2. For any π : E → M there is a smooth vector bundle homomorphism
Rm ×M → E (for some m) which is fiberwise surjective.

Remark 20.3. These lemmas are equivalent. A section is a map R×M → E; n sections
is a map Rn ×M → E, and generating the fiber is the same as being fiberwise surjective.

In algebraic geometry, this property is called “being generated by the global sections”; it
doesn’t always happen.

Lemma 20.4. For any π : E → M there is a smooth vector bundle homomorphism
E → Rm ×M (for some m ∈ N), which is fiberwise injective.

Remark 20.5. Lemma 20.2 for E describes the same thing as Lemma 20.4 for E∗: if the
original map is injective then the map on the dual bundle is surjective.

Lemmas 20.2 and 20.4 are also equivalent in a different way: if Rm ×M → E is fiberwise
onto, we have

0→ F → Rm ×M → E → 0

and a slitting glues an injective map E → Rm ×M .
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Lemma 20.6. In Lemmas 20.1 - 20.4, it is enough to choose m = dimM + rankE.

It’s clear that you need more m than the rank – in that case, fiberwise surjective would
imply fiberwise bijective, which would imply the vector bundle is trivial.

Plan:

(1) Prove Lemmas 20.1 - 20.4 for compact M

(2) Prove Lemma 20.6 for compact M

(3) Prove lemmas 20.1 - 20.4 for general M

(4) Prove Lemma 20.6 for general M .

Proof of Lemmas 20.1 - 20.4 in the compact case. Suppose M is compact, and π : E →
M is a smooth vector bundle. Take a finite cover M =

⋃
α∈A Uα such that E is trivial on

each Uα. Choose sections

sα,1, · · · , sα,r : Uα → E|Uα =: Eα

such that sα,1(x), · · · , sα,r(x) generate Eαx for all x ∈ Uα. Choose a subordinate partition
of unity (fα) and write

Rr ×M tα→ E where tα = (fαsα,1, · · · , fαsα,r).
This is onto in all fibres where fα(x) 6= 0. But, you can’t take the sum, because then that
might not be surjective (they might cancel if the supports intersect).

Instead, take ⊕
α∈A

Rr ×M
∑
tα−→ E

where the LHS is the trivial bundle of rank r · |A|. This is onto in all fibres, because for
any x there is some fα with fα(x) 6= 0 (i.e. you just need it to be onto from one summand
on the left). �

Proof of Lemma 20.6 in the compact case. Suppose M is compact, and π : E → M is a
smooth vector bundle. Let E → Rm ×M be a vector bundle homomorphism which is
fiberwise injective. Suppose that m > dimM + rankE, and consider

E → Rm ×M proj−→ Rm.
We have dimM + rankE = dimE. By trivial Sard, there is a nonzero v ∈ Rm which is
not in the image; since the maps are fiberwise linear, nonzero multiples λv are also not in
the image.

Hence, E → Rm/R · v ×M ∼= Rm−1 ×M is still fiberwise injective. �
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Proof of Lemmas 20.1 - 20.4 for general M . Let π : E → M be a vector bundle. Set
m = dimM + rankE. Choose a bounded below proper smooth function h : M → [0,∞)
(earlier we proved that these exist). Write Ui = h−1((u− 1, i+ 1)). Note:

• Ui ∩ Uj = ∅ if |i− j| ≥ 2.

Choose a subordinate partition of unity (fi). Choose also for each i sections

si,1, · · · , si,m : Ui → E|Ui
which generate the fiber at each point of Ui. (Here we’re using Lemma 20.6 in the compact
case; enlarge (i − 1, i + 1) a little and suppose the lemma works for compact manifolds
with boundary.) Take

ti = (fisi,1, · · · , fisi,m) : Rm ×M → E

which is onto for all fibers where fi(x) 6= 0. Problem: there are infinitely many i’s.

Take

teven = t0 + t2 + t4 + · · ·
todd = t1 + t3 + t5 + · · ·

which is not an infinite sum because they come from partitions of unity. Any two sum-
mands in teven or todd have disjoint supports. So, teven : Rm×M → E is onto at all x ∈M
where fi(x) 6= 0 for some even i, and analogously for todd. Then

(todd, teven) : Rm × Rm ×M → E

is a surjective vector bundle homomorphism. �

“Proof” of Lemma 20.6 for general M . Same argument as before. �

Theorem 20.7. Let π : E → M be a smooth vector bundle. There is a smooth section
s : M → E which is transverse to the zero-section.

Corollary 20.8. If rankE > dimM , then E ∼= E ⊕ (R×M) for some vector bundle F .

The presence of R×M here corresponds to the presence of a nowhere-zero section.

Sketch proof of Theorem 20.7. Idea: a “random” section works. But, the space of all
sections is too big to work with. Instead, take a reservoir of sections: those that are
fiberwise surjective.

Take F : Rm ×M → E that is fiberwise surjective. This is automatically transverse to
the zero section. If you hit zero, you can add something that comes from the fiber, and
move the image in any direction you want. Consider

F−1(0E)
proj−→ Rm.
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If v ∈ Rm is a regular value of that projection, then F (v, ·) : M → E is transverse to 0E .
This is just linear algebra. Regular values always exist by Sard. �

Lecture 21: October 30

Let M be a compact manifold (without boundary), and π : E → M a vector bundle.
Let s : M → E be a smooth section transverse to the zero section 0E ⊂ E. Then
s−1(0E) = {x ∈ M : s(x) ∈ Ex is zero} is a smooth submanifold, and dim s−1(0E) =
dimM − rankE. Last time we outlined why such smooth sections always exist.

Example: in a trivial bundle R×R it’s easy to see how you can have one section s 7→ (s, 1)
where s−1(0E) = ∅, and a different section s 7→ (s, f(s)) where s−1(0E) is a discrete set of
points. However, the bordism class of s−1(0E) is independent of the choice of s. We write

e(E) = [s−1(0)] ∈ ΩdimM−rankE .

For dimM = rankE, we get e(E) ∈ Ω0
∼= Z/2; this is called the Euler number, and it’s

an invariant of the vector bundle.

Proof. Every section can be deformed to every other section (think about deforming a
section to the zero section by multiplying by t, for 0 < t < 1). So inside E× [0, 1] we have
a bordism from s1(M) ⊂ E × {0} to s2(M) ⊂ E × {1}. By just paying attention to the
zero section 0E ⊂ E, this restricts to a bordism from 0E ∩ s1(M) ∼= s−1

1 (0E) to s−1
2 (0E):

s1(M)× {0} �
�

// E × [0, 1] s2(M)× {1}? _oo

s−1
1 (0)× {0} �

�
// M × [0, 1] s−1

2 (0)× {1}? _oo

�

Example 21.1. The Moebius strip L→ S1 is a vector bundle of rank 1. Take I × I and
identify (0, t) ∼ (1,−t). There is a nontrivial section: take any path from (0, t) to (1,−t).
So e(L) = 1.

Example 21.2. Take

M = RPn = Sn/x ∼ −x
L = R× Sn/(t, x) ∼ (−t,−x)

L → M is a line bundle (really the “only” line bundle). We define a section s : M → L
taking x 7→ (x1, x) where x = (x1, · · · , xn+1) ∈ Sn. Then s is transverse to 0L, and

e(L) = [s−1(0)] = [RPn−1] ∈ Ωn−1

is nontrivial for all odd n. (You can also see this by removing the zero section and noting
that it is connected, so it’s not the trivial bundle.)

50



Geometry of manifolds Lecture 21

Example 21.3. Take M = RPn as before and consider

E = L⊕ · · · ⊕ L
n times

= Rn × Sn/(t, x) ∼ (−t,−x).

A section M → E is the same as n sections M → L. Take

s : M → E

[x] 7→ [(x1, · · · , xn, x)]

Then s is transverse to 0E and s−1(0E) = [(0, · · · , 0,±1)] = pt. Hence e(E) = 1 ∈ Z/2,
and E is not trivial.

Theorem 21.4.
e(TM) = χ(M) ∈ Z/2

where χ(M) is the Euler characteristic.

So χ(M) is both the Lefschetz number of a map f : M → M homotopic to the identity,
and also the Euler number of TM →M .

Proof. Take a section of TM (i.e. a vector field X) which is transverse to the zero-section.
In local coordinates, X is a map U → Rn. Transversality means that if X(x) = 0, then
DXx is an invertible matrix.

In local coordinates near a zero of X, X : U → Rn (where U ⊂ Rn and the zero is
assumed to be the origin) has the form X(x) = Ax + O(|x|2), where A is an invertible
matrix. Without introducing any new fixed points, we can modify our vector field so that
in the same local coordinates, X(x) = Ax (multiply by a suitable cutoff function). Then
its flow for small times is of the form ϕt(x) = etAx locally (which has no fixed points
locally), in particular (Eϕt)x=0 = etA does not have 1 as an eigenvalue. It is easy to see
that (for small t 6= 0), the only fixed points of ϕt are the zeros of X. �

Orientations. If M is oriented and E is an oriented vector bundle, s−1(0E) inherits
an orientation, hence one can define

e(E) ∈ ΩSO
dimM−rankE

(so this is an element of Z if dimM = rankE). Then e(TM) = χ(M) holds in Z. (This is
fairly dull so I won’t explain. A is an invertible matrix; the determinant is either positive
or negative, and that gives a sign.)

Suppose π : E →M is a vector bundle over a compact space M . For any 0 ≤ i ≤ rank(E)
consider

RP rank(E)−i ×M
p2
//

p1
��

M

RP rank(E)−i
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Define Ei → RP rank(E)−i ×M where Ei = p∗1L ⊗ p∗2E where L is the line bundle on real
projective space. Denote this by L� E.

Choose a section si of Ei transverse to the zero section,

(si)−1(0Ei)
� � //

f i

((

RP rank(E)−i ×M
pr2

��

M

where (si)−1(0Ei) has dimension dimM − i. Suppose that i1 + · · ·+ id = dimM . Take

(f i1 × · · · × f id) : ((sin)−1(0)× · · · × (sid)−1(0))

f (i1,··· ,id)

��

Md

where ((sin)−1(0)×· · ·× (sid)−1(0)) has dimension (d− 1) dimM . Perturb f (i1,··· ,id) to be
transverse to ∆d = {x1 = · · · = xd} ⊂M and define

wi1···id(E) = #(f̃ (i1,··· ,id))−1(∆d) ∈ Z/2;

this is called the Stiefel-Whitney number. This is an invariant of E (for any i1 + · · ·+ id =
dimM). If E = TM it is a cobordism invariant of M .

Theorem 21.5 (Thom). [M ] = 0 ∈ Ω∗ iff wi1,··· ,id(TM) = 0 for all (i1, · · · , id).

This shows that Ωk is a finite dimensional vector space.

Lecture 22: November 1

A Riemannian metric is a Euclidean metric on TM , so an inner product

TMx × TMx → R
smoothly depending on x ∈M . For X,Y ∈ TMx we write g(X,Y ) ∈ R, or gx(X,Y ) ∈ R,
or 〈X,Y 〉 ∈ R. This data is not given: you have to define it.

In local coordinates on an open set U ⊂ Rn, write

g = (gij(x))1≤i,j≤n

meaning that

gx(X,Y ) =
∑
i,j

Xi(x)gij(x)Yj(x)

for X,Y : U → Rn, where gij are functions of x ∈ U .

Lemma 22.1. Any manifold admits a Riemannian metric (special use of a previous result
about vector bundles).
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Let (M, g) be a Riemannian manifold (a manifold M along with a Riemannian metric g).
Let c : [a, b]→M be a piecewise smooth path.

Definition 22.2. The length of c is

L(c) =

∫ b

a

∥∥∥∥dcdt
∥∥∥∥
g

dt

where dc
dt ∈ TMc(t) is the tangent vector of the path, and

‖x‖g =
√
g(X,X).

So ‖dcdt‖g =
√
gc(t)(c′(t), c′(t)).

Lemma 22.3. L(c) is invariant under reparametrization.

(This means that L(c) = L(c̃) if c̃(t) = c(ψ(t)) and ψ : [ã, b̃]→ [a, b] is nondecreasing and
onto.) This is a standard change of variables calculation.

Definition 22.4. Suppose M is connected. For x, y ∈M define the Riemannian distance

d(x, y) = inf{L(c) : c is a path from x to y}.

Note that, in general, there is no reason why this length should be attained.

Example 22.5. Let M = R2\{(0, 0)}, and gij = δij be the constant metric. Then
d((−1, 0), (1, 0)) = 2 but the infimum is not attained.

Lemma 22.6. If (M, g) is a connected Riemannian manifold, then d is a metric.

Proof. We need:

• symmetry (obvious – reverse path)

• triangle inequality (obvious – concatenate a path from x to y and from y to z.
This makes use of the fact we’d used piecewise smooth paths, but we could have
chosen smooth paths, because you can smooth out a path with minimal penalty
in length.)

• definiteness (this is the only sticking point).

Suppose x 6= y in M . Choose a local coordinate chart modelled on a ball U = Br(0) ⊂ Rn,
such that x is the origin and y is outside the chart. I claim there is some ε > 0 such that,
for all p ∈ Br/2(0) and all X ∈ Rn,∑

i,j

Xigij(p)Xj ≥ ε
∑
i

X2
i .

(Take all the vectors of (Euclidean) norm 1; this is a compact set, so there is a minimum
g-norm ε. Then the equation above is saying that ‖x‖g ≥ ε‖x‖Euclidean.)
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Therefore, if c is a path starting at x and which leaves U , L(c) ≥ ε
1
2
r
2 . Therefore, the

same is true for paths c from x to y, so d(x, y) ≥ ε
1
2
r
2 > 0. �

Let (M, g) be a Riemannian manifold, and c : [a, b]→M be a path. Introduce the length

L(c) =

∫ b

a
gc(t)(c

′(t), c′(t))
1
2dt

and the energy

E(c) =
1

2

∫ b

a
gc(t)(c

′(t), c′(t))dt.

By Cauchy-Schwartz,

L(c) =

∫ b

a
1 · g

1
2 ≤ (

∫ b

a
1)

1
2 · (

∫ b

a
g)

1
2

=
√

2(b− a)
1
2E(c)

1
2

or equivalently

E(c) ≥ 1

2(b− a)
1
2

L(c)2.

Equality holds if and only if the speed

‖c′(t)‖ = gc(t)(c
′(t), c′(t))

1
2

is constant in t. So there’s a fixed relationship between length and energy, if the path has
constant speed.

Corollary 22.7. Suppose that c : [a, b] → M , where c(a) = x and c(b) = y, is length-
minimizing (i.e. L(c) = d(x, y)), and has constant speed. Then it minimizes energy among
paths with endpoints x and y. Conversely, if it minimizes energy among paths [a, b]→M
with endpoints x and y, then it minimizes length and has constant speed.

With this in mind, we look at paths that minimize energy, or more generally are critical
points of the energy.

Definition 22.8. A (smooth) path c : [a, b] → M is a geodesic if for any smooth family
of paths cs : [a, b]→M where cs(a) = x, cs(b) = y, and c0 = c, we have

∂

∂s
E(cs)|s=0 = 0.

Remark 22.9. If c is energy-minimizing, it’s a geodesic. The converse is false generally.
For example, take M = T 2 = R2/Z2 and take g to be the constant standard metric (so
gij(x) = δij in standard local coordinates). Then the straight path from (1, b) to (0, a)
(for 0 < a < b < 1

2) is locally length-minimizing, but a shorter path is the one from (0, b)
to (0, a) (recall (0, b) ∼ (0, a)).

Remark 22.10. A path c : I → M , where I ⊂ M is any interval, is called a geodesic if
its restriction to any closed sub-interval is a geodesic.
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Next lecture we will prove the following theorem.

Theorem 22.11. c is a geodesic iff, in local coordinates c(t) = (c1(t), · · · , cn(t)) ∈ U ⊂
Rn, it satisfies

d2ck
dt2

+ Γkij(c(t))
dci
dt

dcj
dt

= 0

where

Γijk =
1

2
(∂jgik + ∂igjk − ∂kgij)

(here Γijk(x) ∈ R, x ∈ U , i, j, k ∈ {1, · · · , n}), and

Γkij =
∑
`

gk`Γij`

where gk` is the inverse matrix to (gk`).

The symbols Γkij and Γijk are called Christoffel symbols.

This looks weird but it’s an ODE so we can say a lot about its solutions.

It turns out that geodesics are automatically smooth (because you can bend the corner in
a way that makes it shorter).

Lecture 23: November 4

Example 23.1. Let M ⊂ Rn be a submanifold. If x ∈ M , then TMx ⊂ Rn. Take the
standard scalar product on Rn; this induces (by restriction) a Riemannian metric g on M .

Question: what are the geodesics for this metric? Take a smooth path c : [a, b]→M ⊂ Rn
from x to y. By definition, c is a geodesic iff the following holds: for any family of paths

c̃ : (−ε, ε)× [a, b]→M where c̃(s, a) = x, c̃(s, b) = y, c̃(0, t) = c(t)

we have
d

ds
(E(c̃(s, ·)))|s=0 = 0.

d

ds
E(c̃(s, ·)) =

d

ds

(
1

2

∫ b

a

〈
dc̃

dt
,
dc̃

dt

〉
dt

)
=

∫ b

a

〈
d

dt

dc̃

dt
,
dc̃

dt

〉
dt

integrate by parts

=

∫ b

a

d

dt

〈
dc̃

ds
,
dc̃

dt

〉
dt−

∫ b

a

〈
dc̃

ds
|s=0,

d2c̃

dt2

〉
dt

= −
∫ b

a

〈
dc̃

ds
,
d2c̃

dt2

〉
dt
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Hence, c is geodesic iff ∫ b

a

〈
X,

d2c

dt2

〉
dt = 0

where X = dc̃
ds |s=0 for any variation c̃ of c. Note that X(t) ∈ TMc(t) for all t.

One can show (see tubular neighborhood theorem) that anyX : [a, b]→ Rn, X(t) ∈ TMc(t)

can occur. Hence, c is a geodesic iff d2c
dt2

is orthogonal to TMc(t) for all t. (This is a Lagrange
multiplier argument). For example, a great circle on a sphere is a geodesic. For a surface
of revolution, the circles of local maximum and local minimum radius are both geodesics,
but only the latter are locally length-minimizing (that is, a circle c of maximum radius
minimizes length over all paths between top and bottom points constrained within a small
neighborhood of c, but they do not minimize length over all paths from a given point to
itself, constrained within a neighborhood of c).

Sanity check: c has constant speed (we know that’s necessary for geodesics) because the
first derivative is orthogonal to the second derivative.

In the calculation above, 〈∗, ∗〉 was the standard scalar product in Rn (so we didn’t have
to worry about coefficients of the metric). More generally, let U ⊂ Rn be an open subset,
g a Riemannian metric on U with coordinates (gij)1≤i,j≤n. Let c : [a, b] → U be a path
from x to y. Take a variation

c̃ : (−ε, ε)× [a, b]→ U

where c̃(s, a) = x, c̃(s, b) = y and c̃(0, t) = c(t).

d

ds
|s=0E(c̃(s, ·)) =

d

ds

∫ b

a
gc̃(s,t)

(
dc̃

∂t
,
∂c̃

∂t

)
dt

=
d

ds
|s=0

1

2

∫ b

a

∑
ij

gij(c̃(s, t))
∂c̃i
∂t

∂c̃j
∂t
dt

integrate by parts

=

∫ b

a

∑
ij

gij(c̃(s, t))
∂c̃i
∂t

∂2c̃j
∂s∂t

dt+
1

2

∫ b

a

∑
ijk

∂gij
∂xk

∂c̃k
∂s

∂c̃i
∂t

∂c̃j
∂t
dt

−
∫ b

a

∑
ij

gij(c̃(s, t))
∂2c̃i
∂t2

∂c̃j
∂s

dt

−
∫ b

a

∑
ijk

∂gij
∂xk

∂c̃k
∂t

∂c̃i
∂t

∂c̃j
∂s

dt+ same last term as before

General cleanup: recall that c(t) = c̃(0, t), and let X(t) = ∂c̃
∂s(0, t)a.

Change indices so the second term is∑
ijk

∂gik
∂xj

∂c̃j
∂s

∂c̃i
∂t

∂c̃k
∂t

dt
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then we have

· · · = −
∫ b

a

∑
ij

gij
d2ci
dt2

Xjdt+

∫ b

a

∑
ijk

(
1

2

∂gik
∂xj

− ∂gij
∂xk

)
dci
dt

dck
dt
Xjdt

= −
∫ b

a

∑
ij

gij
d2ci
dt2

Xjdt+

∫ b

a

∑
ijk

(
1

2

∂gik
∂xj

− 1

2

∂gij
∂xk

− 1

2

∂gjk
∂xi

)
dci
dt

dck
dt
Xj

Hence, c is geodesic iff
∑

i gij
d2ci
dt2

+
∑

ik

(
−1

2
∂gik
∂xj

+ 1
2
∂gij
∂xk

+ 1
2
∂gjk
∂xi

)
dci
dt

dck
dt = 0 for j =

1, · · · , n.

(gij) is a matrix, so we are free to multiply by the inverse matrix. So if (gij(x)) is the
inverse matrix to (gij(x)) then

d2c`
dt2

+
∑
ikj

gj`
(
−1

2

∂gik
∂xj

+
1

2

∂gij
∂xk

+
1

2

∂gjk
∂xi

)
Γ`ik(x)

dci
dt

dck
dt

= 0. (23.1)

Theorem 23.2. Let (M, g) be a Riemannian manifold. Then a smooth path c : I → M
is geodesic iff in local coordinates around any point c(x), it satisfies the geodesic equation
(23.1):

d2c`
dt2

+
∑
ik

Γ`ik(x)
dci
dt

dck
dt

= 0

This property is certainly necessary. You have to show that it suffices to do this lo-
cally. . . we will have better proofs later.

Corollary 23.3. Given p ∈M and X ∈ TM there is some open interval I ⊂ R containing
0, and a geodesic c : I →M where c(0) = p and c′(0) = X. If we ask for I to be maximal,
c is unique. (This is ODE-theory.)

Remark 23.4. If M is compact then I = R.

This is a second-order ODE: it can stop existing if the first derivative diverges. This
cannot happen for a geodesic because geodesics proceed at constant speed.

Lecture 24: November 6

Geodesic normal coordinates. Let (M, g) be a Riemannian manifold, and p ∈M .
There is a map

TpM ⊃ U
expp→ M

expp : X 7→ c(1)
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where c is the geodesic with c(0) = p, c′(0) = X. This is well-defined on an open subset
U ⊂ TMp containing 0. There is some ε such that all geodesics for unit-length vectors are
defined for time ε. Then scale these (go slower), so you have geodesics that exist at time
1 for all ε-length vectors X. It is a tautology that

T0(expp) : TpM → TpM

is the identity.

By making U smaller, we can achieve that expp is a diffeomorphism onto its image. This
gives a preferred chart (modelled on U ⊂ TMp instead of U ⊂ Rn). Alternatively, choose
TMp

∼= Rn such that gij(p) = δij (Riemannian metric becomes standard); then we get

Rn ⊃ U
expp→ M

where 0 ∈ U . The resulting coordinate chart is called a geodesic normal coordinate chart
around p.

Lemma 24.1. In geodesic local coordinates, for x ∈ U (i.e. x close to zero),

gij(x) = δij +O(‖x‖2).

Proof. Clearly, gij(0) = δij , because of the choice of identification Rn ∼= TMp. Note that,
in our local coordinates, all the straight lines c(t) = t · v (for v ∈ Rn) are geodesics. I need
to compute Γijk in this local coordinate system.

d2ck
dt2

+
∑
ij

Γkij(c(t))
dci
dt

dcj
dt

= 0

In our case: ∑
ij

Γkij(tv)vivj = 0 where v = (v1, · · · , vn) ∈ Rn

Set t = 0: ∑
ij

Γkij(0)vivj = 0 for all (v1, · · · , vn) ∈ Rn

which implies that

Γkij(0) = 0

Γijk(0) = 0

By the formula for Γijk:

∂igjk + ∂jgik − ∂kgij = 0

swap i and k

∂kgij + ∂jgik − ∂igjk = 0

Now add the previous two equations and watch terms cancel:

∂jgik = 0 at x = 0.

So the first derivative of (gjk) at x = 0 is zero. �
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So, gij = δij + O(‖x‖2). What about the quadratic term? It turns out that it’s usually
nonzero (as is true generically, as shown in the HW).

Lemma 24.2 (Gauss). In geodesic local coordinates,∑
ij

gij(v)viwj = v · w

where · is the standard scalar product.

This does not say that g is the standard metric. But, if you fix a point v, and look at the
vector v in that direction, the inner product with any arbitrary vector behaves like the
standard metric.

Proof. Fix v, w ∈ Rn. Consider

f(t) =
∑
ij

gij(tv)viwj − t(v · w).

Obviously, f(0) = 0.

f ′(t) =
∑
ijk

(
∂

∂xk
gij

)
(tv)tvkviwj

A

+
∑
ij

gij(tv)viwj

B

− v · w
D

.

We know that c(t) = tv is a geodesic, so the second derivatives are zero and∑
ijk

wk(Γijk(tv)vivj) = 0

∑
ijk

t
∂gjk
∂xi

(tv)vivjwk

corr. to A

− 1

2
t
∂gij
∂xk

(tv)vivjwk

C

= 0

Since geodesics go at constant speed

1

2

∑
ij

gij(tv)vivj =
1

2
v · v

(the LHS is the same for all t, so it’s the same as when t = 0). Hence, differentiate in the
w-direction:

1

2

∑
ijk

∂kgij(tv)twkvivj

C

+
∑
ij

gij(tv)viwj

B

− v · w
D

= 0

Hence, f ′(t) = 0 so f(1) = 0 as well. �

Corollary 24.3. Let c : I → M be a geodesic, I ⊂ R an open neighborhood of 0, and c
a path having unit speed. Then there is an ε > 0 such that

d(c(0), c(t)) = |t| if |t| < ε
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where d is the metric.

In words, the geodesic is locally length-minimizing near any of its points. In fact, we
will see it’s the unique local length-minimizer. Note that there are two kinds of “locally”
running around: locally as in a short distance from a point, and locally as in smooth
variations near the path.

Proof. Let c be a path from c(0) to c(t), where c(0) and c(t) are in one of these little
neighborhoods. Suppose there’s another path from c(0) to c(t). We may assume that this
stays in the neighborhood, or else it’s certainly longer than c, so we can talk about it in
local coordinates. The Gauss lemma says that the metric splits into a radial part, and
a part tangent to the sphere. So, given another path γ between c(0) to c(t), γ has the
same radial component as c, but more tangential component (because the geodesic has
zero tangential component). �

Lecture 25: November 8

Let N ⊂M be a submanifold. We have a normal bundle νN = (TM |N )/TN .

Theorem 25.1 (Tubular Neighborhood Theorem). There are open subsets V ⊂M with
V containing N , and U ⊂ νN with U containing the zero-section and a diffeomorphism
ϕ : U → V such that ϕ|zero-section = 1N .

This shows that a neighborhood of N ⊂ M depends only on νN . For instance, if νN is
trivial, then locally M looks like N ×RdimM−dimN . But, there is no unique way of doing
this, so it’s hard to glue together.

Proof. Choose a Riemannian metric g on M and identify νN with the orthogonal com-
plement of the subbundle TN ⊂ TM |N . Then for X ∈ (νN)p ⊂ TMp, define ϕ(X) =
expp(X). This is defined near the zero-section in νN , and ϕ|zero-section = 1, and Tϕ is
invertible at each point of the zero-section.

More precisely, if p ∈ N ⊂ νN is a point in the 0-section, then Tp(νN) = (νN)p⊕TNp
(Tϕ)p→

TMp is the map obtained from an embedding νN ⊂ TM |N . �

Corollary 25.2. A closed, connected subset N ⊂M is a submanifold iff there is an open
U ⊂M containing N and a smooth map r : U → U with r(U) = N , r|N = 1.

Moral: submanifolds = smooth neighborhood retracts.

This is useful for finding Lefschetz fixed point numbers.
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Lemma 25.3. Suppose (M, g) is a compact, connected Riemannian manifold. Then there
is an ε such that any two points p, q ∈ M with d(p, q) < ε can be joined by a geodesic of
length d(p, q).

(Compactness is used to show that you can get the same ε for all pairs.)

Proposition 25.4. Let (M, g) be a compact, connected Riemannian manifold. For any
points p, q ∈M there exists a geodesic joining them of length d(p, q).

Corollary 25.5. If M is compact, then expp : TMp →M is onto.

Proof of Proposition 25.4. Take a sequence of paths joining p to q, parametrized with unit
speed, and whose lengths converge to d(p, q). By looking at the values of those paths at

ti = id(p,q)
N for N � 0 fixed (i.e. take a bunch of “evenly spaced” points ti on the paths),

we get points p = x0, x1, · · · , xN = q such that

d(xi−1, xi) ≤
d(p, q)

N
.

Necessarily, this is an equality (if not you’d get a path that was shorter than the infimum),

and we can assume that d(p,q)
N < ε. Now connect xi−1 to xi by a geodesic with length d(p,q)

N
and consider the composition of these geodesics. A priori this might not be a geodesic –
it might have corners. But, the outcome is an absolute length-minimizer, so it must be a
geodesic. �

Remark 25.6. The same argument shows that each homotopy class of paths from p to
q has a representative that is a geodesic, and that each free homotopy class of loops
contains a periodic geodesic. If you want you can define the fundamental group in terms
of discretized (broken) geodesics.

Lemma 25.7. Let (M, g) be a connected Riemannian manifold. Suppose that p ∈ M is
a point such that expp is defined on all of TMp. Then any point q can be joined to p by
a geodesic of length d(p, q).

Proof. Take a small ε > 0. Sε(p) = {x ∈ M : d(x, p) = ε} is compact by Gauss’ lemma.
Choose x ∈ Sε(p) to minimize d(x, q) (travel around the boundary of a neighborhood of
x and see which boundary point is closest to q) and let c be the unit speed geodesic with
c(0) = p, c(ε) = x. Then d(x, q) = d(p, q) − ε (certainly it can’t be <, because then you
would have made a path shorter than allowed; but if it’s bigger, then you know there’s a
path whose length is as close as you want to d(p, q), and this get a contradiction to the
choice of x). Take

T = max{t ∈ [0, d(p, q)] : d(c(t), q) = d(p, q)− t}
(t represents how far you went – the furthest you can go before this stops being the right
direction to go in). Gauss’ lemma shows that T > 0. We want to show that T = d(p, q).
TBC
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Lecture 26: November 13

Proof of Lemma 25.7, con’t. For small ε, we claimed that you can find x such that d(p, x) =
ε and d(x, q) = d(p, q)− ε. This uses the Gauss lemma: in normal coordinates around p,
x is the point in the sphere of radius ε with least distance to q. The Gauss lemma says
that d(p, x) = ε, and the triangle inequality says that d(x, q) ≥ d(p, q) − ε. To get the
other direction, notice that any path has to leave the ε-ball around x, and the quickest
way to do that still takes length ε: if d(x, q) > d(p, q)− ε we can find a path from p to q
of length < d(x, q) + ε. By looking at where that path crosses the sphere of radius ε we
get a contradiction to the defining property of x. Hence d(x, q) = d(p, q)− ε as claimed.

Take the unit speed geodesic c with c(0) = p, c(ε) = x. Take

T = max{t ∈ [0, d(p, q)] : d(c(t), q) = d(p, q)− t}.
This set is closed (prove this yourself). We know T > 0 and want to show T = d(p, q),
since that yields c(d(p, q)) = q. Assume T < d(p, q); c(T ) is the point at which you stop
going in the right direction.

For small δ > 0, the Gauss lemma yields a point y with d(c(T ), y) = δ, and

d(y, q) = d(c(T ), q)− δ
=d(p, q)− T − δ because T is in that set above. (26.1)

By assumption, c exists for all time. So

d(p, y) ≥ d(p, q)− d(y, q) triangle inequality

= T + δ by (26.1).

Hence, c|[0,T ], combined with the short geodesic from c(T ) to y, is a length-minimizing
path from p to y. Hence it’s a smooth geodesic, i.e. y = c(T + δ). Hence, T + δ ∈ {t :
d(c(t), q) = d(p, q)− t}, which is a contradiction to the maximality of T . �

Theorem 26.1 (Hopf-Rinow). Suppose (M, g) is a connected Riemannian manifold. The
following are equivalent:

(i) Geodesics on M exist for all time

(ii) Bounded subsets are relatively compact

(iii) M is complete as a metric space.

Remark 26.2. By the previous lemma, any of these properties implies that two points
p, q can be joined by a geodesic with length d(p, q).

Proof. (i) =⇒ (ii) Suppose K ⊂ M is bounded. Take p ∈ K and expp : TpM → M .

Then K ⊂ expp(BR(0)) where BR(0) is the closed ball of radius R � 0. But BR(0) is

compact, hence so is its image, and K is a closed subset of it.

(ii) =⇒ (iii) Elementary topology (Cauchy sequences have bounded subsequences. . . )
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(iii) =⇒ (i) Take a geodesic c : [0, T ) → M , where T is the maximal time of existence.
Then c(T − 1

2n ) = xn is a Cauchy sequence. Take its limit; this is a contradiction. �

Let (M, g) be a Riemannian manifold, and p ∈M . Consider a subset U ⊂ TMp containing
p, and an arbitrary point x ∈ U . Take Y,Z ∈ TxM . We want to know what happens
to the inner product of Y,Z under the exponential map: do a Taylor expansion around
x = 0 and get

gexpp(x)((Tx) expp)(Y ), (TX expp)(Z) = gp(Y, Z) + (quadratic term).

The quadratic term is a multilinear map

TMp ⊗ TMp ⊗ TMp ⊗ TMp → R.
(The last two terms are symmetric in Y,Z.) This is the obstruction to flatness and is
intrinsic. You can actually calculate this; it ends up being a combination of Christoffel
symbols and their derivatives.

In modern notation, it equals

1

12
(Rp(X,Y, Z,X) +Rp(X,Z,X, Y ))

where Rp : TMp ⊗ TMp ⊗ TMp ⊗ TMp → R is the Riemannian curvature tensor.

Lecture 27: November 15

Wednesday is a midterm. There is no final.

Let M be a manifold and f ∈ C∞(M,R) a function. At every point, we have Txf :
TMx → R, usually written as dfx ∈ TM∗x . In fact, df is a smooth section of the cotangent
bundle TM∗ (write df ∈ C∞(M,T ∗M) =: C∞(T ∗M)). Take a smooth vector field X (so
Xx ∈ TMx). Define

X.f = df(X) ∈ C∞(M,R) and (X · f)x = dfx(Xx)

(differentiating f in the X direction).

Fact 27.1. (X.∗) is a derivation for the algebra C∞(M,R):

X.(fg) = (X.f)g + f(X.g)

(this is just the Leibniz formula).

X.(Y.f)− Y.(X.f) = [X,Y ].f

In local coordinates,

X.(Y.f) = (D2f)(X,Y ) + lower order terms.
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Because the Hessian is symmetric, X.(Y.f)− Y.(X.f) is a first-order differential operator.
It is given by the vector field [X,Y ].f .

Theorem 27.2. Suppose we have a Riemannian metric g. Then there is a unique bilinear
(over R) operation

C∞(TM)× C∞(TM)→ C∞(TM)

(X,Y ) 7→ ∇XY
satisfying the connection axioms:

(1) ∇fXY = f · (∇XY ) for f ∈ C∞(M,R) (“taking the derivative with greater
intensity”)

(2) ∇X(fY ) = (X.f) · Y + f · ∇XY

and also satisfying

(1) (compatibility with the metric)

X.g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

(2) (torsion freeness)
∇XY −∇YX = [X,Y ].

This ∇ is called the Levi-Civita connection.

Note: if Y is supported on some subset, then ∇XY is supported on that same subset. So
it’s OK to work locally.

Proof. In local coordinates, set ∂i be the ith constant unit vector field, and

∇∂i(∂j) =
∑
k

Akij∂k

for functions Aijk . Then using the connection axioms,

∇XY = DY ·X +
∑
ijk

AkijXiYj∂k.

Compatibility with the metric says that

∂

∂xk
gij = ∂k · g(∂i, ∂j) = g(∇∂k∂i, ∂j) + g(∂i,∇∂k∂j)

=
∑
`

g`jA
`
ki + g`iA

`
kj (27.1)

The torsion-freeness axiom says that

0 = ∇∂i∂j −∇∂j∂i
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=
∑
k

(Akij −Akji)∂k

So far we’ve only used last two properties in the case of ∂i etc., but if they are satisfied
for the standard vector fields, they are true for all vector fields (by the first few axioms).

Write down the other equations of form (27.1) by permuting the indices:

∂

∂xk
gij +

∂

∂xi
gjk −

∂

∂xj
gki =

∑
`

g`jA
`
k + g`iA

`
kj

+ g`kA
`
ij + g`jA

`
ik − g`iA`jk − g`kA`jk

= 2
∑
`

g`iA
`
ki symmetry Akij = Akji

It follows that Akij = Γkij . �

Definition 27.3. The Riemann curvature is a map

R : C∞(TM)× C∞(TM)× C∞(TM)→ C∞(TM)

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

(The textbook defines the opposite sign convention, which is awful. That is an attempt
to make the sectional curvature look nicer, but our convention is the standard one.)

Motivation: if Z was just a function, this would be zero (this is the definition of the Lie
bracket). We want to see how badly this fails for the Levi-Civita connection. The left
two terms are second-order derivatives, and in the Lie bracket case the second-order bit
cancels out.

Proposition 27.4. This satisfies

R(X,Y )(fZ) = f ·R(X,Y )Z

R(fX, Y )(Z) = f ·R(X,Y )Z

R(X, fY )(Z) = f ·R(X,Y )Z

Proof.

R(X,Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

= −f∇[X,Y ](Z)− ([X,Y ].f)Z +∇X(f · ∇Y Z) +∇X((Y.f)Z)

−∇Y (f · ∇XZ)−∇Y ((X.f)Z)

= fR(X,Y )Z − ([X,Y ].f)Z + (X.f)∇Y Z + (X.Y.f)Z + (Y.f)(∇XZ)

− (Y.f)(∇XZ)− (Y.X.f)Z − (X.f)(∇Y Z)

= fR(X,Y )Z

etc. �
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Corollary 27.5. R is a pointwise operation:

R ∈ C∞(T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ TM).

Upshot: you can define differentiation, but it won’t be compatible with the Lie bracket.

Lecture 28: November 18

Let (M, g) be a Riemannian manifold; at every point we have a map Rp : TpM ⊗ TpM ⊗
TpM → TpM given by

Rp(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Equivalently, one considers

TMp ⊗ TMp ⊗ TMp ⊗ TMp → R
Rp(X,Y, Z,W ) = gp(Rp(X,Y )Z,W )

By definition,
R(X,Y, Z,W ) = −R(Y,X,Z,W ).

Lemma 28.1. R(X,Y, Z,W ) = −R(X,Y,W,Z)

Proof. Uses compatibility of ∇ with the metric.

R(X,Y,W,Z) = g(∇X∇YW −∇Y∇XW −∇[X,Y ]W,Z)

= X.g(∇YW,Z)− g(∇YW,∇XZ)− Y.g(∇XW,Z) + g(∇XW,∇Y Z)

− [X,Y ].g(W,Z) + g(W,∇[X,Y ]Z)

= −Y.g(W,∇XZ) + g(W,∇Y∇XZ) +X.g(W,∇Y Z)− g(W,∇X∇Y Z)

+ g(W,∇[X,Y ]Z) +X.Y.g(W,Z)−X.g(W,∇Y Z)− Y.X.g(W,Z)

+ Y.g(W,∇XZ)− [X,Y ].g(W,Z)

= g(W,∇Y∇XZ)− g(W,∇X∇Y Z) + g(W,∇[X,Y ]Z)

= −R(X,Y, Z,W )

We could have done this computation assuming that [X,Y ] = 0, because locally everything
is a linear combination of the ∂i’s, and [∂i, ∂j ] = 0. �

In fact, torsion-freeness implies

R(X,Y, Z,W ) = R(Z,W,X, Y ).

The proof is not enlightening; see the textbook.

Definition 28.2. Let P ⊂ TpM be a two-dimensional tangent subspace. Write

P = RX ⊕ RY
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where X,Y are an orthonormal basis: g(X,X) = 1, g(Y, Y ) = 1, g(X,Y ) = 0. Then the
sectional curvature is

Kp(P ) = −R(X,Y,X, Y ).

One can show, using the symmetry properties of R, that K is independent of the choice
of (X,Y ).

R(X,Y, cos(α)X + sin(α)Y,− sin(α)X + cos(α)Y ) = cos2(α)R(X,Y,X, Y )− sin2(α)R(X,Y, Y,X)

= R(X,Y,X, Y )

To rotate in all coordinates, first rotate in the third and fourth coordinates (above) which
doesn’t change anything, then rotate in the first and second coordinates, which also doesn’t
change anything because of the symmetry properties. Also reflections don’t change this.

Take a smooth path R ⊃ I
c→ M. We consider smooth tangent vector fields along that

path, X ∈ C∞(I, c∗TM), meaning that t ∈ I 7→ Xt ∈ TMc(t) (you have a tangent vector
at every point in the path, but that vector doesn’t have to be tangent to the path).

Example 28.3. If X̃ ∈ C∞(TM) then its pullback then its pullback X = c∗X̃ is given by

Xt = X̃c(t), for X ∈ C∞(c∗TM).

But, not every X ∈ C∞(c∗TM) is of the form X = c∗X̃ (unless c is an embedded path –
use the tubular neighborhood theorem to extend a vector field defined on the path to a
neighborhood). For example, if c is the constant path, then a vector field along c is just a
family of vectors that varies in time; a vector field that is the pullback of something can
only have one vector at that point. However, locally in t one can always write

Xt = f1(t)(c∗X̃1)t + · · ·+ fn(t)(c∗X̃n)t.

(Think about this for the constant path; choose X̃i so that c∗X̃i is the ith basis vector,
and choose f1, · · · , fn so that at time t, this produces the correct linear combination of
basis vectors.) There is a unique linear operation

∇
∂t

: C∞(c∗TM)→ C∞(c∗TM)

such that:

• if X = c∗X̃, ∇∂tX = c∗(∇ dc
dt
X̃)

• ∇∂t(fX) =
(
df
dt

)
X + f

(∇
∂t

)
X for f : I → R

In a local coordinate chart on M ,

c(t) = (c1(t), · · · , cn(t))

X(t) = (X1(t), · · · , Xn(t))

we have (
∇
∂t
X

)
k

=
dXk

dt
+
∑
ij

Γkij(c(t))c
′
i(t)Xj(t).
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So this is a version of the Levi-Civita connection. It’s a first-order ODE, so apply ODE
theory. Take I = [a, b]. For every Z ∈ TMc(a), there is a unique X ∈ C∞(c∗TM) which

starts at Xa = Z and satisfies ∇∂tX = 0. (Basically, start at c(a) and transport the vector
Z along the curve.) The map Z 7→ Y = Xb is a linear map

τc : TMc(a) → TMc(b)

called parallel transport. If you do this in flat space, the vector really doesn’t change when
you do this. But in general, having non-flat curvature means that different paths from
c(a) to c(b) might result in different parallel transports.

Proposition 28.4. Properties:

(1) For X,Y ∈ C∞(c∗TM),

d

dt
g(X,Y ) = g(

∇
∂t
X, Y ) + g(X,

∇
∂t
Y ).

This implies that τc is an isometry.

(2) (analogue of torsion-freeness) Let c : Ω→M for some open set Ω ⊂ R2. Then

∇
∂t

∂c

∂s
=
∇
∂s

∂c

∂t

where ∂c
∂s is a vector field along t 7→ c(s, t). (On the RHS you’re thinking of this

as a family of s-paths; on the LHS it’s a family of t-paths.) In local coordinates,(
∇
∂s

∂c

∂t

)
k

=
∂2ck
∂s∂t

+
∑
ij

Γkij(c(s, t))
∂ci
∂s

∂cj
∂t

(3) Take c : Ω→M as before, and X ∈ C∞(Ω, c∗TM) (for Xs,t ∈ TMc(s,t)). Then

∇
∂s

∇
∂t
X − ∇

∂t

∇
∂s
X = R

(
∂c

∂s
,
∂c

∂t

)
X.

First look at a vector field X that is pulled back from the manifold, in which case it
becomes a consequence of the definition. Then use the fact that everything can be written
as a linear combination of pulled back vector fields.

Corollary 28.5. Suppose (M, g) is flat (i.e. R ≡ 0). Then parallel transport τc :
TMc(a) → TMc(b) depends only on the homotopy class of c (relative to the endpoints).

Proof next time.

Corollary 28.6. If M is simply connected and carries a flat metric, then TM is the trivial
bundle (because you can trivialize it by parallel transport, and ODE theorems show it’s
smooth).
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Lecture 29: November 22

Lemma 29.1. Let (M, g) be a Riemannian manifold which is flat (R ≡ 0). Then parallel
transport

τc : TMc(a) → TMc(b)

depends only on the homotopy class (rel endpoints).

Suppose (M, g) is flat and simply-connected. Pick p ∈ M and an orthonormal basis

(X1, · · · , Xn) of TMp. By using parallel transport, one finds vector fields X̃, · · · , X̃n with

(X̃i)p = Xi, ∇Xi = 0. These satisfy

g(X̃i, X̃j) = const = δij

(because∇ is compatible with the connection) and [X̃i, X̃j ] = 0 (because∇ is torsion-free).

In particular, (M, g) is locally isometric to (Rn, gij = δij) by flowing along (X̃1, · · · , X̃n).
If (M, g) is geodesically complete, it is globally isometric to flat space (Rn, gij = δij).

That’s all I’m going to say about flat metrics because that’s not the interesting part.

In terms of covariant differentiation, c is a geodesic iff ∇
∂t
∂c
∂t = 0. Now look at c = c(s, t)

such that for any s, c(s, ·) is a geodesic (i.e. a parametrized family of geodesics cs).
Consider X(s, t) = ∂c

∂s ∈ TMc(s,t). This satisfies(
∇
∂t

)2

X =
∇
∂t

∇
∂t

∂c

∂s

=
∇
∂t

∇
∂s

∂c

∂t

=
∇
∂s

∇
∂t

∂c

∂t
−R

(
∂c

∂t
,
∂c

∂s

)
∂c

∂t

where the last two equalities come from Proposition 28.4. This equation forX ∈ C∞(c∗TM),(
∇
∂t

)2

X −R(c′(t), X)c′(t) = 0

is called the Jacobi equation. Its solutions are called Jacobi fields.

Remark 29.2. The Jacobi equation is a second order linear ODE (with variable coeffi-
cients). Hence,

• there are 2n linearly independent solutions, which form a basis of the solution
space.

• any solution is determined by its value and first derivative at a point, and those
can be arbitrary.

Solutions:
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X(t) = c′(t) is a solution (R is antisymmetric so R(c′(t), c′(t)) = 0)

X(t) = t · c′(t) is a solution (rescaling the parametrization of a geodesic by a
constant)

Suppose X is a Jacobi field.(
d

dt

)2

g(X, c′(t)) =
d

dt
g

(
∇X
∂t

, c′(t)

)
(the second term vanishes because c is a geodesic)

= g

(
∇2X

dt2
, c′(t)

)
= g(R(c′(t), X)c′(t), c′(t))

= 0 antisymmetry of R(−,−,−,−)

Hence, if for some t0, X(t0) and ∇X∂t (t0) are both orthogonal to c′(t), the same will hold for
all times. So, there is a (2n− 2)-dimensional space of Jacobi fields everywhere orthogonal
to c′.

Lemma 29.3. Take p ∈ M , X ∈ TMp. Let c be the geodesic with c(0) = p, c′(0) = X.

For any Y ∈ TMp, let Z be the unique Jacobi field along c with Z(0) = 0, ∇Z∂t |0 = Y .
Then (expp)∗X(Y ) = Z(1).

expp : TMp →M sends X 7→ c(1).

Moral: Jacobi fields give the derivative of the exponential.

Theorem 29.4. Suppose that (M, g) has sectional curvature ≤ 0. Then for any p ∈ M ,
expp has invertible differential (i.e. it is a local diffeomorphism).

Proof. Take a geodesic c, a Jacobi field Z along c with Z(0) = 0, but Z 6≡ 0. We have
to show that Z(t) 6= 0 for all t 6= 0 (and hence the derivative of the exponential map is
injective). (

d

dt

)2

· 1

2
g(Z(t), Z(t)) =

d

dt
g(
∇Z
∂t

, Z)

= g

(
∇Z
∂t

,
∇Z
∂t

)
+ g(

∇2Z

∂t2
, Z)

= g

(
∇Z
∂t

,
∇Z
∂t

)
≥0

+ R(c′, Z, c′, Z)

≥0 because
sectional curvature ≤0

Hence, ψ(t) = 1
2g(Z(t), Z(t)) is convex. But ψ(0) = 0, ψ′(0) = 0 (it’s a quadratic

function), ψ′′(0) > 0 which implies ψ(t) 6= 0 for all t. �
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Theorem 29.5 (Hadamard-Cartan). If (M, g) is simply-connected, complete, and has
sectional curvature ≤ 0, then for all p, expp : TMp → M is a diffeomorphism (i.e. M is
diffeomorphic to Rn).

By completeness, we know that expp is onto, and we know it’s a local diffeomorphism. We
need to show that it’s a covering map. This involves some work.

If this is compact but not simply-connected, then you can apply this to the universal
cover. Any space with a contractible universal cover is a K(G, 1), so these conditions are
pretty restrictive, homotopy-theory-wise.

Lecture 30: November 25

Let (M, g) be a Riemannian manifold. Recall

E(c) =

∫ b

a

1

2
g(c′(t), c′(t))dt.

Consider this as a function on the space of paths c : [a, b]→M , with fixed endpoints c(a),
c(b). Let (cs) be a family of such paths, depending on s ∈ (−ε, ε), and with c0 = c. So

(−ε, ε)× [a, b]→M

(s, t) 7→ cs(t)

(s, a) 7→ constant in s

(s, b) 7→ constant in s

Then

d

ds
E(cs)|s=0 =

∫ b

a

∂

∂s

1

2
g

(
∂cs
∂t
,
∂cs
∂t

)
dt

=

∫ b

a
g

(
∇
∂s

∂cs
∂t
,
∂cs
∂t

)
dt

=

∫ b

a
g

(
∇
∂t

∂cs
∂s

,
∂cs
∂t

)
dt

=

∫ b

a

d

dt
g

(
∂cs
∂s

,
∂cs
∂t

)
dt− g

(
∂cs
∂s

,
∇
∂t

∂cs
∂t

)
dt

= −
∫ b

a
g

(
∂cs
∂s

,
∇
∂t

∂cs
∂t

)
dt

We write X = ∂cs
∂s |s=0 ∈ C∞(c∗TM), X(a) = X(b) = 0.

The first variation of the energy in the X direction is

X 7→ −
∫ b

a
g(X,

∇
∂t

∂c

∂t
)dt

This vanishes iff c is a geodesic.
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Assuming c is a geodesic,(
d

ds

)2

E(cs)|s=0 = −
∫ b

a

∂

∂s
g

(
∂cs
∂s

,
∇
∂t

∂cs
∂t

)
dt

the first term in the compatibility with the metric expansion vanishes

= −
∫ b

a
g

(
∂cs
∂s

,
∇
∂s

∇
∂t

∂cs
∂t

)
dt

= −
∫ b

a
g

(
∂cs
∂s

,
∇
∂t

∇
∂s

∂cs
∂t

)
dt+

∫ b

a
g

(
∂cs
∂s

,R

(
∂cs
∂t
,
∂cs
∂s

)
∂cs
∂t

)
dt

=

∫ b

a
g

(
∇
∂t

∂cs
∂s

,
∇
∂t

∂cs
∂s

)
dt+

∫ b

a
g

(
R

(
∂cs
∂t
,
∂cs
∂s

)
∂cs
∂t
,
∂cs
∂s

)
dt

On the space
{X ∈ C∞(c∗TM) : X(a) = 0, X(b) = 0}

we have the symmetric bilinear form

Q(X,Y ) =

∫ b

a
g

(
∇
∂t
X,
∇
∂t
Y

)
+ g(R(c′(t), X)c′(t), Y )dt

called the second variation form. Then our computation says that for X =
(
∂cs
∂s

)
|s=0,(

d

ds

)2

E(cs)|s=0 = Q(X,X).

If Q(X,X) is negative, then that means you can find a nearby shorter path with the same
endpoints.

Lemma 30.1. The null space of Q is precisely the space of Jacobi fields X along c with
X(a) = X(b) = 0. The null space has dimension ≤ dimM − 1.

Proof. Integration by parts:

Q(X,Y ) =

∫ b

a
−g
(
∇2X

∂t2
, Y

)
+ g

(
R(c′, X)c′, X

)
dt

�

Idea 30.2. There is a decomposition

H = {X ∈ C∞(c∗TM) : X(a) = X(b) = 0}
H = H− ⊕H0 ⊕H+

which is orthogonal for X, H0 = null space of Q, and Q|H− is negative definite, Q|H+ is
positive definite, and dimH− <∞.

Definition 30.3. dimH− is called the Morse index of a geodesic c.
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Q(X,Y ) =

∫ b

a
g

(
∇X
∂t

,
∇Y
∂t

)
+ g(R(c′, X)c′, Y )dt.

This can be made rigorous in two ways (leading to the notion of Morse index).

(1) (Analytically): CompleteH in the SobolevW 1,2 norm (the one that has g(∇X∂t ,
∇Y
∂t )

as inner product). This yields a Hilbert space, and

Q(X,Y ) = 〈X,Y 〉W 1,2 + 〈X,RY 〉W 1,2

where R is a compact self-adjoint operator. Apply the spectral theorem to 1+R.
Then H− is the eigenspace associated to the negative eigenvalues of 1 + R.

(2) (By piecewise extension): Take a decomposition of [a, b] into small sub-intervals,
and allow piecewise-smooth X. See Milnor’s Morse Theory.

Lemma 30.4. If (M, g) has non-positive sectional curvature, the variation form of any
geodesic is positive definite.

Proof. The sectional curvature is −g(R(c′, X)c′, Y ), so if it’s non-positive, then

Q(X,X) ≥
∫ b

a
g

(
∇X
∂t

,
∇X
∂t

)
dt > 0

for all X 6= 0. �

Make the ansatz1

X(t) = f(t)X(t)

where ∇∂tX = 0, g(X,X) = 1, g(X(t), dcdt ) = 0. Then

Q(X,X) =

∫ b

a
f ′(t)2 + f(t)2 · g(R(c′, X)c′, X)dt.

Without loss of generality, suppose a = 0, g(c′, c′) = 1. Suppose that all sectional curva-
tures are ≥ κ > 0. Then

Q(X,X) ≤
∫ b

0
f ′(t)2 − κf(t)2dt.

Set f(t) = sin
(
π
b t
)
. Note that f(0) = 0 and f(b) = 0. Then

Q(X,X) ≤
∫ b

a

π2

b2
cos
(π
b
t
)2
− κ sin

(π
b
t
)2
dt∫ b

0 cos2
(
π
b t
)

+ sin2
(
π
b t
)
dt = b, and the pieces are equal by change of coordinates:

=

(
π2

b2
− κ
)
· b

2
.

1German word for “start” – instead of considering the general case we will consider something of this form
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Lemma 30.5. If (M, g) has sectional curvature ≥ κ > 0, any geodesic of length > π√
κ

has

indefinite (i.e. neither positive semi-definite nor negative semi-definite) second variation
pairing.

Upshot: there exists X such that Q(X,X) < 0, provided the geodesic is long enough.

Corollary 30.6. If (M, g) is compact and has sectional curvature ≥ κ > 0, its diameter
is ≤ π√

κ
.

Any two points are joined by a geodesic; if the geodesic is longer than π√
κ

, then that’s not

the shortest geodesic between them.

This is a sharp bound (take a sphere).

Corollary 30.7. If (M, g) is compact and has sectional curvature > 0, then π1(M) is
finite.

Represent every homotopy class by a minimal-length geodesic. These have an upper bound
for their length. This takes more work. . .

In this case, the universal cover is finite.

Lecture 31: November 27

Lemma 31.1. Let E → [a, b]×M be a differentiable vector bundle. Then the restrictions
E|{t}×M are all mutually isomorphic vector bundles over M (for t ∈ [a, b]).

So the isomorphism type doesn’t suddenly jump. However, there is no canonical choice of
isomorphism. This is false in algebraic geometry.

This implies:

Lemma 31.2. Let f0, f1 : M → N be two maps which are smoothly homotopic. Then
for any vector bundle E → N , the pullback f∗0E →M , f∗1E →M are isomorphic.

By a smooth homotopy, I mean a smooth map F : [0, 1]×M → N where F (0, x) = f0(x),
F (1, x) = f1(x). Apply Lemma 31.1 to show that F ∗E|{0}×M ∼= F ∗E|{1}×M .

Corollary 31.3. Any vector bundle on Rn is trivial.

Rn is contractible, so the identity is homotopic to the constant map to a point.
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Definition 31.4. Let E → M be a smooth vector bundle. A connection is a R-bilinear
map

C∞(TM)× C∞(E)→ C∞(E) notated (X, ξ) 7→ ∇Xξ
such that for f ∈ C∞(M,R),

• ∇fXξ = f · ∇Xξ
• ∇X(fξ) = f · ∇Xξ + (X.f)ξ

Example 31.5. If (M, g) is a Riemannian manifold, then the Levi-Civita connection ∇ is
an example of a connection in the above sense.

Example 31.6. Let E = Rr×M be the trivial bundle. Then we have the trivial connection

∇triv
X ξ = X.ξ

for ξ ∈ C∞(M,Rr).

In the case of Riemannian manifolds, we had a preferred connection (the Levi-Civita
connection). But in this more general setting, we don’t. (Note that torsion-freeness
doesn’t even make sense when TM 6= E.)

Lemma 31.7. Let ∇ be a connection on E and A a vector bundle homomorphism TM →
E ⊗ E∗ = EndE. Then

∇̃ = ∇+A, defined as ∇̃Xξ = ∇Xξ +A(X)ξ

defines a connection.

Proof. We need to verify the axioms in Definition 31.4.

∇̃X(fξ) = ∇X(fξ) + fA(X)ξ

= f · ∇Xξ + (X.f)ξ + fA(X)ξ

= f(X̃Xξ) + (X.f)ξ

Similarly for the other property. �

Lemma 31.8. If ∇ and ∇̃ are connections on E, then

∇̃Xξ −∇Xξ = A(X)ξ

for some vector bundle homomorphism A : TM → End(E).

Proof.

∇̃X(fξ)−∇X(fξ) = f(∇̃Xξ −∇Xξ)

∇̃fXξ −∇fXξ = f(∇̃Xξ −∇Xξ)

so ∇̃ − ∇ is a pointwise operation, hence a vector bundle homomorphism TM ⊗ E → E
(equivalently, it’s a vector bundle homomorphism TM → E ⊗ E∗ = End(E)). �
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Proposition 31.9. Any smooth vector bundle has a connection.

Proof. Take a covering M =
⋃
β∈B Uβ such that E|Uβ is trivial, and fix a trivialization

with its trivial connection ∇triv
β (on E|Uβ ).

Let (ψβ) be a subordinate partition of unity. Then

∇Xξ =
∑
β∈B

ψ(∇β,X|Uβ ξ|Uβ )

is a connection:

∇X(fξ) = f
∑
β∈B

ψβ(∇β,X|Uβ ξ|Uβ ) + (
∑
β∈B

ψB)(X, f)ξ

= f · ∇Xξ + (X.f)ξ.

�

So the space of connections is an affine space over the space of maps TM → End(E).

Definition 31.10. Let ∇ be a connection on E. The curvature

C∞(TM)× C∞(TM)× C∞(E)→ C∞(E)

(X,Y, ξ) 7→ F∇(X,Y )ξ

is given by F∇(X,Y )ξ = ∇X(∇Y ξ)−∇Y (∇Xξ)−∇[X,Y ]ξ.

Proposition 31.11. F∇ is given by a vector bundle homomorphism

Λ2(TM)→ End(E)

(there is a part where it’s symmetric, not antisymmetric, but on that part the curvature
dies).

Sketch of proof. Show F∇(X,Y )ξ is a pointwise operation. �

Example 31.12. If E = TM and ∇ is the Levi-Civita connection of g, then F∇ = R.

Example 31.13. If E is trivial and ∇ = ∇triv, then F∇ = 0.

Proof. If dimM = 1 then F∇ = 0 for any ∇. �

These ideas are important in topology (cf. Chern), among other places.

Connections on the trivial bundle. Let E = Rr ×M be a trivial bundle, and
∇ = ∇triv +A (we proved that any connection has this form) where A : TM → End(E) =
Matr×r(R)×M (so if X ∈ TMx then A(X) is an r × r matrix).
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Let Φ be an automorphism of the trivial bundle Φ : M → GLr(R). Then we can apply
this automorphism to the connection and obtain another connection

∇̃Xξ = Φ∇X(Φ−1 · ξ).
Explicitly,

∇̃Xξ = Φ(∇triv
X (Φ−1ξ)) + ΦA(X)Φ−1ξ

= Φ(X.Φ−1)ξ +∇triv
X ξ + ΦA(X)Φ−1ξ

= ∇triv
X ξ + (−(X.Φ)Φ−1 + ΦA(X)Φ−1)ξ see note below

= ∇triv
X ξ + Ã(X)ξ this defines Ã

(in the penultimate step, differentiate Φ(x)Φ−1(x) = 1 and get the fact that Φ(X.Φ−1)ξ+
(X.Φ)Φ−1ξ = 0). That is, we have defined

Ã(X) := ΦA(X)Φ−1 − (X.Φ)Φ−1,

which is called the gauge transformation formula. (Without the second term, connections
would be the same as vector bundle homomorphisms.) Physicists consider equivalence

classes of A’s, where A ∼ Ã in the formula.

Example 31.14. Suppose r = 1. Then ∇ = ∇triv + A where A is a vector bundle
homomorphism TM → R, i.e. a section of TM∗. This is also called a 1-form, and the
gauge transformation formula for Φ : M → R∗ is

Ã = A− d(log |Φ|)
(Now Φ is a 1×1 matrix, and hence the elements in the first term commute; the log comes
in because d log |t| = 1

t .)

Lecture 32: December 2

Let E = Rr ×M be a trivial bundle. Having a section ξ of E is the same as having an
r-tuple ξ = (ξ1, · · · , ξr) of functions. The trivial connection is (∇triv

X ξ)i = dξi(X) = X.ξi.
A general connection looks like ∇ = ∇triv +A, where A is a vector bundle homomorphism
TM → End(E) = Matr(R) × M . Equivalently, A = (Aij)1≤i,j≤r where each Aij is a
section of TM∗, and

(∇Xξ)i = X.ξi +
∑
j

Aij(X)ξj .

Let ϕ be an automorphism of the bundle E, i.e. ϕ : M → GLr(R). If ∇ is a connection,
so is

∇̃Xξ = ϕ∇X(ϕ−1ξ).

Explicitly, ∇̃ = ∇triv + Ã, where

Ã(X) = ϕA(X)ϕ−1 − (X.ϕ)ϕ−1.

Given ∇ = ∇triv +A, what is the curvature? Define

F∇(X,Y )ξ = ∇X(∇Y ξ)−∇Y (∇Xξ)−∇[X,Y ]ξ

= ∇X(Y.ξ +A(Y )ξ)−∇Y (X.ξ +A(X)ξ)− [X,Y ]].ξ −A([X,Y ])ξ
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= X.Y.ξ +X.(A(Y )ξ) +A(X)(Y.ξ) +A(X)A(Y )ξ − Y.X.ξ − Y.(A(X)ξ)

−A(Y )(X.ξ)−A(Y )A(X)ξ − [X,Y ].ξ −A([X,Y ])ξ

Using the Jacobi formula for [X,Y ], and the Leibniz rule which shows that X.A(Y )ξ =
−A(Y )(X.ξ) etc,

= A(X)A(Y )ξ −A(Y )A(X)ξ +X.(A(Y ))ξ − Y.(A(X))ξ −A([X,Y ])ξ

So
F∇(X,Y ) = A(X)A(Y )−A(Y )A(X) +X.A(Y )− Y.A(X)−A([X,Y ]).

The first two terms are the Lie bracket of functions, and the last three terms are the
exterior derivative of a 1-form. Note that X.A(Y ) contains derivatives of Y and Y.A(X)
contains derivatives of X, but these cancel out with A([X,Y ]). Even more explicitly,

F∇(X,Y ) =
∑
k

Aik(X)Akj(Y )−
∑
k

Aik(Y )Akj(X) +X.Aij(Y )−Y.Aij(X)−Aij([X,Y ]).

Remark 32.1. If ∇̃ = ϕ∇ϕ−1, then

F∇̃(X,Y )ξ = ϕF∇(X,Y )ϕ−1ξ.

Let M = [a, b], and consider a vector bundle E →M with connection ∇.

Lemma 32.2. For any η ∈ Ea, there is a unique section ξ of E with ∇ ∂
∂t
ξ = 0 and

ξ(a) = η.

Proof. In a local trivialization, the equation ∇ ∂
∂t
× has the form

∂ξi
∂t

+
∑

Aij
(
∂
∂t

)
ξj(t) = 0

which is a first order ODE. The rest of the argument is standard: ask what is the maximum
interval [a, ?] where you have a solution; local considerations will show that ? = b. �

Corollary 32.3. Any vector bundle over [a, b] is trivial.

Proof. Choose a basis η1, · · · , ηr ∈ Ea, and continue them uniquely to the parallel sections
given in the lemma. If you think about the uniqueness statement, you’ll see that these
generate a basis in any other fiber. �

Consider a vector bundle E →M with connection ∇, where M = [a, b]×N .

Lemma 32.4. For any section η of E|{a}×N , there is a unique section ξ of E with
ξ|{a}×N = η and ∇ ∂

∂t
ξ = 0 (where the t variable is the position in [a, b]).
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(Now you have an ODE that depends on another parameter.) This shows that if the vector
bundle is trivial over E|{a}×N then it is trivial overall. You need a bit more thinking to
get:

Corollary 32.5. Any vector bundle E → [a, b] ×N is isomorphic to p∗(E|{a}×N ) where
p : [a, b]×N → N is the projection.

This implies Lemma 31.1.

If E → N is a vector bundle with connection ∇, and f : M → N is a smooth map, there

is a unique induced connection ∇̃ = f∗∇ on f∗E characterized by

(f∗∇)X(f∗ξ)x = f∗(∇Tf(X)ξ)f(x)

for a section ξ ∈ C∞(E) (so f∗ξ ∈ C∞(f∗E)), and X ∈ TMx (so Tf(X) ∈ TMf(x)). Do
this in local trivializations. In particular, given a path c : [a, b]→ N , we can use sections
of c∗E which satisfy (c∗∇) ∂

∂t
ξ = 0 to define parallel transport maps τ∇,c : Ec(a) → Ec(b).

(We’re not going to talk about details because it’s just the generalization of ∇∂t .)

Proposition 32.6. If ∇ is flat (i.e. F∇ = 0), then τc : Ec(a) → Ec(b) is unchanged under
homotopies of c which leave the endpoints fixed.

The curvature describes what happens to the parallel transport when you try to wiggle
the path.

Corollary 32.7. If M is simply-connected, any vector bundle admitting a flat connection
is trivial.

(Take a basis at one fiber, and transport that basis around. By simply-connected-ness,
these are all homotopic, so there is only one way to move the basis around; this gives a
trivialization.)

Suppose we have a general connected M with a flat connection. The homotopy class of
a loop determines an automorphism of the fiber: take a basis of the fiber, and transport
it around that loop; it will come back to (probably) a different basis. So we have a
correspondence{

vector bundles E →M

with flat connection ∇

}/
∼= ←→

{
representations

π1(M)→ GLr(R)

}/
∼= .

To go in the backwards direction, look at the universal cover and introduce a flat connec-
tion. We won’t talk about this.

In algebraic geometry, there is a good notion of “vector bundles with flat connections”,
but fundamental groups are hard.
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Remark 32.8. Let (E,∇) be a vector bundle with a flat connection. Then a section ξ
with ∇Xξ = 0 for all X forms a locally trivial sheaf of rank r vector spaces (“a local
system”).

Question: given a vector bundle, when does there exist a connection inducing flat curva-
ture?

No class on Wednesday.

Lecture 33: December 6

For a general bundle, what obstructions are there to the existence of a flat connection?

Reminder 33.1 (Differential forms). Differential forms

Ωk(M) = C∞(ΛkTM∗)

are sections of the kth exterior power of the cotangent bundle. So Ω0(M) = C∞(M,R),
Ω1(M) = C∞(T ∗M). Equivalently, a k-form is a map

ω : C∞(TM)⊗ · · · ⊗ C∞(TM)→ C∞(M,R)

ω(X1, · · · , Xi, · · · , Xj , · · · ) = −ω(· · · , Xj , · · · , Xi, · · · ) (antisymmetry)

ω(X1, · · · , fXi, · · · , Xk) = f · ω(X1, · · · , Xk)

for f ∈ C∞(M,R). Differential forms are a graded symmetric algebra. There is a wedge
product

∧ : Ωk(M)⊗ Ω`(M)→ Ωk+`(M).

So far, all of these things hold for any bundle, not just TM . But because the bundle is
TM , this comes with an exterior differential (de Rham differential)

d : Ωi(M)→ Ωi+1(M), d2 = 0.

d : Ω0(M) → Ω1(M) is just the ordinary derivative df(X) = X.f . For functions, you
have a second derivative that is a symmetric bilinear form, but you can’t define this in a
coordinate-free way without a metric. But, there is an antisymmetric form that can be
written in a coordinate-free way, and this is

Ω1(M)
d→ Ω2(M)

(dα)(X1, X2) = X1 · α(X2)−X2 · α(X1)− α([X1, X2]). (33.1)

More generally,

(dα)(X1, · · · , Xk+1) =
∑
i

(−1)i+1Xi · α(· · · , X̂i, · · · )

+
∑
i<j

(−1)i+j([Xi, Xj ], · · · , X̂i, · · · , X̂j , · · · )
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Alternatively, use

d(ω ∧ η) = dωη + (−1)kω ∧ dη

for ω ∈ Ωk(M), η ∈ Ω`(M) to describe d in general, based on its behaviour for functions.
For instance, in local coordinates

d(f(x)dxi1 ∧ · · · ∧ dxik =
∑ ∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik .

Define de Rham cohomology:

Hk
dR(M) = ker(d : Ωk(M)→ Ωk+1(M))

/
im(d : Ωk−1(M)→ Ωk(M)).

If M is compact and oriented (possibly with boundary), there is a canonical integration
map ∫

M
: Ωn(M)→ R

defined by using partitions of unity and integrating in local charts. This satisfies the
Stokes formula ∫

M
dθ + (−1)n

∫
∂M

θ = 0

for θ ∈ Ωn−1(M), n = dimM . (The sign (−1)n depends on the choice of a sign rule for the
integration map; here we’re using the Koszul sign rule.) If M is closed (i.e. the boundary
is empty), this induces a map Hn

dR(M)→ R.

Lemma 33.2. Let E →M be a linear bundle (a vector bundle of rank 1) with connection
∇. F∇ is a vector bundle map Λ2(TM)→ End(E) ∼= R×M hence a 2-form. This 2-form
is closed (i.e. dF∇ = 0) and its cohomology class is independent of ∇.

Proof. Prove the second part fist. Take two connections ∇̃ = ∇+α, for α ∈ Ω1(M). This
means

∇̃Xξ = ∇Xξ + α(X)ξ

(here we’re thinking of α as multiplication by some scalar).

F∇̃(X,Y )ξ = ∇̃X∇̃Y ξ − ∇̃Y ∇̃Xξ − ∇̃[X,Y ]ξ

= ∇̃X(∇Y ξ + α(Y )ξ)− ∇̃Y (∇Xξ + α(X)ξ)−∇[X,Y ]ξ − α([X,Y ])ξ

= F∇(X,Y )ξ + α(X)∇Y ξ + (X.α(Y ))ξ + α(Y )∇Xξ + α(Y )α(X)ξ

− α(Y )∇Xξ − (Y.α(X))ξ − α(X)∇Y ξ − α(X)α(Y )ξ − α([X,Y ])ξ

= F∇(X,Y )ξ + (X.α(Y ))ξ − (Y.α(X))ξ

= (F∇(X,Y ) + dα(X,Y ))ξ

In other words, F∇̃ = F∇ + dα. This would prove the second part if we knew the form

was closed. But it also proves the first part: locally, ∇ = ∇triv + α, so F∇ = dα. Hence
it’s closed (since d2 = 0), and the rest follows as well. (If it’s closed for one connection,
it’s closed for every connection, and we show it’s closed for the trivial connection.) �
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Lemma 33.3. For any line bundle E →M and connection ∇, [F∇] ∈ H2
dR(M) is zero.

In fact, every line bundle admits a flat connection. Take E →M with a Euclidean metric
〈−,−〉x : Ex ⊗ Ex → R. A connection ∇ is compatible with that metric if

X. 〈ξ, η〉 = 〈∇Xξ, η〉+ 〈ξ,∇Xη〉 .

Theorem 33.4. Let (E, 〈−,−〉) be a vector bundle with a Euclidean metric. Then

(1) Connections compatible with that metric exist.

(2) Suppose ∇ is compatible with 〈−,−〉. Then ∇̃ = ∇+A is compatible with 〈−,−〉
iff A : TM → End(E) lands in skew-symmetric endomorphisms.

(3) If ∇ is compatible with a metric, parallel transport preserves that metric. (If you
have a flat connection, then you get a representation into O(n).)

(4) If ∇ is compatible with a metric, then F∇ : Λ2TM → End(E) lands in skew-
symmetric endomorphisms.

We won’t prove this; we’ve had enough theory of connections.

Corollary 33.5. If E →M is a line bundle, and ∇ is compatible with a metric, then ∇
is flat.

We failed to extract cohomological information.

Let E → M be an oriented plane bundle (i.e. rank 2). The curvature is some endomor-
phism of a 2-dimensional vector space. If you put a metric (and require compatibility
with that metric), then you get a skew-symmetric endomorphism, and those look like(

0 −λ
λ 0

)
.

Lemma 33.6. There is a unique vector bundle homomorphism I : E → E which preserves
〈−,−〉, satisfies I2 = −1, and such that for X ∈ Ex nonzero (X, IX) is an oriented basis
of Ex.

Note: I is automatically skew-symmetric (it generates the 1-dimensional space of skew-
symmetric automorphisms).

Sketch of proof. If X1, X2 is an orthonormal basis of sections which is positively oriented,
then IX1 = X2, IX2 = X1. Such bases exist locally, and that ensures existence as well as
uniqueness. �
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Let ∇ be a connection compatible with 〈−,−〉. Then (by 1-dimensionality of the space of
skew-symmetric automorphisms) there exists a unique λ ∈ Ω2(M) such that

F∇(X,Y )ξ = λ(X,Y )Iξ.

Lemma 33.7. λ ∈ Ω2(M) is closed (dλ = 0) and [λ] ∈ H2
dR(M) is independent of ∇ and

〈−,−〉 (an invariant of the oriented plane bundle E).

This is a genuine nontrivial cohomology class, and is called the Euler class (up to some
normalization to be described later).

Lecture 34: December 9

18.966: Emmy Murphy on Symplectic/ Contact geometry

Let E →M be an oriented plane bundle with a Euclidean metric. Then there is a unique
way of making the fibers Ex into complex vector spaces by introducing Ix : Ex → Ex that
satisfies I2

x = −1, where (ξ, Ixξ) is positively oriented for all ξ 6= 0, and Ix preserves the
inner product. (Note: Ix is then also skew adjoint.)

Recall that ∇ is compatible with 〈−,−〉 if

X. 〈ξ, η〉 = 〈∇Xξ, η〉+ 〈ξ,∇Xη〉 .
I claim one can choose a local trivialization of E (i.e. E|U ∼= R2×U for a small neighbor-
hood U of x0) which is compatible with the orientation, and in which 〈−,−〉 is the standard
inner product. Choose everywhere linearly independent sections s1, s2 of E|U such that
(s1(x), s2(x)) is positively oriented; apply Gram-Schmidt to make them orthonormal. This
yields the desired trivialization.

In such a local trivialization,

I =

(
0 −1
1 0

)
and if ∇ is compatible with the Euclidean metric, then

∇X = ∇triv
X + α(X)I

for some α ∈ Ω1(U). (By compatibility with the metric, the second term is skew-adjoint.)
The curvature is

F∇(X,Y )ξ = X.A(Y )ξ − Y.A(X)ξ −A([X,Y ])ξ +A(X)A(Y )ξ −A(Y )A(X)ξ

= X.α(Y )Iξ − Y.α(X)Iξ − α([X,Y ])Iξ = dα(X,Y )Iξ.

Lemma 34.1. If E → M is an oriented plane bundle with a Euclidean metric, and ∇ a
connection compatible with that metric, then

F∇(X,Y )ξ = β(X,Y )Iξ (34.1)
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where β ∈ Ω2(M) is closed, dβ = 0. The class [β] ∈ H2
dR(M) is independent of ∇.

Proof. β is just dα so of course it’s closed. The local computation shows that (34.1) holds

with dβ = 0 . It also shows that if we replace ∇ by ∇̃ = ∇ + αI for α ∈ Ω1(M) then
β2 = β + dα. �

Remark 34.2. In fact, E → M admits a flat connection compatible with 〈−,−〉 if and
only if [β] ∈ H2

dR(M) is zero.

(If it’s zero, β can be written as dα.)

Addendum 34.3. [β] ∈ H2
dR(M) is an invariant of the oriented vector bundle E (inde-

pendent of the metric).

Proof. This follows from the fact that, given two metrics 〈−,−〉0 and 〈−,−〉1, one can
find a metric on the pullback bundle π∗E → [0, 1] ×M (where π : [0, 1] ×M → M is
the projection) which restricts to 〈−,−〉k on {k} ×M for k = 0, 1. If ∇k is compatible
with 〈−,−〉k, one can find a connection ∇ on π∗E compatible with 〈−,−〉 such that
∇|{k}×M = ∇k (partitions of unity). Therefore, if F∇k = βk · Ik then βk = β|{k}×M for

some closed β ∈ Ω2([0, 1]×M). This implies [β0] = [β1] ∈ H2
dR(M). �

Definition 34.4. Let E → M be an oriented plane bundle. Choose a Euclidean meric
and compatible connection, write F∇ = β · I (for a 2-form β). Then

e(E) = − 1

2π
[β] ∈ H2

dR(M)

is called the Euler class of E.

This is the obstruction to admitting a flat connection.

So we’ve addressed, for n = 1, 2, the question of when an n-bundle admits a metric with
a flat connection. What about the general case?

Let E →M be a rank r vector bundle, ∇ a connection. In a local trivialization,

∇Xξ = ∇triv
X +A(X)ξ

where A = (Aij) is a matrix of 1-forms. Similarly, the curvature F = (Fij) is a matrix of
2-forms

F = dA+A ∧A
where dA means you apply d to each entry and A ∧ A means you multiply the matrices,
and on the level of entries, “multiplying” individual 1-forms means wedging them together.
The second term takes care of the A(X)A(Y ) and A(Y )A(X) terms: (A ∧ A)(X,Y ) =
A(X)A(Y )−A(Y )A(X).
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Lemma 34.5 (Bianchi identity).

dF +A ∧ F − F ∧A = 0

Proof. Using the fact that d(α∧ β) = dα∧ β ± α∧ dβ (and getting the sign from the fact
that these are 1-forms), we have

dF = d(dA) + dA ∧A−A ∧ dA
= dA ∧A−A ∧ dA

A ∧ F − F ∧A = A ∧ dA = dA ∧A+A ∧A ∧A−A ∧A ∧A.
Add these up and you get zero. �

For any k, consider Tr(F k) = Tr(F ∧ · · · ∧ F ) ∈ Ω2k which is a 2k-form.

Lemma 34.6. Tr(F k) is closed.

Proof.

dTr(F k) = Tr(dF k) = Tr(d(F ∧ · · · ∧ F ))

= Tr(dF ∧ F ∧ · · · ∧ F ) + Tr(F ∧ dF ∧ · · · ) + · · ·
= −Tr(A ∧ F ∧ · · · ∧ F ) + Tr(F ∧A ∧ F ∧ · · · ∧ F )− Tr(F ∧A ∧ · · · ∧ F )

+ Tr(F ∧ F ∧A ∧ · · · ) + · · ·
But Tr(BA) = Tr(AB), and the same is true if the entries are differential forms. You
have to worry about signs, but it’s OK because F is a 2-form, so whatever you commute
it with doesn’t introduce new signs. �

Let P ∈ R[X11, · · · , X1r, · · · , Xr1, · · · , Xrr] be a polynomial in r2 variables, thought of as
the coefficients of a matrix X.

Lecture 35: December 11

Let E →M be a rank r vector bundle, and ∇ a connection. Choose a local trivialization
E|U ∼= Rr×U . In that trivialization ∇ = ∇triv +A, where A is a matrix of 1-forms. Then
F = F∇ = dA+A ∧A satisfies the Bianchi identity

dF +A ∧ F − F ∧A = 0.

Last time, we saw that for any k ≥ 1, Tr(F ∧ · · · ∧ F
k

) ∈ Ω2k(U) is a closed form. Let

P (X) ∈ R[(Xij)1≤i,j≤r] be a homogeneous degree d polynomial thought of as the en-
tries of a matrix. We say that P is invariant if P (XY ) = P (Y X), or equivalently that
P (Y XY −1) = P (X) for all invertible Y . Note that invertible matrices are dense in the
set of all matrices.

Examples: P (X) = tr(X), P (X) = tr(Xk), P (X) = det(X).
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We can write the determinant as

det(t · 1−X) = tr − tr−1S1(X) + tr−2S2(X) + · · · .
Note S1 is the trace, and in general Sd is the d-symmetric product of the eigenvalues (but
in general we’re trying to think of this as a function of the entries of the matrix, not the
eigenvalues).

Lemma 35.1. Let P (X) be an invariant polynomial. Then

DP (X)[Y,X] = 0

for all X,Y .

([Y,X] is just the commutator.)

Proof. Take Xs = esYXe−sY . Then X0 = X, ∂
∂sXs|s=0 = [Y,X]. P (Xs) = P (X) so

∂
∂sP (Xs)|s=0 = DP (X)[Y,X]. �

Or, an easier argument: from before we saw that P (Y XY −1) = P (X), so P is constant
along conjugacy classes. DP (X)[Y,X] is its derivative along a vector that is tangent to
the conjugacy class.

Proposition 35.2. Suppose P (X) is an invariant polynomial of degree d. Then P (F ) ∈
Ω2d(U) is closed.

Proof. d(P (F )) = DP (F )dF = −DP (F )[A,F ] by the Bianchi identity, and this is 0 by
the lemma. The first equality is kind of sketchy. But F is an even form (it’s a matrix of
2-forms), and there is no sign when trying to commute d across F12 ∧ F23 ∧ · · · . �

Proposition 35.3. P (F ) is independent of the local trivialization (hence extends smoothly
to all of M).

Proof. Change the trivialization by Φ : U → GLr(R) sending F 7→ ΦFΦ−1. By conjugacy-
invariance, P (F ) remains the same. �

Proposition 35.4. [P (F )] ∈ H2d
dR(M) is independent of ∇ (invariant of E).

Proof. Consider M × [0, 1], where you have used one ∇ on one side and the other one on
the other side (we did this before). Then this induces a closed 2-form on M × [0, 1]. �

Definition 35.5.

p d
2
(E) =

1

(2π)d
[Sd(F )] ∈ H2d

dR(M)

is the
(
d
2

)th
Pontryagin class of E.
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Remark 35.6.

p d
2
(E) = 0 for

d

2
/∈ Z.

To see that, take ∇ compatible with a Euclidean metric. Then F is skew-symmetric so
Sd(F ) = 0 for all odd d. (The trace of a skew-symmetric matrix is 0; more specifically,
the eigenvalues are arranged into λ and −λ pairs. This also applies to powers.)

The theory I’ve been explaining is called Chern-Weil theory. The best place to read about
it is the appendix of Milnor/Stasheff’s Characteristic Classes.

Take a homogeneous degree d polynomial P (X) in X = (Xij)1≤i,j≤r where Xii = 0 and
Xij = −Xji. Say P is invariant if P (Y XY −1) = P (X) where X is skew-symmetric and
Y ∈ SO(r) (if you just ask for Y ∈ O(r) you don’t get anything different from what you
already had). Question: are there more invariant polynomials under this restriction?

Lemma 35.7. For r even, there is a unique invariant polynomial Pf(X) (Pfaffian) of
degree r

2 such that

Pf(X)2 = det(X), Pf



0 1 0
−1 0

0 1
−1 0

. . .

0


= 1

Proof. Suppose X = (Xij) is skew-symmetric. Write ω =
∑
Xijei ∧ dej ∈ Λ2(Rr). Then

ω ∧ · · · ∧ ω
r
2

=
(
r
2

)
! · (−1)

r
2Pf(X) · de1 ∧ · · · ∧ der ∈ Λr(Rr)

(this is because Λr(Rr) is 1-dimensional, and this is how we are defining the Pfaffian).
More work to do. �

Given an oriented bundle E →M of even rank r, and a connection ∇ compatible with a
Euclidean metric,

e(E) = [ 1

(2π)
r
2
Pf(F )] ∈ H2r

dR(M)

is called the Euler class of E. You can show it’s closed. Also, it is independent of the
local trivialization. When you change trivializations, you have ΦFΦ−1, and you have to
show Pf(ΦFΦ−1) = Pf(F ). (You need to choose charts that are compatible with the
orientation, or else the signs of the Pfaffians won’t agree.)

Theorem 35.8 (Chern-Gauss-Bonnet). If M is compact, closed, oriented of dimension r,
then ∫

M

1

(2π)
r
2
Pf(E) = integral Euler number of E .
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This is not that hard to prove. The key point is is to realize that this vanishes when there
is a nowhere-zero section. ω must be nondegenerate; if you had a nowhere zero section
you could choose your connection carefully so that the matrix had less than full rank.
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