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Math 232a Xinwen Zhu Lecture 1

1. September 1

1.1. Algebraic sets. We start with an algebraically closed field k. First define the
affine space

Definition 1.1. Ank = {(a1 · · · an) : ai ∈ k}

Definition 1.2. An algebraic set X ⊂ An is the set of common zeroes of a collec-
tion of polynomials f1 · · · fm ∈ k[x1 · · ·xn]. We denote this set V (f1 · · · fn). That is,
V (f1 · · · fn) = {(a1 · · · an) : f1(a1 · · · an) = · · · = fm(a1 · · · an) = 0}.

But there might be some other polynomials g1 · · · gn such that V (f1 · · · fn) = V (g1 · · · gn).
In general, this set is determined by the ideal generated by the polynomials fi, or gi. So
if I = (f1 · · · fn), we can write V (f1 · · · fn) = V (I) = {(a1..an) ∈ An : f(a1 · · · an) =
0 ∀f ∈ I}. Since the polynomial ring is Noetherian, every ideal is finitely generated, and
so every V (I) can be written as V (f1 · · · fn) for some finite collection of fi.

The following relations are really useful, and are not hard to check.

Lemma 1.3. The sets V (I) act like closed sets in a topological space, in the following
sense:

(1) If I1 ⊂ I2, then V (I1) ⊃ V (I2).
(2) V (I1) ∪ V (I2) = V (I1 ∩ I2) = V (I1 · I2).
(3) ∩αV (Iα) = V (

∑
α Iα)

(4) V ({0}) = An and V (k[x1 · · ·xn]) = ∅

Therefore, we can define a topology on this affine space.

Definition 1.4. The Zariski topology on An is given as follows:

The closed subsets are algebraic sets (i.e. sets of the form V (I) for some ideal I defined
as above).

Example 1.5. Consider A1
k. I claim that the algebraic sets are finite sets, as well as all of

A1 and the empty set. Algebraic sets are zeroes of polynomials in some ideal. In this case
we are considering ideals in k[x], which is a PID, so those ideals all look like (f). Our field
is algebraically closed, so write f = a(x− α1) · · · (x− αn). So all the closed sets look like
V (f) = {α1 · · ·αn}. (And, of course, for every finite set we can find a polynomial where
those are the only roots, so every finite set is closed.)

Example 1.6. Now consider A2. Obviously, we have A2 and ∅ are algebraic sets. Also,
we have things that are plane curves: V (f). However, not every ideal is generated by one
polynomial: we also have the ideals V (f1, f2). Suppose f1 is irreducible, and f2 is not
divisible by f1. Then V (f1, f2) is a finite set. Why? (Homework.) But every other set is
some union of sets of the form V (f ′) and V (f, g).
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Of course, we can write A2 = A1 × A1. But this does not work topologically. Why?
(Homework, again.)

Definition 1.7.
√
I = {f ∈ k[x1 · · ·xn] : f r ∈ I} is the radical of the ideal I. A radical

ideal is a set whose radical is itself.

Example 1.8. Consider I = (f) where f = (x − 1)3. Then x − 1 /∈ I but x − 1 ∈ I.

However, if I = (f) where f does not have any repeated roots, then
√
I = I.

Theorem 1.9 (Hilbert’s Nullstellensatz). Let X = V (I). Then

{f ∈ k[x1 · · ·xn] : f(p) = 0 ∀p ∈ X} =
√
I.

We already had a mapping I 7→ V (I) from ideals to sets. The theorem motivates defining
a map from sets to ideals:

X 7→ I(X) := {f : f(p) = 0 ∀p ∈ X}

Corollary 1.10. There is an order-reversing bijection between radical ideals in k[x1 · · ·xn]
and algebraic sets in An.

Let f = xy and consider V (f) ⊂ A2; this is the union of the two coordinate axes, and so
we can write V (xy) = V (x) ∪ V (y). This suggests a question: what algebraic sets cannot
be written as the (nontrivial) union of two algebraic sets? More precisely,

Definition 1.11. Let X 6= ∅ be a topological space. We say X is irreducible if X cannot
be written as the union of two proper closed subsets.

Zariski-land is really different from what we’re used to in Rn, where the only irreducible
closed sets are single points. Here, something as big as A1 is irreducible: we just said that
closed subsets consist of finitely many points, and we were assuming that k is infinite.

Proposition 1.12. There is a 1-1 correspondence between irreducible algebraic sets (with
the induced topology) and the prime ideals in k[x1 · · ·xn]. In addition, every algebraic set
can be written as the union of its irreducible components, by which we mean irreducible
closed subsets. (For example, V (xy) is the union of two irreducible components.)

Proof. We have already shown a bijection between radical ideals and irreducible
algebraic sets. We want to show that V (I) is irreducible iff I is prime.

( =⇒ ) Assume that I is not the whole thing, or empty. We want to show that if fg ∈ I,
then either f or g is in I. Consider the ideal generated by fg; this is in I. By the first
lemma, V (fg) ⊃ V (I). Now, V (I) ⊂ V (f)∪V (g). V (I) = (V (f)∩V (I))∪ (V (g)∩V (I)).
By irreducibility, either V (I) = V (f) ∩ V (I) or V (I) = V (g) ∩ V (I). So V (I) ⊂ V (f) or
V (I) ⊂ V (g), which implies f ∈ I or g ∈ I.

(⇐=) By contradiction. Write V (I) = V (I1) ∪ V (I2) = V (I1 ∩ I2). The intersection of
radical ideals is radical. So I = I1 ∩ I2 implies I = I1 or I = I2. �
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Any radical ideal can be written as the intersection of finitely many prime ideals (by
commutative algebra): I = B1 ∩ · · · ∩ Br with Bi minimal prime ideals containing I.
Therefore, V (I) = V (B1) ∪ · · · ∪ V (Bv) for Bi prime. So each piece is an irreducible
component of V (I).

Definition 1.13. An affine algebraic variety is an irreducible algebraic set in An, with its
induced topology. (So it’s an irreducible closed space). A quasi-affine variety is an open
subset of an affine variety.

Example 1.14. Examples of affine varieties.

(1) We have seen that A1 is an affine variety. In fact, so is every An: use the fact
that An = V (0), and zero is prime in the polynomial ring.

(2) Linear varieties: let `1 · · · `m be independent linear forms of x1 · · ·xn. (These are
linearly independent homogeneous polynomials of degree 1.) Let a1 · · · am ∈ k.
Then V (`1 − a1, `2 − a2, · · · , `m − am) ∈ An is an affine variety, which we call a
linear variety of dimension n −m. For example, if ` = ax + by then V (` − c) is
just the line ax+ by = c.

(3) Points are affine varieties. Use `1 = x1, `2 = x2, · · · , `n = xn in the previous
example. Then V (x1 − a1, · · · , xn − an) is exactly the point (a1 · · · an). (Two
points are an algebraic set, but are not irreducible.)

(4) Consider f ∈ k[x1 · · ·xn] such that (f) is prime. Then V (f) is usually called a
hypersurface in An, and is an algebraic variety.

(5) If f ∈ k[x, y] then V (f) is usually called a plane curve: for example, think about
the graph of y2 = x3 (this has a cusp at the origin). y2 − x3 − x2 passes the
origin twice, and is called nodal. y2−x3−x is called an elliptic curve (it has two
disconnected components). If k is the complex numbers, this curve is a torus.

(6) Parametrized curves. Given f1(t) · · · fn(t) ∈ k[t], then xi − fi ∈ k[t, x1 · · ·xn]
and we can consider V (x1 − f1 · · ·xn − fn) ⊂ An+1. For example, we have
V (x− t2, y − t3) ⊂ A3. It looks like y2 − x3 if you project to the xy plane.

1.2. Morphisms between quasi-affine varieties. Recall that an affine variety is
a special case of a quasi-affine variety.

Definition 1.15. Let X ⊂ An be a quasi-affine variety. A function f : X → k is
considered regular at p ∈ X if there is some set U 3 p open in X, and f1, f2 ∈ k[x1 · · ·xn]
such that

(1) f2(q) 6= 0 for q /∈ U
(2) f = f1

f2
on U

(Basically, it agrees with a well-defined rational function on a neighborhood.)

f : X → k is called regular if it is regular at every point in X.

Observe that the set of regular functions on X form a ring, denoted by O(X). For example,
k[x1 · · ·xn] ⊂ O(An), but you can actually prove equality.
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So now we have a notion of functions on An. Are they continuous?

Lemma 1.16. Let f : X → k be a regular function. Regard it as map f : X → A1
k naturally.

Then f is continuous.

Corollary 1.17. Let f be a regular function on a quasi-affine variety X. If f = 0 on
some open subset U ⊂ X, then f = 0 on X. (So there are no bump functions.)

Proof of corollary. Consider Z = {p ∈ X : f(p) = 0}. This is closed, because f
is continuous and points are closed. We can write X = Z ∪ (X\U). These are two closed
subsets, and X is irreducible, so one of them must be all of X. But X\U is not X, which
implies that X = Z. �

Proof of lemma. In fact, it is enough to show that f−1(0) is closed. Why? We
want to show that, for every closed subset of An, the preimage is closed. But the closed
subsets of An are either the whole set, the empty set, or finite sets. But since this is a
ring, to show that f−1(a) is closed, it suffices to show that (f − a)−1(0) is closed.

For every p, we need to find some neighborhood U 3 p such that f−1(0)∩U is closed. By

definition of regular functions, we can choose U such that f = f1
f2

on U , with f1 and f2

polynomials. But f−1(0) ∩ U = f−1
1 (0) ∩ U = V (f1) ∩ U , which is closed in U . �

2. September 6

RECALL that a set is quasi affine if it is open in an affine variety (irreducible algebraic
set). Let X be a quasi-affine variety over a field k, and let O(X) be the ring of regular
functions on X. (A function is regular at a point if it agrees with a well-defined rational
function on a neighborhood.)

Proposition 2.1. If f : X → k is regular, then f : X → A1 is continuous with respect to
the Zariski topology.

Corollary 2.2. If f = 0 on U ∈ X open, then f = 0 on X.

Corollary 2.3. O(X) is an integral domain.

Proof. If fg = 0, then if Z1 = {x : f(x) = 0} and Z2 = {x : g(x) = 0}, then
Z1 ∪ Z2 = X. Since X is irreducible, then one of the Zi = X, and so one of f or g is
zero. �

Definition 2.4.

(1) The field of rational functions on X is the fraction field of O(X), denoted by
K = k(X).
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(2) Let p ∈ X. The local ring of X at p is given by OX,p = lim−→
U3p
O(U). (For every

V ⊂ U there is a map O(U)→ O(V ), and that is where the direct limit is taken.)
For every p define an equivalence relation on O(X), where two regular functions

are equivalent if they agree on some neighborhood of a point. Then OX,p = O/ ∼.
Our ring is local because it has a unique maximal ideal: m is the set of functions
that vanish at 0.

Remark 2.5. Let f ∈ k(X) be a rational function f = f1
f2

, for f1, f2 ∈ O(X). Therefore,

f defines a regular function on U = X − {f2 = 0}. Conversely, if f ∈ O(U) then we
claim that f can be regarded as a regular function. Why? Choose p ∈ U . There is some
open neighborhood V ⊂ U such that f = f1

f2
on V , where f1 and f2 are polynomials. In

particular, fi ∈ O(U). So f ∈ K, at least in this neighborhood. However, we want this to

be well-defined over all p. If you choose any p′ ∈ V ′ ⊂ U , and write f =
f ′1
f ′2

on V ′, then

f1
f2

=
f ′1
f ′2

on V ∩V ′. So f1f
′
2 = f ′1f2 on V ∩V ′. But since all the fi and f ′i were well-defined

everywhere, we can write f1
f2

=
f ′1
f ′2
∈ K. So we’ve just gotten an injective map O(U) ↪→ K

which is in fact a ring homomorphism. You end up getting a sequence

O(X) ↪→ O(U) ↪→ OX,p ↪→ K = k(X) = k(U)

To clarify the first inclusion, note that O(X) contains functions that agree with rational
functions on X, whereas in O(U) they only have to agree on the smaller set U .

If X is affine, it is defined by some prime ideal: X = V (P). Can we determine the regular
functions in terms of P?

Theorem 2.6. Let X = V (P) ⊂ An be affine. Then

(1) There is a natural isomorphism A(X) := k[x1 · · ·xn]/P → O(X) (all regular
functions are restrictions of polynomials).

(2) There is a 1-1 correspondence between points on X and maximal ideals of A(X).
We will denote the maximal ideal corresponding to {p} as mp. These are the
functions that vanish at the point p.

(3) The localization A(X)mp is isomorphic to OX,p.

We call A(X) the coordinate ring of X.

Proof. (2) Obvious. All the nonempty irreducible algebraic sets correspond bijec-
tively to prime ideals. If Y ⊂ X is a nonempty irreducible algebraic set, it corresponds
bijectively to a containment I(Y ) ⊃ I(X) = P. In particular, points in X correspond
to maximal ideals that contain P. [Points are closed by Example 1.14, and are certainly
irreducible.] These are the same as the maximal ideals of A(X).

(3) There is a natural map k[x1 · · ·xn] → O(X) that factors through k[x1 · · ·xn]/P: all
the polynomials that vanish on X are exactly the elements of P. On the other hand, we
have a natural inclusion O(X) → Frac(A(X)), by the same argument as we saw earlier:
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any regular function on some open subset, can be written as f = f1
f2

. (We showed that

this is well-defined.) So we have inclusions

A(X) ↪→ O(X) ↪→ Frac(A(X)) = K

(K is the fractional field of O(X), but O(X) ⊂ Frac(A(X)).)

A(X)� _

��

� � // O(X)� _

��

� � // Frac(A(X))

=

��
A(X)mp

� � // OX,p �
� // K

The map A(X)mp → OX,p is given by writing things in A(X) as fractions on an appropriate
open set. However, we claim it is an isomorphism. It is a fact from commutative algebra
that every integral domain is the intersection of its localizations. We have

A(X) =
⋂
m

A(X)m ↪→
⋂
p

O(x, p)

O(X) is contained in any local ring, so it is contained in the last intersection. Since
OX,p = lim−→O(U), we can write these as rational functions and shrink the open set, to get
rational functions that do not vanish at p.

So we get an isomorphism for the infinite intersections, which makes A(X) = O(X). �

Definition 2.7. Let X and Y be two quasi-affine varieties. A morphism ϕ : X → Y is a
continuous map such that for any V ⊂ Y open and f : V → k regular,

f ◦ ϕ : ϕ−1(V )→ k

is regular.

The collection of quasi-affine varieties, with morphisms defined as above, forms a category.

Definition 2.8. A morphism ϕ : X → Y is called an isomorphism if there is some
ψ : Y → X such that ψϕ = ϕψ = Id.

Definition 2.9. A quasi-affine variety is also said to be affine if it is isomorphic to an
affine variety.

Example 2.10. A1−{0} is a quasi-affine variety. But later we will see that it is isomorphic
to V (xy − 1) ⊂ A2. So it is also an affine variety.

Here is an easier way to see what things are morphisms.

Lemma 2.11. Let ϕ : X → Y ⊂ An be a map with X quasi-affine and Y affine. Then ϕ is
a morphism iff xi ◦ ϕ is regular (where xi is any coordinate function on Y : a restriction
to the ith coordinate).

Proof. xi is certainly a regular function, so if ϕ is a morphism, then so is xi ◦ ϕ.

Conversely, if xi ◦ ϕ is regular for any xi, we need to show
9



Math 232a Xinwen Zhu Lecture 2

(1) ϕ is continuous;
(2) For any open V ⊂ Y and f ∈ O(V ), the composition f ◦ϕ is regular on ϕ−1(V ).

Now let’s prove these things.

(1) Let f ∈ k[x1 · · ·xn]. We can write a generic closed set as Z = V (f1)∩· · ·∩V (fn).
So the goal is to show that ϕ−1(V (f)) is closed. This is the set of x such that
f(ϕ(x)) = 0. So it suffices to show that f ◦ ϕ is continuous. In fact, we claim
that it is regular. Write

f ◦ ϕ = f(x1 ◦ ϕ, · · · , xn ◦ ϕ)

and recall that, on an affine space, regular functions are rational functions. Sub-
stituting the regular ( =⇒ rational) functions xi ◦ ϕ into the variables of the
regular ( =⇒ rational) function f still produces a rational function.

(2) (Now since V need not be affine, we cannot directly use the trick that regular =
rational. But we can still do this if we say things are rational in a neighborhood.)
If V ⊂ Y and p ∈ U ⊂ V we want to show that ϕ is regular at p. At ϕ(p) we

can write f = f1
f2

, where f1 and f2 are polynomials and f2(p) 6= 0. Around p,

f ◦ ϕ = f1◦ϕ
f2◦ϕ

; numerator and denominator are regular functions, so f ◦ ϕ is also

regular at p.

�

Example 2.12. Gm := A1 − 0 → V (xy − 1) ⊂ A2 where t 7→ (t, t−1). Composing with
x1 gives a regular function, as does composition with x2. Conversely, you can give a map
(x, y) → xy backwards. This gives an isomorphism of quasi-affine varieties; and now we
can say that A1 − 0 is an affine variety.

Proposition 2.13. Let X be quasi-affine and Y be affine. Then there is a natural iso-
morphism

Hom(X,Y )
∼→ Hom(O(Y ),O(X))

where Hom(X,Y ) is the set of all morphisms X → Y . (Note that O(Y ) = A(Y ).)

Proof. There is clearly a forwards map. Any ϕ : X → Y induces a pullback map
ϕ∗ : O(Y )→ O(X), where f 7→ f ◦ ϕ. We want to construct an inverse map:

Homalg(A(Y ),O(X))→ Hom(X,Y )

Let Y ⊂ An. Start with a map ψ : A(Y ) → O(X), construct ϕ : X → An, where
ϕ : p 7→ (ψ(x1)(p), ψ(x2)(p), · · · ) sends any function in the ideal defining Y to zero. So
the previous map sends p into Y . So send p 7→ p(ϕ(x)). To check it is a morphism, we
have to look at the coordinate functions. But we constructed it so that we knew what
they were: xi ◦ ϕ = ψ(xi). �

Corollary 2.14. There is a contravariant equivalence of categories between affine vari-
eties and finitely-generated integral k-algebras. A morphism between X and Y is the same
as a morphism between their coordinate rings, by the previous proposition.
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Given any finitely generated k-algebra k[x1 · · ·xn]/P, since A is integral P is a prime
ideal, and A is exactly the coordinate ring of V (P).

In the homework, you will see that A2−{(0, 0)} is not an affine variety, but its coordinate
ring is the same as k[x, y]. So the coordinate ring is not really enough to determine the
variety.

Definition 2.15. Let A → B be a homomorphism of commutative algebras, and M a
B-module. We define the derivations

DerA(B,M) = {D : D : B →M satisfying (1) and (2)}

(1) D(b1b2) = b1D(b2) + b2D(b1)
(2) D(a) = 0 ∀a ∈ A

Example 2.16. If A = k and B = k[x1 · · ·xn]. Then M = k is a B-module, defined by
the map B → k taking every xi 7→ 0.

We have:

Derk(B, k) = {D =
∑

λi
∂

∂xi
: λi ∈ k}

By definition, ∂
∂xi

(xj) = δij .

Also note that k ∼= OX,p/m. This is because the map A(X)→ k given by evaluation at p
has, by definition, kernel mp. . . and so does the map OX,p ∼= A(X)mp → k.

Definition 2.17. The Zariski tangent space of X at p is defined as

TpX = Derk(OX,p, k)

Observe that the space of all derivations DerA(B,M) is a B-module. (Adding and scalar
multiplication by b also makes a derivation.) Therefore, TpX is a OX,p-module. But this
factors through m, making it a k-vector space.

Lemma 2.18.
TpX ∼= (m/m2)×

Note that the × means dual space!

Proof. Given a derivation D : OX,p → k, we can restrict to m and get a map
m → k. But this vanishes on m2: D(fg) = fD(g) + gD(f) but because f, g ∈ m, when
you mod out by m you have D(fg) = 0 ∈ m/m2. Given such a map, the derivation is
uniquely determined. As a k-vector space, OX,p ∼= k ⊕ m. By definition this tangent
space is the k-derivations Derk(OX,p, k). You can easily check that this gives a bijective
correspondence. �

Exercise: Show m/m2 is a finite-dimensional k-vector space.
11
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We will prove the following theorem next time:

Theorem 2.19. Let X be quasi-affine. Then there is some non-empty Zariski-open subset
U ⊂ X such that dimK Derk(K,K) = dimk TpX for all p ∈ U .

This number is called the dimension of X.

3. September 8

Next week no class. After that, class is at 2:30 - 4:00.

3.1. Smooth points.

Theorem 3.1. Let X be a quasi-affine variety over k. Let K = k(X) be the function field.

(1) For all p ∈ X, dimDerk(K,K) ≤ dimk TpX
(2) There is a nonempty open subset U ⊂ X such that

dimk TpX = dimK Derk(K,K) ∀p ∈ U

This motivates a definition:

Definition 3.2.
dimX = dimK Derk(K,K) = min

p∈X
dimk TpX

Definition 3.3. p ∈ X is called non-singular (or smooth) if dimTpX = dimX. Other-
wise, p is called a singular point of X. X is called smooth or nonsingular if every point
on X is smooth.

On a smooth manifold, the dimension of the tangent space is always the same. But here,
we can have points that are not smooth.

Proof of theorem. We can assume that X is affine. (Otherwise take the Zariski
closure, and the function field does not change.) There is a natural map obtained by
restriction:

Derk(K,K)→ Derk(O(X),K)

Because the fraction field is in O(X), this is an isomorphism. If X = V (P) ⊂ An, then

Derk(O(X),K) = {D =
∑

λi
∂

∂xi
, λi ∈ K : D(f) = 0 ∀f ∈ P}

If we choose a set of generators f1 · · · fm for I, we can rewrite the above as

{D =
∑

λi
∂

∂xi
: λi ∈ K,

∑
λi
∂fj
∂xj

= 0 ∀j}

12
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If it vanishes on xj , then it vanishes on the whole ideal: D(fg) = fD(g) + gD(f). This is

the kernel of the map Kn → Km by the derivation
∂fj
∂xi

. So the dimension of the derivations
is just n− rkKJ , where J is the matrix of partials described above.

All the entries of this matrix are polynomials, so you can evaluate at p. By the same
reasoning, dimk TpX = n− rkKJ(p). We want to show that

• rkkJ(p) ≤ rkKJ
• there is some nonempty subset U such that rkkJ(p) = rkKJ

Assume rkKJ = r. Then there are invertible n× n matrices A,B with entries in K such
that you can write AJB as a block matrix with Ir in the upper left and zeroes elsewhere.
Write A = A0/α, B = B0/β such that α and β ∈ O(X) and A0 and B0 have entries in
O(X). Let f = αβ detA0 · detB0. This is something in O(X) which is not zero (since
none of the terms is zero). Just consider U = X−V (f). This is nonempty. You can write

A0JB0 = αβ

(
Ir 0
0 0

)
. So for all p ∈ U , rkkJ(p) = r. �

Lemma 3.4. The function p 7→ dimk TpX is upper semicontinuous. That is,

X` = {p ∈ X : dimTpX ≥ `}
is closed. So dimTpX ≥ n− r for all p ∈ X.

An open subset of X has dimension exactly n− r. Others have dimension ≥ this.

Proof. dimTpX = n− rkk( ∂fi∂xj
(p)).

X` = V (P + the ideal generated by all (n− `+ 1)× (n− `+ 1) minors of J)

So this is a closed subset. �

Example 3.5. Assume k does not have characteristic 2. Remember y2 = x3 has a cusp,
y2 = x3 +x2 intersects itself at the origin, and y2 = x3 +x has two connected components.
Since these are plane curves, we hope they have dimension one.

In the first case, take f = y2 − x3. Taking the partials, we find fx = −3x2, fy = 2y 6= 0.
So J = (−3x2, 2y). Consider J(p). We know J(0, 0) = 0. The Zariski tangent space at
this point is two-dimensional, so it is a singular point. You can check that any other point
on the curve is smooth.

In the case of f = y2− x3− x2, we find J = (2x, 2y), and again J(0, 0) = 0 and the origin
is singular.

13
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In the case of f = y2− x3− x, we have J = (−3x2− 1, 2y). We find that the rank of J(p)
is always 1. This comes from solving the equations:

y2 = x3 + x

−3x2 − 1 = 0

2y = 0

There are no solutions. So all the points are smooth.

Example 3.6. dimAn = n and dim ∗ = 0

3.2. Facts from commutative algebra.

Definition 3.7. Let K/k be a field extension. We say that K is separably generated over
k if there is some L with k ⊂ L ⊂ K such that L/k is purely transcendental and K/L is
a finite separable algebraic extension.

Theorem 3.8. If K/k is finitely separably generated, then

dimK Derk(K,K) = tr.d.kK

(where tr.d. is the transcendental degree).

Theorem 3.9. Let k be a perfect field (e.g. k = k). Then every finitely-generated K/k is
separably generated.

For example, in An, if K = k[x1 · · ·xn] we know that the transcendence degree is n. But
we could also find this by calculating the dimension of the Zariski tangent space.

Proposition 3.10. Let X be an affine variety. Then dimX = n − 1 if and only if
X = V (f) for some irreducible f ∈ k[x1 · · ·xn]. (We call such V (f) a hypersurface.)

Remark 3.11. If dimX = n− 2, then it is not necessarily true that I(X) is generated by
two elements.

Proof. Suppose X = V (f) is a hypersurface. We want to show that dimX = n− 1.

The rank of ∂f
∂xi

is at most 1, so dimX = n − rk( ∂f∂xi ) ≥ n − 1. We want to show that

rk( ∂f∂xi ) 6= 0. Remember that this is going on in a space in which we have modded out by

f . Otherwise, ∂f
∂xi

lands in the ideal generated by f (i.e. f divides this); but the degree

is smaller, which can only happen if ∂f
∂xi

= 0 (here zero is in k). This can happen if

the field has characteristic p > 0, and you can write f = g(xp1, x
p
2, · · · , x

p
n). (Note that

in characteristic p, xp has zero derivative.) Since k is algebraically closed, we can write
g = g1(x1 · · ·xn)p (we’re using the formula (a+ b)p = ap + bp mod p; write axp + byp). We
assumed X was irreducible, so this is a contradiction.

Now assume dimX = n− 1. We want to conclude that X is a hypersurface. Let g ∈ P =
I(X). We have X ⊂ V (g). We could assume that g is irreducible. If g is a product of
things, at least one is in P because P is prime. We already know that dimV (g) = n− 1.
So now the proposition will follow from a lemma:

14
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Lemma 3.12. Let A be an integral domain over k, and P ⊂ A be a prime ideal. Then

tr.d.kA/P ≤ tr.d.kA
with equality iff P = 0 or both are infinity.

Remark 3.13. By definition, tr.d.kA/P = tr.d.kFrac(A/P).

From this lemma, we can conclude that hypersurfaces have dimension 1.

Proof. Assume the contrary: that n = tr.d.kA. Then there is some x1 · · ·xn ∈ A such
that x1 · · ·xn are algebraically independent over A/P. Let 0 6= y ∈ P. Since we assumed
the transcendental degree of A is n, there exists a polynomial P ∈ k[Y,X1 · · ·Xn] such that
P (y, x1 · · ·xn) = 0. But A is an integral domain, so we can assume that P is irreducible.
If P factors as the product of two polynomials, then this relation still holds for one of
them (this is by integrality). Note that P is not a multiple of Y : if you plug in y, it is not
zero. Therefore, P (0, x1 · · ·xn) is an algebraic relation in A/P. Contradiction.

�

Here is a theorem that says how to construct affine varieties containing certain smooth
points.

Theorem 3.14. Let f1 · · · fr ∈ k[x1 · · ·xn] have no constant term (i.e. all the polynomials
vanish at the origin), and have independent linear terms. (That is, if you write fi =∑
aijxj + · · · , then rk(aij) = r.) Let P = (f1 · · · fr)OAn,0 ∩ k[x1 · · ·xn]. Then

(1) P is a prime ideal
(2) X = V (P) has dimension n− r, and 0 ∈ X is smooth
(3) V (f1 . . . fn) = X ∪ Y for some algebraic set Y not containing zero

Corollary 3.15. Let X be an affine variety of dimension n − r in which 0 is a smooth
point. Then there is some f1 · · · fr ∈ I(X) such that

I(X) = (f1 · · · fr)OAn,0 ∩ k[x1..xn]

Of course, we can transform any point to be the origin. Then this says that our variety
X is defined by r equations (even if the original variety is not defined by r equations: it
is X ∪ Y for Y not containing the chosen point).

Proof of the corollary. We need to find r polynomials with independent linear
terms; then we can apply the theorem. Let m = (x1 · · ·xn) ⊂ k[x1 · · ·xn] and m0 be the
maximal ideal of O(X) corresponding to zero. We have a sequence

0→ P→ m→ m0 → 0

0→ (P + m2)/m2 → m/m2 → m0/m
2
0 → 0

15
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m/m2 has dimension n, (P + m2)/m2 has dimension r, and m0/m
2
0 has dimension n − r.

Choose an arbitrary basis (f1 . . . fr) for P + m2/m2, and that lifts to a basis of P. So
f1 · · · fr has independent linear terms. (m2 has a basis, which means that there are linearly
independent terms.) From the theorem,

P = (f1 · · · fr)OAn,0 ∩ k[x1 · · ·xn]

is a prime ideal.

P = {
∑ figi

ki
: ki(0) 6= 0,

∑ gifi
ki
∈ k[x1 · · ·xn]}

This is inside of I(X), because it vanishes on X. (Note that gifi
ki

is a regular function,

except where the denominator vanishes.)

We have Y = V (P) ⊃ X. By the theorem, dimY = n−r. By assumption, dimX = n−r.
But if they have the same dimension, they have to be equal. So, locally around a point
the ideal is always generated by r polynomials. �

Proof of the theorem. Let (A,m, k) be a local ring. Then Â := lim←−A/m
n. Recall

that we have an inverse system

..→ A/m3 → A/m2 → A/m = k

We have OAn,0 = k[x1 · · ·xn](x1···xn). So then

ÔAn,0 = k[[x1 · · ·xn]]

where we now allow infinite polynomials (a.k.a. power series).

O(An) = k[x1 · · ·xn] ⊂ OAn,0 = k[x1 · · ·xn](x1···xn) ⊂ k[[x1 · · ·xn]]

(Rational functions like 1
1−f have power series.) Remember P = (f1 · · · fv)OAn,0∩k[x1 · · ·xn]

was defined as before. Now define

P′ = (f1 · · · fr)OAn,0

and
P′′ = (f1 · · · fr)k[[x1 · · ·xn]]

The ring homomorphism of the pullback of a prime ideal is always prime.

It is enough to show two things:

(1) P′′ is prime in k[[x1 · · ·xn]]
(2) P′′ ∩ OAn,0 = P′

The second fact comes from commutative algebra. By definition,

P′ ⊂ P′′ ∩ OAn,0 = {
∑

gifi : gi ∈ k[[x1 · · ·xn]],
∑

gifi ∈ k[x1 · · ·xn](x1···xn)}

=
∞⋂
N=0

(P′ + mN )

16
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If we just truncate this, then the remaining terms will be in P′ + mN . That is, if gi =∑
α<N x

α
i +R then Rfi ∈ mN and fi

∑
xαi ∈ P′.

The second part is proven by the following theorem from commutative algebra

Theorem 3.16 (Krull Theorem). If (A,m, k) is Noetherian local, then for any ideal I,

I =
∞⋂
N=0

(I + mN ).

�

4. September 20

4.1. Finishing things from last time.

Theorem 4.1. Let f1 · · · fr ∈ k[x1 · · ·xn] be polynomials with no constant term and inde-
pendent linear terms. Then the ideal of the local ring

P = (f1 · · · fr)OAn,0 ∩ k[x1 · · ·xn]

is prime. dimV (P) = n−r and zero is a smooth point on V (P). Moreover, V (f1 · · · fr) =
V (P) ∪ Y when − /∈ Y is some algebraic set.

Last time, we prove a corollary: If we have a smooth point, then locally this variety is cut
out by r equations.

Proof. k[x1 · · ·xn] ⊂ k[x1 · · ·xn](x1···xn) = OAn,0 ⊂ k[[x1 · · ·xn]] = ÔAn,0. Consider

P′ = (f1 · · · fr)OAn,0

P′′ = (f1 · · · fr)k[[x1 · · ·xn]]

It is enough to prove that P′′ is prime, and that P′ = P′′ ∩ OAn,0.

To prove the second thing, note that

P′ ⊂ P′′ ∩ OAn,0 = {nOAn,0 : f =
∑

hifi, hi ∈ k[[x1 · · ·xn]]}.

Suppose m is the maximal ideal of OAn,0.

0→ mN → OAn,0 → OAn,0/m
N → 0

We can show that the last term is just k[x1 · · ·xn]/(x1 · · ·xn)N . So OAn,0 = mN ⊕
{polynomials of degree ¡ N} as a k-vector space. (Every element in the local ring can
be written as a polynomial of small degree plus something in a power of the local ring.)

We can write f = f ′+ remainders, where f ′ is a polynomial of degree < N . So going back
to the expression of P′′ ∩ OAn,0 we have

hi = h′i + degree ≥ N terms

17
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Then f −
∑
h′ifi = (f −

∑
h′ifi) + mNOAn,0) Look at the first term; it has degree ≥ N .

All of this is in mNOAn,0. So

P′′ ∩ OAn,0 ⊂
⋂
N≥0

(P′ + mN )

which is equal to P′ by Krull’s theorem.

Now we want to show that P′′ is prime. We need:

Proposition 4.2. (Formal inverse function theorem) Let f =
∑
aixi+ higher terms

∈ k[[x1 · · ·xn]] and ai 6= 0. Then any g ∈ k[[x1 · · ·xn]] can be uniquely written as g =
u · f + h(x2 · · ·xn)

Proof. Easy. Expand u and h and show you can solve for all the coefficients. �

Corollary 4.3.
k[[x1 · · ·xn]]/(f)

∼← k[[x2 · · ·xn]]

Corollary 4.4. Let f1 · · · fr be r power series. Write

fi =
∑

aijxj + higher terms

If det((aij)1≤i,j≤r) 6= 0, then

k[[x1 · · ·xn]]/(f1 · · · fr)
∼← k[[xr+1···xn ]]

Proof. Induction. �

Back to the theorem. If f1 · · · fr have independent linear terms, then

k[[x1 · · ·xn]]/(f1 · · · fr)
∼← k[[xr+1···xn ]]

This shows that P′′ is prime, which in turn shows that P is prime.

A(V (P)) = k[x1 · · ·xn]/P ↪→ k[[x1 · · ·xn]]/P ∼= k[[xn+1···xn ]]

They are algebraically independent because they are algebraically independent in the
power series map.

We used commutative algebra to relate that dimension of a variety to the transcendental
degree. Therefore, dimV (P) ≥ n− r. By definition

TpV (P) = (mp/m
2
p)
∗

0→ P/(P + (x1 · · ·xn)2)→ (x1 · · ·xn)/(x1 · · ·xn)2 → mp/m
2
p → 0

TpV (P) is cut out by the linear terms of f1 · · · fr in TpAn. Because the linear terms are
independent, we have that dimTpV (P) = n − r. We know that the dimension of the
tangent space is ≥ the dimension of the variety. But this tangent space is exactly n − r,
which is the upper bound anyway, so dimV (P) = n − r and p is smooth. We want to
show that

V (f1 · · · fr) = V (P) ∪ Y
18
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where Y does not contain the origin. P is not necessarily generated by f1 · · · fr; this is
only true of the local ring OX,p. So let g1 · · · gs be a set of generators of P (recall this is
finite because everything is Noetherian).

gi ∈ (f1 · · · fr)OAn,0 ∩ k[x1 · · ·xn]

Equivalently, there are some hi not vanishing at the origin such that higi ∈ (f1 · · · fr).

Let h =
∏
hi. Then hP ⊂ (f1 · · · fr) and V (f1 · · · fr) ⊂ V (hP) = V (h)

∫
V (P). In other

words, V (f1 · · · fr) = V (f1 · · · fr, h) ∪ V (P). Since h(0) 6= 0, 0 /∈ Y .

�

Corollary 4.5. Let p = (0, · · · , 0) ∈ X = V (P) be a smooth point of X with dimX =
n − r. Choose f1 · · · fr with independent linear terms. You can always do this because of
the short exact sequence

0→ P/(P + (x1...xn)2)→ (x1...xn)/(x1...xn)2 → mp/m
2
p → 0

Then P = (f1 · · · fr)OAn,0 ∩ k[x1...xn]. (The idea is that locally the ideal is generated by r
functions.)

Corollary 4.6. Let X be quasi-affine with dimension r. Let p ∈ X be a smooth point .
Then

ÔX,p ∼= k[[x1...xr]]

If we are in this situation P = (f1 · · · fr)OAn,0 ∩ k[x1...xn] then the complete local ring is
just the power series ring.

Note that this is false if we consider the local ring instead of its completion.

4.2. More general definitions.

Definition 4.7. Let k = k be a field. A (pre)variety over k is a connected topological
space together with a covering U = {Uα} and homeomorphisms ϕα : Uα → Xα with Xα

quasi-affine, that plays well on overlaps:

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

is a morphism of quasi-affine varieties. In addition, we require this covering U to be
maximal; i.e., if Y is quasi-affine V ⊂ X is open and ψ : V

∼→ Y quasi-affine such that

ϕα ◦ ψ−1 : ψ(Uα ∩ V )→ ϕα(Uα ∩ V )

is a morphism, then V ∈ U .

Exercise 4.8. Prove that this is irreducible.

Definition 4.9. A function f : X → k is called regular if for every α,

f ◦ ϕ−1
α : Xα → k

19
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is regular. We denote O(X) to be the ring of regular functions on X. We can also define
the local ring at the point p to be

OX,p = lim−→
U3p open

O(U).

Definition 4.10. k(X) is defined to be any k(Xα): you have a covering by quasi affine
varieties, so you can talk about the rational functions. But for every piece, there might
be a different set of all such. But these are canonically identified.

Remark 4.11. k(X) is not necessarily the fractional field of O(X).

We also have dimX, TpX, smoothness, . . .

Definition 4.12. Let X be a (pre)variety. An irreducible closed subset Y ⊂ X with
the canonical variety structure is called a closed subvariety of X. If you have a closed
irreducible subset, it is connected. Restrict the covering to this subset, and you get a
covering if this closed subset; restrict the homeomorphism and it will map to a closed
subset of a quasi-affine variety. You can check that the transition maps work out.

Exercise 4.13.
X // Y

Z
?�

OO

// V
?�

OO

If Z ⊂ X is closed the bottom map is a morphism.

Definition 4.14. Let X,Y be two varieties. A continuous map ϕ : X → Y is called a
morphism if for any p ∈ X, U 3 ϕ(p), f ∈ O(U), we have

f ◦ ϕ ∈ O(ϕ−1(U))

(Continuity is needed, because we want ϕ−1(U) to be an open set.)

4.3. Projective varieties.

Definition 4.15. The projective n-space Pn is the set

kn+1 − {0, · · · , 0}/ ∼
where (a0 · · · an) ∼ (λa0, · · · , λan) where λ ∈ k∗.

Remark 4.16. Pn can also be regarded as the set of 1-dimensional subspaces in kn+1.

An element p ∈ Pn is called a point (even though it’s just an equivalence class). Any
(a0 · · · an) ∈ p is called a set of homogeneous coordinates of p. We need to give a natural
variety structure; first we define the topology.

Definition 4.17. An algebraic set in Pn is the set Z of zeroes for a set of homogeneous
polynomials f1 · · · fm:

Z = V (f1 · · · fr) = {p ∈ Pn : * holds:}
20
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(*) If (a1 · · · an) are homogeneous coordinates of p
then f1(a0 · · · an) = · · · . = fm(a0, · · · , am) = 0.

Let I = (f1 · · · fr). Then I is a homogeneous ideal of k[x0 · · ·xn]; i.e. if f ∈ I and
f =

∑
d fd then fd ∈ I. There is a result of commutative algebra that said that any ideal

of homogeneous polynomials has a finite set of homogeneous generators.

So an algebraic set in Pn is given by homogeneous polynomials.

Lemma 4.18.

• V (k[x1...xn]) = V (x1...xn) = 0, and V (0) = Pn
• V (∪αIα) = ∩αV (Iα)
• V (I1 ∩ I2) = V (I1 ∪ V (I2))

Unlike the affine case, you can have two radical ideals corresponding to one set.

Definition 4.19. (Zariski topology on Pn) We need to choose a set of subsets that are
closed: these are the algebraic sets.

Theorem 4.20 (Hilbert’s Nullstellensatz). For all homogeneous I and all homogeneous f
with deg(f) ≥ 1, then

f ∈
√
I ⇐⇒ f vanishes on V (I)

Corollary 4.21. Algebraic sets in Pn are in 1-1 correspondence with homogeneous radical
ideals. contained in (X0 · · ·Xn) = S+.

Proposition 4.22. Let I be a homogeneous ideal in S = k[x0...xn] (this will denote a ring
with a grading; the un-graded ring will be denoted k[x0...xn]). From commutative algebra,√
I can be written as an intersection of minimal prime ideals containing this radical:

√
I = P1 ∩ · · · ∩Pr

Then the Pi are homogeneous.

Proof. Exercise. �

Corollary 4.23. V (P) is irreducible iff P is a homogeneous prime (in S+). Furthermore,
every algebraic set in Pn can be uniquely written as the union of its irreducible components.

Definition 4.24. A projective variety is an irreducible algebraic set in Pn. A quasi
projective variety is an open subset of a projective variety.

Proposition 4.25. Pn together with the Zariski topology has a natural variety structure
over k. (So every projective variety has a natural variety structure.)
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5. September 22

RECALL that we had introduced the projective n-space

Pn = {(a0 · · · an) ∈ kn+1 − 0}/ ∼
We can define the Zariski topology on Pn, where the closed subsets are V (I) where I is a
homogeneous ideal.

Proposition 5.1. There is a natural variety structure on Pn.

Proof. The idea is to cover it with some cover, each of which is isomorphic to an
affine variety (not just a quasi-affine). Let Hi = {(a0 · · · an) : ai = 0}/ ∼= V (xi). This
is closed. Let Ui = Pn − H; this is open, and the collection of these cover the whole
projective space. Now define ϕi : Ui → An where (a0 · · · an)→ (a0ai , · · · ,

âi
ai
, · · · , anai ). This

is a bijection. We need to show

(1) ϕi is a homeomorphism
(2) ϕi ◦ ϕ−1

j is a morphism

Because it’s bijective, we just need to show that closed subsets go to closed subsets. Let
I ⊂ S be a homogeneous ideal (remember S is the polynomial ring of n+ 1 variables, but
regarded as a graded ring). Without loss of generality take i = 0. Then we need to show
ϕ0 : U0 ∩ V (I)→ An goes to a closed thing. Define

Iih = {f(1, · · ·xn) : f ∈ I} ⊂ k[x1...xn]

But

U0∩V (I) = {(a0 · · · an) : f(a0 · · · an) = 0 ∀f ∈ I} 7→ {(a0 · · · an) : g(
a1

a0
, · · · , an

a0
) = 0 ∀g ∈ Iih}

Note that (a1a0 · · ·
an
a0

) = (1, a1an · · ·
an
a0

) because things are homogeneous. On the other hand,

let I ⊂ k[x1...xn] be any ideal. We define Ih ⊂ S where

Ih = {xdeg f
0 f(

x1

x0
· · · xn

x0
:∈ I)}

ϕi(U0 ∩ V (Ih)) = V (I)

Now assume i = n, j = 0.

ϕn ◦ ϕ−1
0 : An\{x+ n 6= 0} → An\{x1 6= 0}

(a1 · · · an) 7→ (
1

an
,
a1

an
· · · an−1

an
)

This pulls back coordinate functions to regular functions, by definition:

(ϕn ◦ ϕ−1
0 )∗(x0) =

xi+1

xn
This is the ratio of two polynomials, so it is a regular function.

�
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In particular, every “projective variety” (i.e. V (P) ⊂ Pn) is actually a variety.

Example 5.2. V (xy − z2) ⊂ P2.

Ux = {(x, y, z) : x 6= 0} ∼= A2

V (xy − z2) ∩ Ux = V (y − z2)

This is a parabola. I think that you can take x = 1 because x 6= 0 and we’re working with
homogeneous coordinates. So choosing which “thing to set to 1” is basically like choosing
charts.

Uz = {(x, y, z) : z 6= 0} ∼= A2

V (xy − z2) ∩ Uz = V (xy − 1) ⊂ A2

This looks like a hyperbola. So in projective geometry, there is no difference between a
parabola and a hyperbola.

Let Y = V (P) ⊂ Pn be a projective variety. We denote S(y) = S
P the homogeneous

coordinate ring of Y . So S(Y ) is a graded ring given by the degree of S. (The ideal is a
homogeneous ideal, so the grading descends.)

S(Y ) = ⊕dS(Y )d

By the equivalence of categories in the affine case, the coordinate ring is the same as
the variety. But this does not work in the projective case. You could have isomorphic
projective varieties with non-isomorphic coordinate rings.

This coordinate ring determines Y , but you could have different S(Y ) for the same Y (???).
Let P′ be a homogeneous prime ideal of S(Y ). In other words, you have a homogeneous
prime ideal containing P and its quotient is P′. We denote

S(Y )P′ = {f
g

: f, g, homogeneous, deg g = deg f, g /∈ P′}

Proposition 5.3. Let Y = V (P) be a projective variety, p ∈ Y and mp the homogeneous
maximal ideal corresponding to p. Then

(1) OY,p ∼= S(Y )(mp)

(2) K = k(Y ) = S(Y )(0) = {f (mod P)
g (mod P) : f, g ∈ S,deg f = deg g, g /∈ P}

(3) O(Y ) = k

Rational functions can always be written as a quotient of fractions where the denominator
does not vanish in the localization. This is the same as requiring g /∈ mp.

Proof. Let Yi = Y ∩ Ui where Ui was the open subset {(a0 · · · an) : ai 6= 0} from
before. Observation: there is a natural isomorphism

ϕ∗
i : A(Yi)→ S(Y )(xi)
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Assume i = 0. There is a map k[x1 · · ·xn]→ S(xi) given by f 7→ f(x1x0 · · ·
xn
x0

). Wait. . . aren’t

we supposed to be dividing by everything that’s not x0? Via this map, Pih ⇐⇒ PS(x0).

So Y0 = V (Pih).

Now (1) and (2) folow from the corresponding facts for affine varieties. That is, we can
assume p ∈ U0 ∩ Y = Y0. So

OY,p = OY0,p = A(Y0)mihp
∼→ (S(Y )(x0))

ϕ∗
0(mih

p ) = mpS(Y )(x0)

The localization is transitive, so this is S(Y )mp .

Now we will do part (3): we want to show that O(Y ) = k. Let f ∈ O(Y ) ↪→ k(Y ) =
S(Y )(0) ⊂ L, where L is the fractional field of S(Y ). Recall that Y is covered by Yi (which
are each Y ∩ Ui). Each regular function on Y gives a regular function on Yi:

O(Y )→
n∏
i=0

O(Yi)

But O(Yi) = A(Yi) ∼= S(Y )(xi). So for each i there is some Ni such that

χNi
i f ∈ S(Y )

Now let N ≥
∑
Ni. Then S(Y )N · f ⊂ S(Y )N . This is because every element in S(Y ) is

spanned by monomials: xr00 , · · · Now watch the degrees (?) So for all m, S(Y )N · fm ⊂
S(Y )N . Each S(Y )N is a finite-dimensional vector spaces. f is a map S(Y )N → S(Y )N .
There is some m such that

fm + a1f
m−1 + · · ·+ am = 0 : S(Y )N → S(Y )N

implies fm + a1f
m−1 + · · ·+ am = 0 in L.

(S(Y )(0) requires that the denominator is always homogeneous; this is not a requirement
in L.) k is algebraically closed in L, which implies f ∈ k. This proves that every regular
function on a projective variety is a constant. �

5.1. Product of two varieties.

Definition 5.4. Let X,Y be two varieties. The product X ×k Y is a variety together
with two morphisms X × Y → X, X × Y → Y (projections), such that for any other
variety Z the natural map Hom(Z,X × Y )→ Hom(Z,X)×Hom(Z, Y ) is a bijection. So
we have a diagram

Z = X̃ × Y //

%% ++

X × Y
prY

""
prX

||
X Y

Theorem 5.5. The product of X and Y exists, and is unique up to a unique isomorphism.
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Proof. Uniqueness is clear.

Existence: there is a natural variety structure on the set X × Y , making it the product
X ×k Y .

(1) If X and Y are affine, then Ui ×k Y exists.
(2) Let {Ui} be a cover of X, and each Ui ×k Y exists, then X ×k Y exists.

This proves the theorem, because you can cover X by affines X = ∪Ui and Y = ∪Vi.
Then each Ui ×k Y exists, because (by (2)) each Ui ×k Vj exists (by (1)). Applying (2)
again says that X ×k Y exists.

{ affine varieties over k} ∼→ {f.g. integral k-algebras}
In the forwards direction, X 7→ O(X) = A(X). In the backwards direction, write
Spec(A)← A.

Lemma 5.6. Let Z be any variety, and X be affine.

Hom(Z,X)→ Homk−alg(O(X),O(Z))

is bijective. (We proved this for quasi-affine varieties, but now we claim it for all varietes.)

Proof. Cover Z = ∪Ui by quasi-affines. Then Hom(Z,X) →
∏
i Hom(Ui, X) by

restricting the elements of Hom(Z,X). We can further restrict them to the intersection
of two quasi-affines:

Hom(Z,X)→
∏

Hom(Ui, X)⇒
∏

Hom(Ui ∩ Uj , X)

The middle set is the equalizer. Hom(Z,X) is the equalizer of∏
i

Hom(Ui, X)⇒
∏

Hom(Ui ∩ Uj , X)

Concretely, this means: a morphism ϕ : Z → X is an equivalence to ϕi : Ui → X such
that

ϕi|Ui∩Uj = ϕj |Ui∩Uj
O(Z)→

∏
O(Ui)⇒

∏
O(Ui ∩ Uj)

(A function on Z is the same as a function on Ui that coincides on the intersection.)

Hom(Z,X) //

∼
��

∏
Hom(Ui, X) ////

∼
��

∏
Hom(Ui ∩ Uj , X)

∼
��

Hom(O(X),O(Z)) //
∏

Hom(O(X),O(Ui))
////
∏

Hom(O(X),O(Ui ∩ Uj))

Check the injectivity/surjectivity by diagram chasing. (Exercise.)
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Back to (1). Let X,Y be affine. A = O(X), B = O(Y ). Then A ⊗k B is a finitely
generated integral k-algebra.

A = k[x1 · · ·xn]/(f1 · · · fm)

B = k[y1 · · · ys]/(g1 · · · gt)
Then

A⊗k B = k[x1 · · ·xn, y1 · · · ys]/(f1 · · · fm, g1 · · · gt)
You can show that

Spec(A⊗k B) = V (f1 · · · fm, g1 · · · gt) ⊂ An+s

The underlying set is the underlying set of X times the underlying set of Y .

Claim 5.7. Spec(A⊗k B) = X ×k Y

Hom(Z, Spec(A ⊗ B)) = Hom(A ⊗k B,O(Z)) (by the lemma) as k-algebras. By the
definition of tensor products,

· · · = Hom(A,O(Z))×Hom(B,O(Z)) = Hom(Z,X)×Hom(Z, Y )

�

Example 5.8. An ×k Am = An+m. But the topology on An × Am is not the same as the
product topology on An × Am.

Rest of the proof: homework.

�

Example 5.9. Pn ×k Pm exists. What is it? We know that Pn = ∪iUi, Pm = ∪jVj . We
have a lemma, which is proven in the homework.

Lemma 5.10. If U ⊂ X open, then U ×k Y is equal to U × Y ⊂ X ×k Y with the induced
topology.

Pn ×k Pm = ∪(Ui ×k Pm)

= ∪i,j(Ui ×k Uj)
where each piece is isomorphic to Anm .

6. September 27

6.1. Products of projective varieties. Last time we defined the product of two
varieties. Consider Pn ×k Pm. If we write Pn = ∪Ui and Pm = ∪Vj where each Ui and Vj
is isomorphic to the affine space, then we have an open cover

Pn ×k Pm = ∪i,jUi ×k Vj
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where Ui × Vj ∼= An ×k Am ∼= An+m.

Lemma 6.1. The topology on Pn ×k Pm can be described as follows: closed subsets are of
the form V (f1 · · · fN ) where fi ∈ k[x0 · · ·xn, y0 · · · yn] that are bi-homogeneous; i.e. we can
write

fi =
∑

a0+···+an=d
b0+···+bm=e

(coeff)xa00 · · ·x
an
n y

b0
0 · · · y

bm
m

We call (d, e) the bi-degree of fi.

Proof. We know the topology on Ui × Vj , because we have an isomorphism

Ui × Vj
ϕ
i×ϕj→ An ×k Am ∼= An+m

where the LHS has the Zariski topology. (When we write An×kAm we mean the topology
inherited from this particular construction of product, not the usual product topology.)
It suffices to show that

(ϕi × ϕj)((Ui × Vj) ∩ V (f1 · · · fN ))

are the algebraic sets in An+m. This is the same as when we showed that ϕi : Ui → An is
a homeomorphism.

�

Our next goal is to show that Pn × Pm is a projective variety: it is isomorphic to some
projective variety (a closed subvariety of some Pk).
Definition 6.2. Let ϕ : X → Y be a morphism of (pre)varieties. (So far when we
say “variety” we mean “prevariety”; we will remove this later by imposing an additional
condition.) We say that ϕ is a closed embedding if ϕ is one-to-one on to an irreducible
closed subset ϕ(X) ⊂ Y (therefore ϕ(X) has a variety structure) and ϕ : X → ϕ(X) is an
isomorphism.

Theorem 6.3. Let N = mn+m+ n. Then there is a natural closed embedding

s : Pn ×k Pm → PN ,
called the Segre embedding.

Corollary 6.4. Let X,Y be projective. Then X ×k Y is projective.

Proof of corollary. This follows from the theorem and the following lemma:

Lemma 6.5. Let ϕ : X ′ → X, ψ : Y ′ → Y be closed embeddings. Then ϕ×ψ : X ′×k Y ′ →
X ×k Y .

�

Proof of the theorem. We will define the map (a0 · · · an), (b0 · · · bm) → (aibj)
where 1 ≤ i ≤ n + 1, 1 ≤ b ≤ m + 1. First, we show that it is a morphism. This is
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a local condition, so we can check on each piece of an affine open cover. Suppose Pn has
coordinate functions x0 · · ·xn, Pm has coordinate functions y0 · · · ym, and PN has coordi-
nate functions zij . Let Uij = PN −Hij where Hij = {zij = 0}.

Ui × Vj
s //

ϕ
i×ϕj

��

Uij

ϕ
ij

��
An × Am // Amn+m+n

where the left vertical map takes (a0 · · · an)(b0 · · · bm) 7→ (a0ai · · · ,
âi
ai
· · · anai ), ( b0bj · · ·

bm
bj

). The

right vertical map takes (cij) 7→ ( c00
ci0j0
· · · cmnci0j0

) Then the bottom map is ϕi0j0 ◦ s ◦ (ϕi0 ×
ϕj0)−1. When you restrict s to Ui0×Vj0 it’s not hard to see that it goes to the right place.

ϕ00 ◦ s ◦ (ϕ0 × ϕ0)−1 = (x1 · · ·xn)(y1 · · · yn)→ (x1 · · ·xn, y1 · · · ym, xiyi)
is a morphism.

We want to show that s is injective. Suppose s(a, b) = s(a′, b′). This means that aibj =
λa′ib

′
j (they represent the same point in projective space), for any i, j. So there are some

i0, j0 such that ai0 6= 0 and bj0 6= 0. So (a, b) ∈ Ui0 × Vj0 . 0 6= ai0bj0 = λa′i0b
′
j0

and so

(a′, b′) ∈ Ui0 × Vj0 .

Let µ =
ai0
a′i0

and ν =
bj0
b′j0

. λ = µ · ν. From

aibj0 = λa′ib
′
j0 =⇒ ai = µa′i =⇒ a = a′.

Similarly, b = b′.

Let P = ker(k[zij ] → k[x0 · · ·xn, y0 · · · ym]) where the map takes zij 7→ xiyj . You can
check that P contains the ideal

P′ = (zijzk` − zi`zkj)
Obviously, s(Pn × Pm) ⊂ V (P) ⊂ V (P′). We now prove that the map is onto this closed
subset: s(Pn × Pm) = V (P′). In particular, V (P) = V (P′). So the radical of P′ is P.
(Actually, P′ is the same as P.)

Let (cij) ∈ V (P′); this means that cijck` = ci`ckj . This means that there is some ci0j0 6= 0.,

and hence (cij) ∈ Ui0j0 . Let ai =
cij0
ci0j0

∈ Pn and bj =
ci0j
ci0j0

∈ Pm. So

s(a, b) = (aibj) =
cij0ci0j
c2
i0j0

=
cijci0j0

=
(cij) ∈ PN

From this argument we have that s−1(Uij) = Ui ×k Vj .

Finally, we show that
s : Pn ×k Pm → V (P)

is an isomorphism iff
s−1 : V (P)→ Pn ×k Pm

28



Math 232a Xinwen Zhu Lecture 6

is a morphism. But we only need to check on affine opens.

s−1 : V (P) ∩ Ui0j0 → Ui0 × Vj0
We need to check this is a morphism. Consider i0 = j0 = 0. We have

s−1 : V (P) ∩ Ui0j0
s−1

//
� _

��

Ui0 × Vj0

Amn+m+n ∼= Ui0j0

prfirst m+n coords

66

The vertical map is a closed embedding, and hence a morphism. The composition is then a
morphism. We are done. The reverse direction of the diagonal map is (a1 · · · an, b1 · · · bm) 7→
(a1 · · · an, b1 · · · bm, bij).

�

6.2. An important class of projective varieties.

Definition 6.6. A hyperplane in Pn is defined by a linear polynomial V (a0x0+· · · .+anxn)
(a hypersurface where the defining polynomial is linear). A linear variety in Pn is the
intersection of hyperplanes. A linear variety of dimension r is also called an r-plane.
1-planes are called lines. For example, Hi = {xi = 0}.

Lemma 6.7.

(1) Let X ⊂ Pn be an r-plane. Then X ∼= Pr and I(X) can be generated by n − r
linear polynomials. (i.e. the intersection of planes is a plane!)

(2) There is a natural bijection between (r+1)-dimensional sub-vector-spaces in kn+1

and r-planes in Pn. (Just consider L 7→ X = {(a0 · · · ar) ∈ L = {0}}/ ∼; this
turns out to be a bijection.)

Definition 6.8. The Grassmannian G(r, n) is the set of all r-dimensional subspaces in
kn (equivalently, the (r − 1)-planes in Pn−1). For example, G(1, n) = Pn−1.

Notations 6.9.

• G(r, n) is also denoted as G(r − 1, n− 1).
• Let V be a finite-dimensional k-vector space. Then G(r, V ) is the set of all r-

dimensional subspaces in V . (No need to choose a basis.) In particular, G(1, V )
is denoted by P(V ).

Theorem 6.10. G(r, V ) is naturally a smooth projective variety of dimension r(n − r),
where n = dimV .

Proof. We could try to embed this in a projective space. Or, we could give it a cover
which gives it a variety structure, and then embed into projective space. We will do the
latter.
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Let {e1 · · · en} be a basis for V . For each I ⊂ {1 · · ·n} of cardinality n − r consider
kI = span{ei, i ∈ I} ⊂ V . Let

VI = {L ⊂ V : dimL = r, L ∩ kI = 0} ⊂ G(r, n)

Notice that
G(r, V ) =

⋃
I⊂{1···n}
|I|=n−r

VI .

We claim that there is a natural bijection ϕI : VI
∼→ Ar(n−r). In fact, there is a natural

bijection
VI
∼→ Hom(V/kI

c
, kI)

where the second thing is ∼= M(n−r)×r(k), the set of (n − r) × r matrices ∼= A(n−r)r (and
Ic means the complement of I). The thing on the left is r-dimensional, therefore we can
take the graph. The backwards map is ϕ 7→ V = kI

c⊕kI ⊃ Γϕ. The other direction takes
L to the map

L ⊂ V � kI
c
, L ⊂ V � kIA

Explicitly, this means each L ⊂ VI determines uniquely

(v1 · · · vr) = (e1 · · · en)

Each L ⊂ vi is uniquely given by a basis as follows: have the matrix A where the top half
is the identity matrix and the bottom isar+1,1 · · · ar+1,r

. . .

an,1 · · · an,r


It is not hard to show ϕJ ◦ ϕ−1

I is a morphism. Therefore, there is a variety structure on
G(r, n).

�

We want to construct a closed embedding ψ : G(r, n) → PN . There is a natural closed
embedding; this is called the Plücker embedding. Let W = ΛrV . Then W is a vector
space with dimW =

(
n
r

)
. For each L ∈ G(r, n) we can associate a vector, up to scalar.

Namely, we choose a basis v1 · · · vr ∈ L (for example, the standard basis). This gives us
a vector v1 ∧ · · · ∧ vr ∈ W . This depends on the basis, but the difference depends on the
determinant of the transition matrix. So it is unique up to scalar. We can define a map

ψ : G(r, n)→ P(W ) L 7→ v1 ∧ · · · ∧ vr = [L]

This is called the Plücker embedding. Consider ψ : VI → P(W ), where I = {r + 1 · · ·n}.
We have standard coordinates (aJ) with J ⊂ {1 · · ·n} and |J | = r. Every element in W
can be written ∑

aJej1 ∧ · · · ∧ ejr
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where J = {j1 < · · · < jr}. We have

(v1 · · · vr) = (e1 · · · en)A

where A was the matrix from earlier; the map takes this to the r × r minors. aJ is the
determinant of something, where the rows are chosen according to J . This is a polynomial
map.

Next, we show that ψ is injective. We can recover L by its image.

L = {v ∈ V : v ∧ [L] = 0 in Λr+1V }
In other words, L is the kernel of Λ[L] where Λ[L] : Λr+1V is the map that takes v 7→ v∧[L].

Now we want to characterize its image: it is an irreducible closed subset in W , but we
will not write down the generators of the basis. Let w ∈W .

Question 6.11. When can w be written as w = v1 ∧ · · · ∧ vr? (When this happens, we
say it is decomposable.)

Obvious condition: the kernel of ∧w has dimension ≥ r, where

∧w : V → Λr+1V

We have the following easy lemma:

Lemma 6.12. Let w 6= 0 ∈ W . Then dim ker(∧w) ≤ r, and equality holds iff w is
decomposable.

Proof. Use linear algebra. �

We have
δ : W → Hom(V,Λr+1V ) ⊃ {ϕ : rkϕ ≤ n− r}

and ψ(G(r, n)) is exactly δ−1{ϕ : rkϕ ≤ n− r}.

7. September 29

We continue to study the Grassmannian, G(r, V ) = {r− planes in V }. We constructed a
map

ψ : G(r, n)→ P(W )

and showed that it was injective. We want to describe the image of ψ. Let w ∈W − {0}.
When does w = v1 ∧ · · · ∧ vr ⇐⇒ w ∈ ψ(G(r, n))? (If w has this property we say that it
is decomposable.) Then if ∧w : V → Λr+1V , then

w ∈ Imψ ⇐⇒ dim ker(∧w) ≥ r
Consider

δ : W → Hom(V,Λr+1V ) w 7→ ∧w
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A linear map induces a map between projectivizations of vector spaces. So ∧ induces a
map

δ : P(W )→ PHom(V,Λr+1V )

Let Zr(V,Λ
r+1V ) ⊂ PHom(V,Λr+1V ) be the set

{ϕ : V → Λr+1V : rkϕ ≤ n− r}
Then ψ(G(r, n)) = δ−1(Zn−t(V,Λ

r+1V )).

Digression. In general, let V1, V2 be two vector spaces, and let Zd(V1, V2) ⊂ PHom(V1, V2)
be defined as {ϕ : V1 → V2 : rkϕ ≤ d}. Then Zd(V1, V2) is an algebraic set in
PHom(V1, V2). In fact, Zd(V1, V2) is a projective variety called the determinantal variety.
(It is the variety generated by the (d+ 1)× (d+ 1) minors.) This shows that ψ(G(r, n)) is
closed, and we have characterized the image as ψ(G(r, n)) = δ−1(Zn−r(V,Λ

r+1V )). (When
d = 1 Zd is smooth; otherwise it is singular.)

Remark 7.1. Recall we have defined the embedding s(Pn×Pm). This is exactly the deter-
minantal variety Z1(kn+1, kn+1). (We wrote down quadratic polynomials that generated
the variety. . . )

determinant

We want to show that ψ : G(r, n) → ψ(G(r, n)) is an isomorphism of varieties. First
we need the target to be a variety. (Why is it irreducible?) First we need it to be a
homeomorphism, and you get the variety structure from there. In fact, it is an isomorphism
of projective varieties.

It is enough to cover this with open affines, and show that each piece works out. So take
the restriction

ψ : VI → UI = P(W )− {aI = 0}
Elements in W can be expressed as

∑
aJeJ , where eJ = ej1 ∧ · · · ∧ ejr for j1 < · · · < jr

and J = {J1 · · · Jr}. Also, U ⊂ {1, 2, · · · , n} and |I| = n− r. Recall that elements can be
expressed as a matrix 

1
. . .

1

ar+1,1
. . . ar+1,n

. . .

an,r an,r


Take the r×r minors of this matrix; take one row upstairs and one row downstairs (uhhh?).

Let aJ = the set of r × r minors for J , where J = {1, 2, · · · î, · · · , r} ∪ j. aJ = aji. We
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have
VI // UI ∩ ψG(r, n)

xx

ψ−1
oo

UI

OO

Somehow this shows that ψ−1 is continuous and in fact a morphism.

Now we can say that the Grassmannian is a projective variety.

Remark 7.2. The ideal of
ψG(r, n)

can be generated by quadratic polynomials, called the Plücker relations.

Definition 7.3. A correspondence from varieties X to Y is a relation given by a closed
subset Z ⊂ X ×k Y . (Since X and Y are varieties, now we know that the product exists,
and that it is a closed subset.) Assume X,Y quasi-projective. Z is said to be a rational
map if Z is irreducible and there is an open subsetX0 ⊂ X such that every point x ∈ X0

is related to exactly one point in Y .

Z is said to be birational if Z ⊂ X ×k Y and Z−1 = {(y, x) ∈ Y ×k X : (x, y) ∈ Z} ⊂
Y ×k X are both rational.

Remark 7.4. From now on we will always write X × Y to mean X ×k Y .

Notation 7.5. A rational map from X to Y is also denoted by f : X 99K Y .

Example 7.6. Let X be projective, and f ∈ k(X) be a rational function. Then f gives
rise to a rational map f : X 99K P1. The rational functions are:

k(P1) = k(t)→ k(X) x 7→ f

k(U) is the fractional field of O(U). k(X)−{0} is the same as k-algebra homomorphisms
k(t) → k(X). Because X is projective, f can be written as a ratio of two homogeneous
polynomials of the same degree: f = g

h for g, h ∈ k[x0 · · ·xn] (t must be invertible; it
cannot map to zero.) Define

X0 = X − ({g = 0} ∩ {h = 0})
Now define

F : X0 → P1 p 7→ (g(p), h(p))

This is well-defined because we were assuming deg g = deg h = d. Now let y0, y1 be the
homogeneous coordinates on P1. Then V (y0h− y1g) ⊂ Pn× P1 where the things inside V
are bi-homogeneous of degree (d, 1). Let

Z = V (y0h− y1g) ∩X.
Over X0, the intersection

pr−1(x0) ∩ Z inside X × P1

is just the graph of F , i.e.

pr−1(x0) ∩ Z = {(x, F (x)) : x ∈ X0}
In fact, pr : Z ∩ pr−1(x0) → x0 is an isomorphism. There is a map backwards by the
universal property of the product.
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Now let Z∗ be the closure of Z ∩ pr−1(x0) in X × P1. When you restrict to X0, you have
a graph; but it could be more complicated (not irreducible) outside X0. But inside X0,
Z ∩ pr−1(X0) is irreducible. Taking the closure Z∗ is irreducible and Z∗ ∩ pr−1(X0) =
Z ∩ pr−1(X0). Therefore, Z∗ is a rational map. Every point x over X0 is related to
F (x) ∈ P1 by Z∗.

If k(Y ) ⊂ k(X) then we get a rational map X 99K Y .

Example 7.7 (Projection from a point, blow up). Let O = (0, 0, · · · , 1) ∈ Pn. Let
p : Pn−{0} → Pn−1 take (a0, · · · , an)→ (a0, · · · , an−1) be the projection. p is a morphism.
p−1(p(x)) is the line joining O and x, without the point O. You can show that there is a
unique line through two points in projective space.

Consider Z = V (xiyj − yixj)0≤i,j≤n−1 ⊂ Pn × Pn−1. Z = Γp ∪ pr−1(O) = Γp ∪ Pn−1. The
whole fiber is always inside Z. Call the embedded Pn−1 = E. By definition, Z is closed.

Claim 7.8. Z is irreducible.

Proof. Z ∩ pr−1(Pn − {0}). This is nothing but the graph Γp = {(x, p(x)) ∈ (Pn −
{0}) × Pn−1}. Then Γp is irreducible. To prove the claim, it is enough to show that
Z = Γp. (The closure of an irreducible topological space is irreducible.) Let q ∈ Pn−1 let
`q = p−1(q)∪{0}. `q is a line in Pn. `q ⊂ Pn×{q} ⊂ Pn×Pn−1 and (`q−{0})×{} ⊂ Γp ⊂ Z.

In particular, (O, q)`q × {q} lands in the closure Γp. (The point is in the closure of the

graph.) E = {O} × Pn−1 ⊂ Γp implies Z ⊂ Γp. �

So Z is irreducible, and is a projective variety called the blowup of Pn at O. When you
restrict pr : Z → Pn, then

pr−1(O) ∼= Pn−1 = E

where E is called an exceptional Pn−1 divisor, and pr : Z−E → Pn is 1-1. (You replace the
origin by Pn−1.) (Imagine turning a pair of intersecting curves into a helix; the crossbars
are the `q × {q}.)

Definition 7.9. Let X ⊂ Pn−1 be quasi-projective. Assume O ∈ X. The blowup of X
at O is pr−1(X −O) ⊂ Z.

X − {0} �
� //

��

X̃

pr

��

� � // Z

pr

��
X − {0} �

� // X �
� // Pn

where X̃ = pr−1(X −O) ⊂ Z. The Z in the top right is the blow up of Pn at O.

Now, for arbitrary quasi-projective variety containing this point, we can define the blow
up as the preimage of X − {0} in Z?
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Example 7.10. y2 = x3 + x2 ⊂ A2 ⊂ P2 contains the point O = (0, 0, 1) ∈ X. Let X̃
be the blow up of X at O. (Remember, this has a loop at the origin.) Let (u, v) be
coordinates on P1. Then the blow-up is given by

Z = V (xu− yv) ⊂ P2 × P1

Now take the blowup of X̃. Let

pr−1(X) ⊂ P2 × P1

The whole preimage is given by

V (y2z − x3 − x2z)

Look at pr−1(X) ∩ Z ⊃ X̃. To get the intersection, we want to solve{
xu− yv = 0

y2z − x3 − x2z = 0
⊂ A2 × P1

Just cover P1 by two affines: u 6= 0 and later v 6= 0. That is if we have we are solving the
equations {

xu− y = 0

y2 − x3 − x2 = 0
=⇒

{
y = xu

x2(u2 − x− 1)

This is not irreducible; it is given by two components

V (y − x, x2(u2 − x− 1)) = V (y − xu, u2 − x− 1) ∪ V (u− xu, x2)

(We’re trying to calculate pr−1(X) ∩ Z.) The second thing is the exceptional locus E ∩
(A2 × A1). The first thing is X̃, because when you map to X it is an isomorphism away
from zero. (The second one is totally contained in E.)

E ∪ X̃ is the preimage of X. We can remove E because it isn’t in the closure of

. . . something? We will see that X̃ is smooth. pr−1(O) is given by x = 0, y = 0;u =
1, v = 1;x = 0, y = 0;u = −1, y = 1.

8. October 4

We will show that the class of algebraic varieties contains all the quasi-projective varieties.
Here is a corrected definition:

Definition 8.1. A rational map is a correspondence Z ⊂ X × Y irreducible, such that
there is some X0 ⊂ X open and prX(Z ∩ pr−1

X (X0))→ X0 is an isomorphism.

(The previous definition works only when the characteristic is zero. Example: consider
the Frobenius map F : A1 → A1, where x 7→ xp. The graph ΓF ⊂ A1×A1; the projections
are bijections. However, this is not a birational map; we will see that birational maps
induce an isomorphism of the function field. This does not: k(X)→ k(X) is an injective
map of fields, but not an isomorphism. The graph is always isomorphic to the domain,
but the projection to Y is not an isomorphism.)

35



Math 232a Xinwen Zhu Lecture 8

Let O = (0, · · · , 0, 1) ∈ Pn. We have a projection: p : Pn−{0} → Pn−1. We get the blowup
BlO(Pn) = Z ⊂ Pn × Pn−1 that has projections to each factor. If we have a subvariety
X 3 O, then take pr−1(X−{0}) and take the Zariski closure; this is BlOX. The preimage
of O is called E, which was called an exceptional divisor; it is isomorphic to Pn−1. (For
example, the blowup of a nodal curve was the union of the exceptional divisor, a copy of
P1, and the curve whose singular point had been separated into another dimension. The
original curve was not smooth, but after blowing up it is smooth.)

8.1. Resolution of singularity problem. Given an algebraic variety X, find
Y → X a birational surjective morphism with Y smooth.

Answer: Yes, if the characteristic is zero (Hironaka). Unknown, if char(k) > 0, unless the
dimension is 1 or 2. A common technique is to blow up the singular locus many times,
and we hope that we get something smooth.

Example 8.2 (Incidence correspondence). Let C ⊂ G(r, n)× Pn. Define

C = {(L, x) : x ∈ L}
We claim that C is a correspondence. In fact, C is a smooth projective variety of dimension
(r + 1)(n− r)r.

Proof. First, why is it closed? Pn = P(V ), dimV = n+ 1. Let e0 · · · en be a basis of
V . Let W = Λr+1V . We had constructed the Plücker embedding:

G(r, n)× Pn ψ×ID→ P(W )× Pn where (L, x) 7→ ([L], x)∑
aIeI ∈ W , I ⊂ {0, · · · , n} with cardinality r + 1. x ∈ [L] iff [L] ∧ x = 0, a.k.a.∑
aIeI ∧

∑
xiei = 0; this is a bihomogeneous polynomial of degree (1,1). This gives an

equation F (aI , x) = 0. So we can write

C = V (F ) ∩ (ψ(G(v, n))× Pn)

We need to show that it is irreducible and smooth. To do this, we claim that for each
I ⊂ {0, · · · , n} with cardinality n− r we have

pr−1(VI) ∩ C ∼= VI × Pr

(It has an open cover such that the open subset is smooth. Check that the RHS is
irreducible smooth of dimension (r + 1)(n− r) + r; use the homework that dimX × Y =
dimX + dimY .) I parametrizes coordinates in an n− r dimensional vector space; we get
a map I → kI .

You can get a (n− r − 1)-plane kI/Image := M ⊂ Pn so M = {(0, · · · , 0, a1 · · · an−r−1)}
We get a rational map

pM : Pn → Pr where (a0 · · · an) 7→ (a0 · · · ar)
and p−1

M (y) is an (n− r)-plane. I want to construct a map

C ∩ pr−1(VI)→ VI × Pr (L, x) 7→ (L, pM (x))
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Remember L∩ kI = {0} so x ∈ L =⇒ x /∈M . (M = P(kI), and you get an isomorphism
between Pr and P(L).) �

Definition 8.3. A morphism f : X → Y is called dominant if f(X) contains an (open)
dense subset. (Equivalently (?) require that the image is dense). A rational map Z ⊂
X × Y is called dominant if prY : Z → Y is dominant.

In the homework we have another notion of rational maps: if U ⊂ X is open, and f : U →
Y is a morphism. We call this

Maps(X,Y )rat
′

= {(U, f) : U ⊂ X, f : U → Y }
There is an isomorphism from this to Maps(X,Y )rat given by taking the closure of the
graph of f . In the homework, we see that this is injective. But using the new definition, we
see that it is bijective. If there is someX0 ⊂ X such that the restriction pr−1(X0)∩Z → X0

is an isomorphism, construct U = X0 and f to be the composition of this map with the
map to Y . The dominant condition just means: Z is dominant iff f : U → Y is dominant.

If f : X 99K Y is rational, then f∗ is the induced map k(Y ) → k(Y ). If g ∈ k(Y ) then g
is a regular function of some open V ⊂ Y : g ∈ O(V ). Then g ◦ f ∈ O(f−1(V )) ⊂ k(X).

Proposition 8.4. Consider the functor

F : (alg.var)+(dominant rational maps)→ (f.gen. field extn of k)+(k-alg. homomorphisms)

Then F is an equivalence of categories.

Proof. We have a natural map

Maps(X,Y )rat,dom → Homk.alg(X,Y )

We need first to show that this is bijective; we do this by constructing an inverse. Let
θ : k(Y )→ k(X). The function field of a variety is the same as the function field of any of
its open subsets. So we can let Y0 ⊂ Y , X0 ⊂ X be affine opens, and Y0 ⊂ An, etc. There
are some coordinate functions (y1 · · · yn). So θ(yi) is a rational function on X. θ(yi) is a

rational function, so θ(yi) = fi
f0

for fi ∈ O(X0) and f0 6= 0. Let U = X0 − {f0 = 0} 6= ∅.
θ(yi) ∈ O(U). A morphism U → Y that is affine is equivalent to a map O(Y0) → O(U).
This gives a map in the other direction.

(We claim that this is dominant: image dense ⇐⇒ image contains an open dense subset.
If U → Y0 factors through Z ⊂ Y0 then choose f ∈ I(Z) ⊂ O(Y0). Z ⊂ V (f). If it
vanishes on a set, then it vanishes on the pullback.) �

Remark 8.5. The birational maps correspond to isomorphism; they are the invertible
morphisms in these categories.

Let K = k(x1 · · ·xr) be a finitely generated field over k. Take A = k[x1 · · ·xn] ⊂ K, a
finitely generated ring. Under the equivalence of categories, denote the image of A as
Spec(A); k(X) = K.

Corollary 8.6. Every algebraic variety X is birational to a hypersurface in Pn.
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Proof. Let K = k(X) be finitely generated over k. From commutative algebra, k is
algebraically closed so it is perfect. Therefore, K/k is separably generated. That is, there
are some x1 · · ·xr transcendental over k such that K/(k(x1 · · ·xr)) is finite and separable
(and hence generated by one element). So there is some y ∈ K such that

K = k(x1 · · ·xn)(y).

y has some minimal polynomial yn + a1(x1 · · ·xr)yn−1 + · · · + an(x1 · · ·xr) = 0; each ai
is an element of the field k(x1 · · ·xn) of rational functions, and so they can be written as
the ratio of two polynomials. So we can write f(x1 · · ·xr, y) = 0 for f ∈ k[x1 · · ·xr, y].

We have V (f) ⊂ Ar+1 an affine variety of dimension r and the function field k(V (f)) = K.

Therefore, X is birational to V (f), and therefore to V (r) ⊂ Pr+1. (Birationally, every
variety is the same as a hypersurface.) �

Theorem 8.7. The projection Pn × Pm p2→ Pm is a closed map. That is, if every Z ⊂ Pn
is closed, then p2(Z) is closed.

We will prove this next time. But this is not the same as for affine varieties.

Remark 8.8. We claim that A1 × A1 p2→ A1 is not closed. For example, consider xy = 1:
V (xy − 1) 7→ A1 − {0}.

Corollary 8.9. Let X,Y be projective varieties. Let Z ⊂ X × Y be a correspondence.
Then prY (Z) is closed.

Corollary 8.10. Let Z ⊂ G(r, n) be a closed subvariety. Then the union⋃
L∈Z

L ⊂ Pn

is a projective variety.

Proof. C has projections to Z ⊂ G(r, n) and to Pn. Since Z is irreducible, pr−1
1 (Z)

is irreducible. ∪L ⊂ Pn = p2p
−1
1 (Z). �

Corollary 8.11. Let X ⊂ Pn − {0}. Then p0(X) is a projective variety in Pn−1. We
have Z = Bl0Pn with maps to Pn and X ⊂ Pn. its image p−1

1 (X) is still closed. The
projection is exactly the projection p0(X); hence closed.

9. October 6

Theorem 9.1. p2 : Pn × Pm → Pm is closed.

Definition 9.2. An algebraic variety X is called complete if for any algebraic variety Y ,
X × Y → Y is closed.

The theorem implies: projective varieties are complete. (But it’s not obvious.) Let X,Y, Z
be projective.
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Corollary 9.3. If Z ⊂ X × Y is a correspondence, then prY (Z) is closed.

Corollary 9.4. Let A ⊂ X × Y , B ⊂ Y × Z be correspondences. Then

C =: B ◦A = {(x, z) ∈ X × Z : ∃y ∈ Y, (x, y) ∈ A, (y, z) ∈ B}
is a correspondence. (So you can compose correspondences.)

(If A and B are graphs of morphisms, then C is the graph of the composition.)

Proof. Consider X × Z p12,p23,p13→ X × Y,X × Z, Y × Z. Then C = p13(p−1
12 (A) ∩

p−1
23 (B)) �

Corollary 9.5. Let X ⊂ Pn be projective, with O /∈ X. Then p0(X) is projective
and p0 : X → p0(X) = X ′ has finite fibers. In addition, dimX = dimP0(X) and
S(X)Sn/I(X) is a finite module over S(X ′) = Sn−1/I(X ′).

Proof. For any point y ∈ Pn−1, p−1
0 (Y ) ∼= A1 and therefore p−1

0 (y) ∩X is closed in

A1. It can’t be the whole A1; X does not contain O. So p−1
0 (y) ∩X is finite. (What are

the closed things in A1!)

Say O = (0, · · · , 0, 1). Because O /∈ X, there is some f ∈ I(X) such that f(0) 6= 0 and
f = xdn + a1(x0 · · ·xn−1)xd−1

n + · · ·+ ad(x0 · · ·xn−1). So S(X) is generated over S(X ′) by
1, xn, · · · , xd−1

n . (It’s a finite module.) So S(X) is finite over S(X ′), which implies

tr.d.kS(X) = tr.d.kS(X ′)

Transcendental degree over an integral domain means the transcendental degree of the
fraction field. In the homework we defined the cone as a projective variety. But if we
remove one hyperplane, we can consider this as the affine cone; the coordinate ring is
exactly the affine coordinate ring. So the previous formula is

tr.d.kS(X)
why
= dimC(X) = dimC(X ′) = tr.d.kS(X ′) =⇒ dimX = dimX ′

�

Corollary 9.6 (Noether’s normalization lemma). Let Xr ⊂ Pn be a projective variety.
(The superscript Xr means its dimension is r.) Then there is some (n − r − 1)-plane
L such that X ∩ L = ∅ and pL : Xr → Pr has finite fibers, and S(Xr) is finite over
Sr = S(Pr) (homogeneous polynomial ring of r + 1 variables.)

If L = (0, · · · , 0, ar+1 · · · , an) then the projection PL means you project to the first r
coordinates.

Proof of corollary. By induction. Choose one point, and use induction on n− r.
If n− r = 1 then there is nothing to do: choose a point, and do the projection p0 : X →
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P0(X) ⊂ Pn−1. The target space is closed, and has the same dimension of X; therefore,
they coincide. In general, choose a point 0 /∈ X, and do the projection

P0 : X → P0(X) = X ′ ⊂ Pn−1

Choose some (n− 1)− (r − 1) plane L′ ⊂ Pn−1. Then

PL′ : X ′ → Pr, PL′ ◦ P0 = Pspan(L′,0)

But L is the unique linear variety containing L′ and the point O. �

Proof of theorem. Let Z − V (f1 · · · fr) be an algebraic set of Pn × Am. Closed
subsets in this product are given by polynomials which are homogeneous in the first
coordinates, and not in the second half of the coordinates. Let fi = fi(x1 · · ·xn, y1 · · · yn)
be homogeneous of degree di in X. p2(Z) 63 b ⇐⇒ {fi(x, b)} do not have common zeroes
in Pn. Equivalently, there is some N such that (x0 · · ·xn)N ⊂ (f1(x, b) · · · fr(x, b)) (the
radical). Let

UN = {b ∈ Am : (x0 · · ·xn)N ⊂ (f1(x, b) · · · fr(x, b))}
Am − p2(Z) = ∩N≥1UN . It is enough to show that UN is open. Let S = k[x0..xn] =⊕

d≥0 Sd. For b ∈ Am define a map T
(N)
b : SN−d1 ⊕ · · · ⊕ SN−dr → SN that sends

(g1, · · · , gr) 7→
∑

gifi(x, b)

This is a k-linear map between two k-vector spaces. This is given by some matrix; the
entries of this can be expressed as polynomials of b. Therefore, we get a map

T (n) : Am → Homk(SN−d1 ⊕ · · · ⊕ SN−dr , SN )

and b ∈ UN ⇐⇒ T
(N)
b is surjective. In terms of b, T (N) is a morphism of affine varieties.

Originally, we defined the determinantal variety as Zr ⊂ P(Hom(V,W )); now we have to
consider the affine version of this. Here, the cone is the affine cone.

Observations:

(1) T (N) is a morphism of affine varieties.
(2) Let D = dimSN −1. Then consider ZD the determinantal variety, which consists

of matrices of rank ≤ D. This is a closed projective variety; it might not be
irreducible. Consider the affine cone

C(ZD) ⊂ Hom(SN−d1 ⊕ · · · ⊕ SN−dr , SN )

is closed
(3) Therefore, Am − UN = (T (N))−1(C(ZD))

�

We saw an example that A1 × A1 → A1 might not be closed. (?)

Proposition 9.7. Let ϕ : Xr → Y s be a morphism of (quasi-projective) varieties, r ≥ s.
Let y ∈ ϕ(Xr), and let W ⊂ ϕ−1(y) be an irreducible component. (The fiber is closed, but
not necessarily irreducible; choose any irreducible component.) Then dimW ≥ r − s.
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Proof. By Noether normalization Y s ⊂ Y ⊂ Pm → Ps

Xr → Y s → Ps

It is enough to assume Y s = Ps ⊃ As, because Y s → Ps has finite fibers. We can assume
that Y = As, and y = 0. Let fi = yi ◦ ϕ be the pullback of a coordinate function. Then

ϕ−1(0) = V (f1 · · · fs)
It is enough to show: if X ⊂ An (some arbitrarily large space) is affine then every ir-
reducible component of Xr ∩ V (f) has dimension ≥ r − 1. (When we’re all done with
the coordinate function yi, use induction). Assume S 6⊂ V (f). We want to show that
each irreducible component of X ∩ V (f) has dimension r − 1. (It can’t have dimension
1, because we proved earlier that any subvariety has dimension < that of the original.)
Replace X,V (f) by their closures in Pn ⊃ An (we’re reducing to the projective situation.)

Then V (f) = V (F ), where F is some homogeneous polynomial of some degree d.

Now consider the d-uple embedding; we can assume degF = 1. (The hypersurface be-
comes a hyperplane.) So V (F ) = H is a hyperplane. (F is the homogenization of f ,
fdeg ff(x1x0 · · ·

xn
x0

)). We want to say that each projective variety reduces the dimension
by one. We know this is true if the projective variety is projective space. Let O ∈ H
with O /∈ X ∩ H. Consider the projection P0 : Pn → Pn−1 (since we’ve used the d-uple
embedding, n might be different).

P0 : Pn 99K Pn−1

(H ∼= Pn−1 99K P0(H) ∼= Pn−1) where X 99K P0(X)

Observation: P0(X ∩H) = P0(X)∩P0(H). ⊂ is obvious. To get the other direction, let
W ⊂ X∩H be an irreducible component. P0(W ) is irreducible in P0(X)∩P0(H). (P0(W )
is an irreducible component; need to check this.) By induction on n − r, dimP0(W ) =
dimP0(X)− 1 = dimX − 1. But dimP0(W ) = dimW .

Next consider if r = s. From the proposition we know that the fiber has dimension to
≥ 0; in this case we claim that the fiber has dimension zero. We know how many points
are in the fiber.

Definition 9.8. Let ϕ : X → Y be a dominant morphism. We say that ϕ is separable
if k(X) is separably generated over ϕ∗(k(y)): it is a composition of a finite separable
extension and a purely transcendental extension. (ϕ induces an inclusion from k(Y ) →
k(X); regard this as a subfield.) This is not automatic: the field is not a perfect field.

Example 9.9. Let F : X → X be the Frobenius morphism. Then F is dominant but not
separable. For example, X = A1; if you look at k(X) → k(X) the power map x 7→ xp,
this is not a separable field extension.

Remark 9.10. From now on, assume every variety is algebraic. You can reduce the general
case to the affine case in the following.

Proposition 9.11. Let ϕ : Xr → Y r be a separable morphism of varieties of the same
dimension. Then there exists Y0 ⊂ Y open such that ϕ−1(y) is finite, and

#ϕ−1(y) = [k(X) : k(Y )]

for y ∈ Y0. Each fiber has one point; but the extension is not degree 1.
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Let’s start with a special case: k(Y ) = k(X). We want a Zariski open subset in Y such
that the fiber has just one point. We can assume X,Y are affine (exercise). Let Y ⊂ Am,
X ⊂ An. Let x1 · · ·xm be coordinate functions on Am. ϕ∗ induces an isomorphism.

ϕ∗−1(xi) =
fi
f0

for fi ∈ O(Y )

Consider Y0 = Y − V (f0). The preimage of Y0 contains only one point. Then ϕ−1(y) =

(f1(y)
f0(y) · · ·

fn(y)
f0(y) ), for y ∈ Y0 (there is no other choice of point).

10. October 11

Proposition 10.1. If f : Xr → Y s is a morphism (i.e. an r-dimensional variety to an
s-dimensional one), then for any y ∈ Y s, and component W ⊂ ϕ−1(y), dimW ≥ r − s.

We reduced to proving this for affine varieties. Moreover, we can reduce to proving the
following claim. (Assume X,Y affine; replace Y by an affine space by Noether normaliza-
tion. A map x → Y s is given by regular functions. Given one regular function, use the
d-uple embedding to make it into a hyperplane.)

Claim 10.2. If X ⊂ Pn projective, dimX = r, H a hyperplane. If X 6⊂ H then every
component of X ∩H has dimension r − 1.

Use induction. n = r is OK, because X is all of Pn and X ∩ H is a hyperplane. In
the case r = n − 1, X = V (f) is a hypersurface. So X ∩ H is a hypersurface defined
by f(x0, · · · , xn−1, 0) (this polynomial might not be irreducible). Each component has
dimension n− 2 = r − 1.

Now suppose n−r ≥ 2. Let O ∈ H−X ∩H and consider the projection P0 : Pn 99K Pn=1.
Then last time we said

P0(X ∩H) = P0(X) ∩ P0(H)

Then P0(H − 0) is a hyperplane in Pn−1. Let W ⊂ X be a component. If P0(W )
is a component, of P0(X) ∩ P0(H − 0) then we are done by induction. (By induction,
dimW = dimP0(W ) = r − 1.) The claim is that if we choose the projection in a good
way, we can always choose P0(W ) to be a component.

Claim 10.3. Fix W ⊂ X ∩H to be a component. We can find O ∈ H\X ∩H such that
P0(W ) is a component of P0(X) ∩ P0(H − 0).

Say X ∩ H = W ∪ W ∗ where W ∗ = W1 ∪ · · · ∪ Wm is the union of other irreducible
components. Then it’s enough to show that there is some point O such that P0(W ∗) 6⊂
P0(W ∗). (We already know that P0(X ∩ H) = P0(W ) ∪ P0(W1) ∪ · · · ∪ P0(Wm).) Pick
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x ∈W\W ∗. Consider P−1
x Px(W ∗) = C(Px(W ∗)). What is the dimension of W ∗?

dimWi ≤ dimX − 1 = r − 1

Therefore, dimC(Px(Wi)) ≤ r < n− 1 = dimH. The cone is inside H, because x and W ∗

are. So we can find a point

O ∈ H − C(Px(W ∗))−W
It’s not inside the cone, nor inside W . Now do the projection PO : Pn 99K Pn−1 and we
find that

P0(X) /∈ P0(W ∗)

otherwise P0(x) ∈ P0(W ∗) would imply that O is in the line joining x and a point in W ∗,
which would imply that O is in the cone C(Px(W ∗)). This is a contradiction, so we are
done.

What if X and Y have the same dimension?

Proposition 10.4. Let ϕ : Xr → Y r be separable. Then there is some Zariski open
Y0 ⊂ Y such that #ϕ−1(y) = [k(Xr) : k(Y r)] for all y ∈ Y0.

Remark 10.5. This is not true if the separability assumption is removed. For example,
the Frobenius morphism from last time. Actually, the cardinality of the preimage is always
equal to the separable degree, and if the field extension is separable, then separable degree
= degree.

Theorem 10.6 (Primitive element theorem). Let L/K be a finite separable extension.
Then L is generated over K by one element. In addition, if β1 · · ·βr form a set of gener-
ators, then the generator can be taken to be

α =
∑

λiβi λi ∈ K

Proof. First we can assumeX,Y affine. Now, we can assume

k(X) = k(Y )p[f ı, f ∈ O(X)

ϕ∗ : k(Y ) ↪→ k(X). Consider

X
ϕ
→ Y × A1 p1→ Y

where x 7→ (ψ(x), f(x)) 7→ ϕ(x) and Z = ψ(X). Then k(Y ) ⊂ k(Z)
∼→ k(X), where the

second map is an isomorphism because k(Z) contains the preimage of the generator f of
k(X). Apply the case from earlier: there is some Z0 ⊂ Z open such that #ψ−1(z) = 1
for z ∈ Z0. Therefore, we can replace X by Z and assume X ⊂ Y × A1. Let P (t) be the
minimal polynomial of f .

P (t) = tn + a1t
n−1 + · · ·+ an

for ai ∈ k(Y ). The ai are rational functions, but if we replace Y by the open subset Y0,
we can assume that they are regular functions. P (f) = 0; because it is separable (?) P (t)
and P ′(t) do not have common zeroes. Let W ⊂ Y × A1 be defined by

W = {(y, t) :
∑

ai(y)tn−i = 0}

X ⊂W . But what if there are other things in W? Call these X∗, so W = X ∪X∗.
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We claim that ϕ(X∗) ( Y . (So the image of the other components X∗ doesn’t take over
the image.) That is, there is some Y1 ⊂ Y open such that W ∩ ϕ−1(Y ) = X ∩ ϕ−1(Y1).
The picture is

X �
� //

ϕ

##

Y × A1

p1
��
Y

In fact, let fi ∈ k[y, t] be the generators of I(X)

I(X) ⊂ k[y, t] // O(Y )[t] //

��

O(X)� _

��
k(Y )[t]/p(t)

∼ // k(X)

There is some b0i(y) ∈ O(y) such that bi(y)fi(y, t) ⊂
∑
ci(y, t)p(t) + I(Y ).

Y1 = Y − {
∏

bi(y) = 0}

If (y, t) ∈ W ⇐⇒
∑
ai(y, t)t

n−i = 0, then bi(y)fi(y, t) = 0 =⇒ (y, t) ∈ X, because
bi 6= 0 (so f has to be zero there). Therefore, the image must land inside the closed subset
defined by

∏
bi(y).

Note that we can replace X and Y by open subsets, because the complement would have
lower dimension.

Summary: We know that k(X) = k(Y )[t]/p(t). This is basically saying that there is
some open subset Y1 ⊂ Y such that this works on the level of coordinate rings:

O(ϕ−1(Y1) ∩X) = O(Y1)[t]/p(t)

Something (?) on the right is the same as P(W ∩ ϕ−1(Y1)).

Now replace Y by Y1. We can assume

O(X) = O(Y )[t]/p(t)

In other words,

X = {(y, t) : Y × A1 :
∑

ai(y)tn−i = 0}
For fixed y, this is a degree n polynomial; it has n solutions. But all the roots might not
be distinct. #ϕ−1(y) is just the number of roots of the polynomial

∑
ai(y)tn−1 = 0. p(t)

and p′(t) do not have common zeroes in k(y)[t]. This implies that there exist a(t), b(t) in
k(y)[t] such that a(t)p(t) + b(t)p′(t) = 1. Eliminate the denominators, so we can assume

ã(t)p(t) + b̃(t)p′(t) = c(y)

where ã and b̃ are in O(y)[t] and 0 6= c ∈ O(y). Over

Y0 = {y ∈ Y : c(y) 6= 0}
p(t) and p′(t) do not have common zeroes. So for y ∈ Y0, the roots of

∑
ait

n−i are distinct.
This implies #ϕ−1(y) = n, where n = [k(X) : k(Y )].
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�

10.1. Separable morphisms. Let ϕ : X → Y be a morphism, ϕ(X) = Y . This
induces a map of local rings

ϕ∗ : OY,y → OX,x
This pulls back a function vanishing on mY,y to one vanishing at mX,x. In particular, ϕ

induces a map dϕx of tangent spaces:

TxX //

=

��

TyY

∼
��

(mx/m
2
x)∗ // (my/m

2
y)
∗

Definition 10.7. The morphism ϕ is smooth at x if

(1) x (respectively ϕ(x)) is smooth in X (respectively in Y )
(2) dϕx : TxX → TyY is surjective

Proposition 10.8. Let ϕ : Xr → Y s be a dominant morphism .Then the following are
equivalent:

(1) ϕ is separable
(2) there is some X0 ⊂ X open such that ϕ is smooth at x ∈ X0

(3) there is some point x ∈ X such that ϕ is smooth at x

If ϕ is the Frobenius morphism, then there is no point at which this is smooth.

Proof. We can assume that X ⊂ An and Y ⊂ Am are affine.

X
ϕ

  

Γϕ

p2
��

� � //
p1
oo An × Am

��
Y �
� // Am

so we can just assume

X

ϕ
��

� � // An × Am

��
Y �
� // Am

Let g1 · · · gp ∈ I(Y ) be generators. ϕ∗(g1) · · ·ϕ∗(gp), f1, · · · , fq are generators of I(X). For
x ∈ X and y ∈ Y

TxX = {(ξ1 · · · ξn+m) ∈ kn+m :
∑ ∂gi

∂yj
ξj+n = 0,

n∑
j=1

∂fi
∂xj

ξj +
m∑
j=1

∂fi
∂yj

ξj+n = 0}

45



Math 232a Xinwen Zhu Lecture 11

This is the definition we gave at the beginning of this course. There is a projection of this
to

TyY = {(0, · · · , 0, ξn+1 · · · ξn+m) :
∑ ∂gi

∂yj
ξj+n = 0}

The kernel of this projection dϕx is

{(ξ1 · · · ξn) :

n∑
j=1

∂fi
∂xj

ξj = 0}

This is just the kernel of the matrix
(
∂fi
∂xj

)
. Now ϕ is smooth at x iff dim ker dϕx = r− s.

Assume X and Y are smooth to prove the proposition. The dimension of the kernel is
always ≥ r−s. (A linear map from r-dimensional space to s-dimensional space has kernel

with dimension ≥ r−s.) This is equivalent to having rk
∂fj
∂xi
≥ n−(r−s). This determines

an open subset of X. If this is nonempty then the second condition is satisfied. This shows
(2) ⇐⇒ (3). Next time: (1) ⇐⇒ (2).

�

11. October 13

From last time, we were trying to prove the following proposition:

Proposition 11.1. Let ϕ : X → Y be a dominant morphism. Then TFAE:

(1) ϕ is separable
(2) there exists X0 ⊂ X open such that ϕ is smooth for every point x ∈ X0

(3) there is some x ∈ X such that ϕ is smooth at x

Assume X,Y affine. We have already shown (2) ⇐⇒ (3). By replacing X by its graph,
we can assume X ⊂ An × Am. Also assume that X and Y are smooth. Then the map ϕ

is just

X �
� //

ϕ
��

An × Am

p2
��

Y �
� // Am

(g1 · · · gp) = I(Y ). We can choose fi such that (f1 · · · fq, ϕ∗g1 · · ·ϕ∗gp) = I(X). Then the
tangent space is

TxX = {(ξ1 · · · ξn, η1 · · · ηm) :

(
0 gy
fx fy

)(
ξ
η

)
= 0}

Via dϕx this maps to TyY = {(η1 · · · ηm) : (∂g∂y )η = 0} So the kernel of dϕx is {(ξ1 · · · ξn) :

( δfδx )ξ = 0} ϕ is smooth at x iff dim ker(dϕx) ≤ r − s. Equivalently, rk(∂f∂x ) ≥ n− r + s.

{p ∈ X : rk(
∂f

∂x
)(x) ≥ n− r + s} ⊂ X

46



Math 232a Xinwen Zhu Lecture 11

is open. (We know that the set of smooth points is open.) It is nonempty, so there is an
open subset where this is true. This shows (2) ⇐⇒ (3).

By the same trick used to get Derk(k(X), k(X)):

Derk(Y )(k(X), k(X))
∼→ Derk(Y )(k(X)⊗O(X) O(Y ), k(X))

∼= {D ∈ Derk(Y )(k(Y )[x1 · · ·xn], k(X)) : Dfi = 0}

= {(ξ1 · · · ξn) ∈ k(X)n :
∑

ξi
δfi
∂xj
}

We used:
k(Y )⊗O(X) ∼= k(Y )[x1 · · ·xn]/(f1 · · · fq)

where I(Y ) is generated by the fi. So

dimDerk(Y )(k(X), k(X)) = n− rkk(X)(
∂f

∂x
)

By the same argument as used in the smoothness proof, there is some X0 ⊂ X open such
that

rkk(X)
∂f

∂x
= rkk(

∂f

∂x
(x))

for all x ∈ X0. We can multiply this by a matrix to eliminate denominators.

We want to show (1) =⇒ (2). Assume k(X)/k(Y ) is separable. By a fact of commutative
algebra, this is equivalent to

dimk(X)Derk(Y )(k(X), k(X)) = r − s
where r = dimX and s = dimY . If L/K is a finitely generated field extension, then L/K
is separably generated iff dimLDerk(L,L) = tr.d.L/K . We used this earlier with K = k
and L = k(X). Now we use K = k(Y ) and L = k(X). So there’s an open subset where
the rank of the matrix is n− r + s. So the points here are smooth.

Remark 11.2. If ϕ : X → Y is smooth over X0 ⊂ X, then ϕ is dominant. (So the
assumption of dominant-ness in the proposition is not necessary.)

ϕ : X
ψ→ ϕ(X)

i
↪→ Y

dϕx − diψ(X) ◦ dψx
ψ(X) contains an open smooth subset Z of ϕ(X). This is possible because the smooth
points are an open sets, and the image contains a smooth subset. (Open sets are dense.)
Z = ϕ(X). I think we’re using the homework: the image of a constructible set contains
an open set. We get a factorization

dϕx : TxX → TzZ ↪→ TzY

The second map can’t be an isomorphism, because the dimension is greater on the right.
dϕx is not surjective; contradiction.

Corollary 11.3 (Sard’s lemma for varieties / Generic smoothness). Let char(k) = 0,
ϕ : X → Y dominant. Then there is some nonempty Zariski-open subset Y0 ⊂ Y such
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that
ϕ|ϕ−1

(Y0)
ϕ−1(Y0)− Sing(X)→ Y

is smooth. (We have to exclude the singular points of X.) (This is wrong for the Frobenius
morphism in characteristic p; it is dominant but nowhere smooth.)

Proof. Assume X and Y are smooth. (We have already excluded the singular points
explicitly, so assume it was this way to start with.) Let X0 ⊂ X be the open subset such
that ϕ is smooth at x ∈ X0. X0 is always nonempty, because we are in characteristic zero:
any dominant map is separable, since any field extension is separable. Let Z = X\X0.
We just need to show that ψ = ϕ|Z : Z → Y is not dominant. The image of Z lies in a
proper closed subset; the complement of this subset is going to be Y0. If not, ψ : Z → Y
is dominant, and there exists some Z0 ⊂ Z open such that ψ|Z0 : Z0 → Y is smooth.
(Again, dominant morphisms are separable.)

Z
i→ X

ϕ
→ Y

where the composition is ψ. Choose z ∈ Z;

dψz : TzZ � Tψ(Z)(Y )

is surjective. This factors through TzX via dψz : TzX → Tψ(Z)Y ; but dψ should not be
surjective. By definition, this is the point where the morphism is not smooth. �

Proposition 11.4. Let ϕ : X → Y be smooth at x ∈ X. Then there exists a unique
component Z of ϕ−1(ϕ(X)) passing through x. In addition, Z is smooth at x and dimZ =
dimX − dimY .

For example, consider X = (xy = t) ⊂ A3; this maps to A1 by sending (x, y, t) 7→ x.
Away from the axis, the fibers are hyperbolas; at the origin, the image is the union of two
coordinate axes, and is not smooth.

Proof. Again, assume X and Y are two smooth varieties that are affine. Assume
X ⊂ An×Am and Y ⊂ Am. (This is a statement about local things.) Choose g1 · · · gm−s ∈
I(Y ) with independent linear terms. (X and Y have dimensions r and s, respectively.)
Let f1, · · · , fn−r+s ∈ I(X) such that f1 · · · fn−r+s, g1, · · · , gm−s have independent linear
terms. Because it’s smooth at the point, dim ker dϕ0 = r − s so

rk
∂f

∂x
(0, 0) = n− r + s

and so f1(x, 0), · · · , fn−r+s(x− 0) have independent linear terms. Consider the algebraic
set V (f1 · · · fn−r+s, g1, · · · , gm−s) = X∪X ′ where 0 /∈ X ′ (this was from. . . lecture 3-ish. . . )
Also consider

V (f1 · · · fn0rsg1 · · · gm−s, y1 · · · ym)− p−1
2 (0) ∩ (X ∪X ′) = ϕ−1(0) ∪ (p−1

2 (0) ∩X ′) 63 0

But the set on the left is

An ⊃ V (f1(x, 0) · · · , fn−r+s(x, 0))

Think of this An as An × {0}; this set is exactly Z ∪ Z ′ and 0 /∈ Z ′. Comparing the
two sides, Z ⊂ ϕ−1(0) is the unique component passing through zero. Z is smooth at
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zero, and so the dimension is the number of equations necessary to define it, which is
n− (n− r + s) = r − s.

�

Theorem 11.5 (Zariski’s main theorem, smooth case). Let ϕ : X → Y be a birational mor-
phism of quasi-projective varieties. Assume Y is smooth. Let Y0 = {y ∈ Y : #ϕ−1(y) =
1} (We know that there is an open subset of Y inside Y0.)

(1) ϕ|ϕ−1
(y0)

: ϕ−1(y0)→ Y0 is an isomorphism

(2) For any y ∈ Y \Y0 and a point x ∈ ϕ−1(Y ) there exists a subvariety E ⊂ X of

dimension r− 1 passing through x, and dimϕ(E) ≤ r− 2. In particular, for any
y ∈ Y \Y0, there exists a component in ϕ−1(Y ) of positive dimension.

Such E is called the exceptional divisor. (This is a generalization of the
exceptional divisor associated with the blowup.)

(AKA: If the preimage is not one point, then the preimage is a component of positive
dimension.) The assumption that Y is smooth is necessary: consider the map of A1 to the
cuspidal curve y2 − x3. Every point has a unique preimage, but it is not an isomorphism.

Proof. Let x ∈ X and y ∈ Y . ϕ induces a morphism of local rings

ϕ∗ : OY,y ↪→ OX,x
that reduces to a morphism k(Y )→ k(X). There are two cases. Let

Y1 = {y ∈ Y : ∃x ∈ ϕ−1(y), ϕ∗ : OY,y
∼→ OX,x}

Y2 = {y ∈ Y : ∃x ∈ ϕ−1(y), ϕ∗ : OY,y ( OX,x ∀x ∈ ϕ−1(Y )}

Claim 11.6. Y1 ⊂ Y0 and Y2 ⊂ Y \Y0. (All of this implies Y1 = Y0, Y2 = Y \Y0.)

Let y ∈ Y1. We have OY,y ∼= OX,x for some point x ∈ X. If x′ ∈ ϕ−1(Y ) is another point,
then

Ox,x ∼= OY,y ⊂ OX,x′
The claim follows from the following lemma:

Lemma 11.7. Let X be quasi-projective, x and x′ two points such that OX,x ⊂ OX,x′ ⊂
k(X). Then x = x′.

By some old homework, if there is an isomorphism between local rings, then there is an
isomorphism on open subsets.

Proof of lemma. Assume X ⊂ Pn is projective: take its closure. Choose some
appropriate hyperplane that does not pass through x and x′; we can assume that X
is affine. (For quasi-projective varieties, every two points are contained in one affine
subvariety.) Now there is a 1-1 correspondence between points of X and maximal ideals
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of O(X). If one is contained in the other, then there is an inclusion of maximal ideals;
but since they’re maximal ideals, then they are the same. That is,

OX,x ⊂ OX,′x =⇒ mx ⊃ mx′

Amx ⊂ k(A) ⊃ Am′x . �

We want to show that Y2 ⊂ Y \Y0. Take y ∈ Y2, and consider the preimage. Let f ∈ OX,x
be such that f is in OY,y: that is, f = ϕ∗(ab ) for a, b ∈ OY,y. (We’re using the fact it’s
birational.) b(y) = 0. We need the following theorem:

Theorem 11.8. If y ∈ Y is smooth, OY,y is a unique factorization domain. ( Using
smoothness!)

Proof: commutative algebra.

Now, because OY,y is a UFD, we can assume that a, b are coprime in OY,y. Let b = βb′

where β is prime. Now P = O(Y ) ∩ βOY,y is a prime ideal. Let E be a component of
V (ϕ∗β)∩X. The set of zeroes of this contain the point x. β is prime, so it will vanish at
y. So ϕ∗β will vanish at x.

dimE = r − 1 (we proved before that a component is cut out by one equation, as it

has dimension r − 1). ϕ∗(a) = fϕ((b) = fϕ∗(β)ϕ∗(b1) which implies that ϕ∗(a) vanishes

on E. This implies a, β vanish on ϕ(E). But a, b coprime implies a /∈ P. Therefore,
ϕ(E) ( V (P) ( Y and so dimϕ(E) ≤ r − 2.

y ∈ Y2 imlies dimϕ−1(y) ≥ 0 implies y ∈ Y \Y0.

�

12. October 18

Theorem 12.1 (Zariski main theorem, smooth case). Let ϕ : X → Y be birational, with Y

smooth. There is some Y0 ⊂ Y open and ϕ : ϕ−1(Y0)
∼→ Y0 and for every y ∈ Y \Y0, there

exists a subvariety E of dimension r − 1 through x ∈ ϕ−1(y) such that dimϕ(E) ≤ r − 2

ϕ : E → ϕ(E) =⇒ dimϕ−1(y) ≥ 1

Recall the blowup of the point in the plane: V (xu − yv) = Z ⊂ A2 × P1. E is the
exceptional divisor. Choose O = (0, 0) and P = (0, 0, 0, 1) ∈ E. (There is a map of local
rings OZ,p ←↩ OA1,O : ϕ∗ that is not an isomorphism.) Setting v = 0, we get the subset
V (xu − y). u ∈ OZ,p and you can write u = ϕ∗( yx) so in the proof x is an irreducible
element in the local ring. Choose E = V (ϕ∗x) ⊂ Z − {v = 0} defined by x = 0. E is
defined by the pair xu − y = 0 and x = 0 so x = y = 0; this is exactly the exceptional
divisor. x determines a variety of codimension 1 on the base copy of A2: this is what we
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denoted V (P). Since y does not vanish, the image of E is not the whole y axis: it is just
one point. The image of Z − {v = 0} is A2 − {x = 0} ∪ {(0, 0)} (this is constructible: not
open or closed, or locally closed).

In the proof, we used the result that the local ring at a smooth point is a UFD. (Not
proven here; final project?)

12.1. Divisors. Let X be a smooth algebraic variety.

Lemma 12.2. Let X be affine, and x ∈ X. Let f ∈ OX,x be an irreducible element (a
prime element, and in particular fOX,x is a prime ideal). fOX,x ∩ O(X) = P is prime,
and X ′ = V (P) is a subvariety of dimension r − 1 containing x.

Conversely, if X ′ ⊂ X is a subvariety of dimension r − 1 and x ∈ X ′ then there is some
irreducible element f ∈ OX,x such that X ′ = V (P) and P = fOX,x ∩ O(X). In other
words, I(X ′) · O(X,x) = f · O(X,x).

Proof. By shrinking the affine variety a little bit, I can assume that f ∈ O(X).
There exists some open U ⊂ X such that V (f) ∩ U = V (P) ∩ U . (Like in lecture 3, f
generates this locally (but maybe not globally).) Each irreducible component of this has
dimension r − 1 (it’s given by one function).

Conversely, choose f ∈ I(X ′). Then f is not a unit in OX,x (because it vanishes at a
point). Because it is a UFD, you can factor f into prime divisors, and then assume that
f is really a prime element. X ′ ⊂ V (f) but they have the same dimension, so it is exactly
one component of V (f). So X ′ = V (P). �

Definition 12.3. Let X ′ ⊂ Xr of dimension r − 1. Let x ∈ X;. An element f ∈ OX,x is
called a local equation of X ′ at x if f · OX,x = I(X ′) · OX,x.

We showed that every smooth variety of dimension r − 1 has a local equation. Let X be
a smooth algebraic variety. The divisor group Div(X) is the free abelian group generated
by the codimension 1 subvarieties. (The codimension 1 subvarieties form a set; consider
the free abelian group over this set.) For example, elements in Div(X) can be written as
a formal sum ∑

Zi⊂X
Zi codim. 1

niZi

where all but finitely many of the ni are zero.

Definition-lemma 12.4. There exists a natural group homomorphism k(X)x → Div(X)
taking f 7→ (f).
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Construction. Write (f) =
∑
nZZ and we need to define nZ ∈ Z. Choose any

point x ∈ Z. In OX,x choose a local equation fZ . Then we can write

f =
g

h
f rZ g, h ∈ OX,x and gh, fZ are coprime

Define ordZ,x(f) = r for r ∈ Z. (This is independent of the choice of local equation,
because these differ by a unit. Why? If f1 and f2 are two, then they divide each other,
because look at where they vanish. Up to multiplication by a constant, primes are in
1-1 correspondence with codimension-1 subvarieties.) Therefore, this is well-defined. We
claim that this does not depend on the choice of x: more precisely, x 7→ ordZ,x(f) is locally
constant on Z and is therefore independent of the choice of x. (Z is irreducible, hence
connected, so we can drop the “locally” in the “locally constant.”)

In a neighborhood of x in X, U ∩Z = V (fZ)∩U so fZ is a local equation for every point
y ∈ Z. Because f = g

hf
r
Z (assume both g and h are regular functions on some open set

U), assume we have moved x to any point y ∈ U . Also (gh, fZ) = 1 because if fZ |gh then
this would vanish on Z. ordZ,y(f) = r = ordZ,x(f) for all y ∈ U ∩ Z.

Claim 12.5.

• ordZ(fg) = ordZ(f) + ordZ(g)
• ordZ(f + g) ≥ min{ordZ(f), ordZ(g)} if f + g 6= 0

Proof. Exercise. �

Claim 12.6. Fix f ∈ k(X)x (nonzero rational function); then for all but finitely many Z,
ordZ(f) = 0.

Proof. We can assume that X is affine: there are only finitely many closed subvari-
eties of codimension 1 in the complement; so we can ignore them. Almost all varieties of
codimension 1 intersect this open affine. f = g

h for g, h ∈ O(X). ordZ(f) 6= 0 =⇒ Z ⊂
V (gh) but the latter has only finitely many irreducible components. �

ordZ(f) measures the vanishing order of f on this variety. If it’s a rational function, it
measures the order of the pole on the variety.

Finally, we can define nZ = ordZ(f). So define

(f) =
∑

ordZ(f) · Z

�

If it’s a function over C there is a similar situation. Around the origin, you can always
write g = zr; this is the same r as defined above.

Definition 12.7.
Div0(X) = Im(k(X)× → Div(X))
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is called the group of principal divisors.

Pic(X) = Cl(X) := Div(X)/Div0(X)

is called the Picard group, or divisor class group, of X.

Example 12.8. If X = An, then Pic(X) = 0. This is implied by the following fact: every
subvariety of codimension 1 is a hypersurface (we proved this a while ago). So each Z is
a principal divisor, and every divisor is in the image of this map.

If X is affine, then O(X) is a UFD iff Pic(X) = 0. Equivalently, a ring of integers is
a UFD iff its class group is zero. Assume that O(X) is a UFD. We need to show that
every subvariety of codimension 1 is defined by one equation. Use the trick from before:
let Z ⊂ X be codimension 1. f ∈ I(Z) is not a unit, because it vanishes somewhere.
Factor f into prime divisors; we can assume that f is irreducible. We know Z ⊂ V (f)
but because f is irreducible, f is prime and (f) is a prime ideal. V (f) is an irreducible
subset, and it has the same dimension of Z; therefore, Z = V (f) (it’s a component, and
V (f) is connected since it’s irreducible).

Conversely, assume that Pic(X) = 0; we want to show that O(X) is a UFD. So every
subvariety is a principal divisor: Z = (f) . f ∈ k(X). This implies that ordZ′f = 0
if Z ′ 6= Z and 1 if Z ′ = Z. But in fact, f ∈ O(X): it is enough to show that f ∈⋂
x∈X OX,x = O(X). Every f can be written g

h ; factor g and h into primes. The order of
f is ≥ 0 for any Z, the denominator does not contain a prime factor. This shows that h
will not contain a prime element.

We are trying to show that O(X) is a UFD. If another function g ∈ O(X) is irreducible,
then V (g) is irreducible. So V (g) is irreducible. Why? If Z ⊂ V (g) then we know that
Z = V (f) for some f , which implies that f |g. But g is irreducible, so f and g differ by a
unit. Therefore, this is a UFD. If g|fh then V (g) ⊂ V (fh) = V (f) ∩ V (h). Because V (g)
is irreducible, it is contained in one of the components. This implies that g|f or g|h.

Example 12.9. Say Z = Pn. We have the degree map deg : Div(X) → Z, where
Z = V (f) 7→ deg(f) := deg(Z). The map is surjective, because you can take a hyperplane,
that maps to 1. The group Div0(X) of principal divisors is in the kernel of the degree

map: these contain ratios f
g where f, g have the same degree (these are homogeneous

polynomials). If
f
n1
1 ···f

nr
r

g
m1
1 ···gmss

where fi and gi are irreducible. The divisor associated to

this rational function is exactly
∑
niV (fi) −

∑
miV (gi). These define a subvariety of

codimension 1. This goes to zero, because the degrees of the numerator and denominator
are the same. We know that

k(X)× → Div(X)
deg→ Z→ 0

is exact. The kernel is exactly the image of the principal divisors. If we have a constant
function, the associated divisor is zero. Let’s complete the exact sequence:

1→ k× → k(X)× → Div(X)
deg→ Z→ 0
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If I have a divisor that maps to zero in Z I want to show that it is principal. LetD =
∑
niZi

such that degD = 0. Each Zi can be written as some V (fi). We can rewrite∏
fnii =

∏
ni>0 f

ni
i∏

nj<0 f
−nj
j

=
f

g

where D = (fg ). All the things that were not really explained are an exercise.

Proposition 12.10.
deg : Pic(Pn)

∼→ Z
and H 7→ 1 where H is the hyperplane.

13. October 20

Definition 13.1. A prime divisor is D = Z where Z is a subvariety of codimension one.
(i.e. a generator.)

An effective divisor has the form D =
∑
niZi with all coefficients positive.

Proposition 13.2. Let f ∈ k(X)×. Then (f) is effective iff f ∈ O(X).

We proved this last time. Assume X is affine. It’s in the local ring if it’s in every coordinate
ting. Then ordZf ≥ 0 implies f ∈ Ox,Y for all x ∈ X.

Corollary 13.3. Let X be smooth (actually, you can just assume normal), F ⊂ X closed
of codimension ≥ 2. Then O(X) = O(X − F ).

If I remove a subvariety of codimension 2, the divisor group will not change. Any function
f ∈ O(X−F ) defines a rational function on X, but the associated divisor is still effective,
so f ∈ O(X).

Remark 13.4. If U ⊂ X is open, then there is a natural restriction Div(X) → Div(U).
If X = U ∪ V , then

0→ Div(X)→ Div(U)⊕Div(V )→ Div(U ∩ V )

is exact. In order to define the divisor on X, you just have to specify the divisors on U
and V that coincide on their intersection.

Notation 13.5. If a divisor D is effective we write D ≥ 0.

Definition 13.6. Assume X is projective. Let D ∈ Div(X). Define

L(D) = {f ∈ k(X) : f = 0 or (f) +D is effective }

L(D) is a k-vector space. Last time we said that

ordZ(f + g) ≥ min{ordZ(f), ordZ(g)}
Also define

|D| = {effective divisors of the form (f) +D}
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This gives a natural identification |D| ∼= P(L(D)). (By definition, this is the set of 1-
dimensional subspaces of L(D).) If (f) + D = (g) + D then (f) = (g), or equivalently

(fg ) = 0. By the remark, this means f
g ∈ O(X)×. But this is a projective variety, so

O(X)× = k×. We will see that L(D) is finite-dimensional. So P(L(D)) has a natural
structure as an algebraic variety.

Definitions 13.7. A linear subvariety of |D| is called a linear system. A linear system is
called complete if it is of the form |D|, for some D.

If D =
∑
niZi then Supp(D) =

⋂
ni 6=0 Zi.

Let L be a linear system on X. The base points of L are defined to be⋂
D∈L

Supp(D)

Remark 13.8. One of the most important questions in additive function theory is to
calculate the dimension of a complete linear system.

Example 13.9 (Some linear systems on a projective variety). Let X ⊂ Pn and S(X)
be the homogeneous coordinate ring. Define a linear system on X as follows. Write
S(X) = ⊕S(X)d. Let f ∈ S(X)d. The elements here are not really functions (they’re
only defined up to constant multiples because we are in projective space), but they do
make well-defined divisors. We want a divisor on X ∩ (Pn −Hi) where Hi = V (xi). The

associated divisor
(
f
xdi

)
is an effective divisor on X ∩ (Pn −Hi). When you restrict to an

intersection X ∩ (Pn −Hi −Hj) of open subsets, the difference is given by the principal

divisor
xdi
xdj

but this is invertible on the intersection, and its divisor is zero. Therefore, there

exists an effective divisor (f) =: X ·V (f) on X whose restriction to X ∩ (Pn−Hi) is
(
f
xdi

)
.

Another definition of (f): consider X ∩ V (f) = Zi. (The intersection doesn’t depend on
the lifting.) Each of its irreducible components has codimension 1, so Zi has codimension
1, and X · V (f) =

∑
niZi. Let xk(i) be coordinates such that Zi 6⊂ Hk(i). Then ni =

ordZi
f

xd
k(i)

. Top and bottom are homogeneous functions of degree d. You can check that

ni has nothing to do with the choice of k(i), and that the two definitions are the same.

In this way, we defined a map from S(X)d → Div(X). The claim is that the image is a

linear system. Why? It is easy to check: (f) = (g) +
(
f
g

)
; this is well-defined because f

and g have the same degree. So (f) and (g) are in a linear system.

If you fix g, then every other element (f) is of the form (f) = (g) +
(
f
g

)
. You can add

the rational functions: if

(f1) = (g) +

(
f1

g

)
(f2) = (g) +

(
f2

g

)
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then
(
f1+f2
g

)
+ (g) = (f1 + f2). So the image has a linear structure.

To summarize, this linear system, which Mumford denotes by LX(d), is isomorphic to
P(S(X)d).

Remark 13.10. If two divisors are linearly equivalent – that is, if D1 −D2 = (f) – then
they define the same linear systems: |D1| = |D2|. If |D1| = (g) +D1 then this can also be
written (gf) +D2.

Theorem 13.11. For d >> 0, Lx(d) is complete.

Corollary 13.12. Every complete linear system is finite dimensional. That is, `(D) <
∞.

Proof. If |D| 6= ∅ then we can assume that D is effective. Therefore we can write
D =

∑
niZi with ni ≥ 0. Choose a homogeneous polynomial Fi ∈ S(X)di of degree di

such that Zi ⊂ X ∩ V (Fi), but X 6⊂ V (Fi). (Zi is cut out by homogeneous polynomials;
choose one that does not vanish on all of X.) Let F =

∏
Fnii of degree e =

∑
nidi.

F does not vanish identically on X, because each Fi does not. (F ) = G ∈ Lx(e) can
be written as D + D′ where D′ is effective. (Each Fi is Zi + some effective divisor.)
(F ) =

∑
ni(Fi) = D+ effective thing.

Therefore, from the definition, if an effective divisor is the sum of two effective divisors,
then L(D) ⊂ L(G) which implies `(D) ≤ `(G). Replacing G by some multiple mG if
necessary, we can assume that e is very large, so that LX(e) is complete. Therefore,
`(G) = dimLX(e). But the latter thing is finite-dimensional, as it is the projectivization
of a homogeneous complement. �

Let ϕ : X 99K Pn be a rational map such that ϕ(X) is not contained in any hyperplane. We
will construct a linear system Lϕ on X as follows. First, the rational map is given by some

correspondence Z = Zϕ with projections p1 to X and p2 to Pn. Z → X is birational.
According to the Zariski main theorem, let F ⊂ X so that p1 is not an isomorphism;
then codimF ≥ 2. If p1 is not an isomorphism, then the fiber is positive-dimensional
(always assume X is smooth). Therefore, dim p−1

1 (F ) ≤ r − 1 if X has dimension r.
(On a birational map, there is an isomorphism on an open set, and the fiber has positive
dimension.)

dim p−1
1 (F ) ≤ r − 1 but because the fiber has positive dimension, by the Zariski main

theorem we have dimF ≤ r − 2.

Let H ⊂ Pn be a hyperplane. We define a divisor ϕ∗H on X is follows. (The divisors
on X are the same as the divisors on X − F . But on X − F the rational map is really a

morphism.) So ϕ∗H on X − F − ϕ−1(Hi) is (ϕ∗
(
`
xi

)
). Pull back on

X − F − ϕ−1(Hi)
ϕ
→ Pn −Hi
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to get an effective divisor on X − F − ϕ−1(Hi). But

ϕ∗
(
`

x0

)
|
X−F−ϕ−1(Hi ∪Hj) = (ϕ∗

(
`

xj

)
)|
X−F−ϕ−1(Hi ∪Hj)

Therefore there exists ϕ∗H on X − F (and hence on X).

It is easy to see that if H = V (`) and H ′ = V (`′) then ϕ∗H = ϕ∗H ′ + (ϕ∗( ``′ )). This

implies that the ϕ∗H form a linear system denoted by Lϕ
∼=→ G(n− 1,Pn) =:

^
P
n

.

Proposition 13.13. The base points of Lϕ are just F .

Proof. If x /∈ F then ϕ(x) ∈ Pn there is some hyperplane H such that ϕ(x) /∈ H.
Therefore, x /∈ ϕ−1(H) = Suppϕ∗H|X−F . SO any base point of the linear system is
contained in F . Now we want to show that, in fact, every point in F is in the support of
this linear system. Let H ⊂ Pn be a hyperplane. We need to show that F ⊂ Suppϕ∗H.
Without loss of generality, if I take a linear change of coordinates I can assume that
H = H0 (the hyperplane given by the first coordinate plane). Then observe that xi

x0
is a

rational function whose pullback is a rational function on X, and the associated divisor is

exactly ϕ∗Hi−ϕ∗H0 (as before). Therefore, on X−Suppϕ∗H, the principal divisor
(
ϕ∗ xi

x0

)
is effective. This means that ϕ∗ xix0 is a regular function on X − Suppϕ∗H0. Therefore,
ϕ|X−Suppϕ∗H0

is a morphism given by

p 7→ (ϕ∗
(
xi
x0

)
(p), · · · , ϕ∗

(
x1

x0

)
(p))

The rational map is not single-valued in F . So F ⊂ Suppϕ∗H0. �

Theorem 13.14. There is a 1-1 correspondence between:

(1) a linear system on X, with base point of codimension ≥ 2, and an isomorphism

ψ : L
∼→ P̂n;

(2) a rational map ϕ : X 99K Pn, such that the image ϕ(X) is not contained in any
hyperplane.

In addition, this correspondence is PGLn+1-equivariant: namely, on the projective space
there is a natural action of PGLn+1 by linear change of coordinates. If there is an action
of PGLn+1 on the projective space, it also acts on the dual projective space. So there is
an action on the data (a).

In other words, given a linear system L on X with base points of codimension ≥ 2, there

exists a rational map ϕ : X 99K L̂ = G(n− 1, L) not contained in any hyperplane.
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14. October 25

Recall that there is a natural isomorphism from V → V ∨∨. But there is a canonical iso-
morphism P(V ∨) = (P(V ))∨, and there is a canonical isomorphism P(V ) ∼= (P(V ))∨∨ Let
X be smooth and projective, and L a linear system on X, with base points of codimension

at least 2. We want to construct a rational map ϕ : X 99K
^
L.

Sketch of proof. Fix ψ : L
∼→ (Pm)∨. Let Di = ψ−1(Hi), where Hi = V (xi). We

want to use this divisor as coordinates of our variety. (Rational functions are principal
divisors; you can regard divisors as functions, up to constant. So you can think of Di

as a function.) Write Di − D0 = (fi) where fi ∈ k(X). fi ∈ O(X − Supp(D0)): on
X − Supp(D0) it is effective, and is hence given by a regular function. There is a map

X − Supp(D0)→ Pm x 7→ (1, f1(x), · · · , fm(x))

. . . but this doesn’t appear to be well-defined, since fi are only defined up to constant.
Oops? �

Example 14.1. Consider X = Pn, and consider L ⊂ LX(1), which is the linear system
of hyperplanes (Pn)∨. Given a linear system, the rational map ϕL : X → L∨, which
we claim is just the projection PM → L∨, where M =

⋂
H∈LH. If dimL = r then

dimM = n− r − 1.

Conversely, given any linear subvariety M ⊂ Pn of dimension n− r− 1, you can construct

L = {H ∈ (Pn)∨ : H ⊃M}
This is a linear subvariety, hence gives a linear system. So ϕL = PM . More generally, if
L1 ⊂ L2 ⊂ (Pn)∨, then there are maps

L∨2

pM

��

X = Pn

ϕ
L2

::

ϕ
L1

$$
L1

Example 14.2. If X = Pn and L = LX(d) then the rational map ϕL : X 99K L∨ is just
the d-uple embedding. This linear system has no base point, so the rational map is a
regular map.

Theorem 14.3. For large enough d, the linear system LX(d) is complete.

Proof. Wrong in Mumford! Let D − dHi ∈ LX(d). There are elements (Xd
i ), where

the corresponding divisor is d · Hi. Then D − dHi is a principal divisor. So fi ∈ k(X).
You can consider the divisor(

fi
fj

)
= (D = dHi)− (D − dHj) = dHj − dHi =

(
xdj

xdi

)
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Therefore, in the fractional field L of S(X), xdi fi = xdjfj (up to constant). Because the

choice of fi is determined up to constant, you can choose the constant to make xdi fi = xdjfj
an actual equality, for all i and j. So we obtain a well-defined element F ∈ L, given by
F = xdi fi for any i. The divisor (fi)|Pn−Hi is effective: away from Hi this is the same as
D which is effective. This fi ∈ O(X − Hi ∩ X). For each i, you can find some N large

enough such that xNi fi ∈ S(X). Therefore, xN−di F = xN−di xdi fi ∈ S(X)N .

Define S′d ⊂ L by S′d = {{x ∈ L : ∃N, xNi s ∈ S(X)N+d ∀i}} Let S′ =
⊕

d≥0 S
′
d. Then

this is a graded ring containing S(X). Now F ∈ S′. Saying D ∈ LX(d) is equivalent to
saying F ∈ S(X). (Remember F = xdi fi and D = (fi) + dHi.) To show that the linear
system is complete for d large enough, it suffices to show that S′d = S(X)d for d large
enough.

To do this, fix s ∈ S′d with d ≥ 0. Because xNi s ∈ S(X)N+d, if we take `0 = N(n+ 1) then
S(X)`s ⊂ S(X)`+d for ` ≥ `0 (since ` ≥ N(n + 1),at least one power in the monomial

goes to N). Likewise, S(X)` · sq ⊂ S(X) for all q ≥ 0. For example, consider x`00 ∈ S(X)
for q ≥ 0. sq ∈ 1

x
`0
0

S(X) for all q ≥ 0. (This is like proving all the regular functions on a

projective variety are constant.)

Consider M = 1

x
`0
0

S(X) ⊂ L, where M is a finitely generated S(X)-module. By some

commutative algebra fact, this implies that there exists some polynomial relations

sq + a1s
q+1 + · · ·+ aq = 0

where ai ∈ S(X). We say that s is integral over S(X). So S′ is integral over S(X).

Theorem 14.4. Let A be a finitely-generated integral k-algebra, and K = Frac(A). Let
L/K be a finite field extension. Then the integral closure A′ of A in L is finite over A
and A′ is also a finitely generated k-algebra.

Proof. Commutative algebra. �

So S′ is finite over S(X). We can choose a set of homogeneous generators. Let s1, · · · , sm
be a set of homogeneous generators of degree di. There exists `0 such that S(X)`sj ∈
S(X)`+di for any ` ≥ `0. Therefore, S′d = S(X)d if d ≥ max{di}+ `0. Elements in S′d can
be written as combinations

∑
S(X)d−d0si.

(F = xdi fi. If F ∈ S(X)d then LX(d) 3 (F ) = (xdi ) + (fi) = dHi + (fi) = D.) �

14.1. Canonic divisors. Right now, it’s hard to construct linear systems on a va-
riety. Of course, there’s 0 ∈ Div(X). If we know there’s a map X 99K Pn, then we can
make a linear system. But we would like to do the reverse: start with a linear system,
and try to get an embedding of X into projective space.

Definition 14.5. Let A → B be a (commutative) ring homomorphism. The Kähler
differential (ΩB/A, d) is a pair, where ΩB/A is a B-module, and d is a derivation in
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DerA(B,ΩB/A), that satisfies the following universal property: for any B-module M ,
the natural map HomB(ΩB/A,M) 7→ DerA(B,M) given by ϕ 7→ ϕ ◦ d is an isomorphism.
(Recall from before DerA(B,M) is really a B-module.)

Lemma 14.6. (ΩB/A, d) exits and is unique up to a unique isomorphism.

Proof. Uniqueness is clear from the universal property. We need to show existence.
Define ΩB/A be the free B-module {db : b ∈ B}/ ∼ where the relations ∼ are da = 0,
d(b1 + b2) − db1 − db2 = 0, d(b1b2) − b1db2 − b2db1 and d : B → ΩB/A by b 7→ db. These
relations are created by making it a derivation. It is easy to check that this satisfies the
universal property. Starting with D : B → M , then ϕ : ΩB/A → M by ϕ(db) = D(b).
Therefore, Hom(ΩB/A,M) = DerA(B,M). �

Example 14.7. Let A = k, B = k[x1, · · · , xn]. Then ΩB/A = Bdx1 ⊕ · · · ⊕Bdxn.

Corollary 14.8. If B/A is finitely generated as an A-algebra, with generators b1, · · · , br.
Then ΩB/A is finitely generated over B with generators db1 · · · dbr.

Remark 14.9. “A is finite over B” means A is a finite module over B; “finitely generated”
refers to algebras.

Lemma 14.10. Let S ⊂ B be a multiplicative set. Then S−1ΩB/A
∼= ΩS−1B/A.

Proof. There is a natural map by restriction. Der(S−1B,M) = DerA(B.M) for any
S−1B-module of M . �

Corollary 14.11. Let X/k be an algebraic variety. Then ΩOX,x/k is a finitely generated
OX,x-module.

Notation 14.12. If X/k is affine, denote

ΩO(X)/k = ΩX and ΩOX,x/k = ΩX,x

Remark 14.13. If X is not affine, then we denote ΩX by the functor

{Affine opens on x} → {Ab : U → ΩU}

Proposition 14.14. Let X/k be an algebraic variety. Then X is smooth at x iff ΩX,x is
a free module over OX,x of rk = dimX = r.

Proof. ΩX,x ⊗OX k is a k-vector space: the cotangent space T ∗xX = (TxX)∨. Why?
We want Homk(ΩX,x ⊗OX,x k, k) to be the tangent space. This is HomOX,x(ΩX,x, k); by
the universal property, this is just Derk(OX,x, k) = TxX.

Now, if ΩX,x is free of rank r then dimk ΩX,x ⊗ k = r. This is the same as dimTxX =
r = dimX, which implies that X is smooth at x. Conversely, suppose X is smooth at x.
Then dimk ΩX,x ⊗ k = r. On the other hand, dimK ΩX,x ⊗ K = r (where K = k(X)).
This is because

Hom(ΩX,x ⊗K,K) = Hom(ΩK/k,K) = Derk(K,K)
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(Taking the differential commutes with localization. But we know the dimension of
Derk(K,K) is r, because this is how we defined dimension.)

Now we are in the following situation: we want to show the following lemma.

Lemma 14.15. Let (A,m, k = A/m) be a Noetherian local domain with fractional field K,
and M be a finite A-module. If dimkM ⊗ k = r = dimKM then M is a free A-module of
rank r.

Lemma 14.16 (Nakayama lemma). Let (A,m, k) be a Noetherian local ring, and M be a
finite A-module. If M ⊗ k = 0, then M = 0.

Proof. Commutative algebra. �

Proof of 14.15. Let m1, · · · ,mr ∈M s.t. m1 · · ·mr mod m form a basis of M ⊗ k.
Then consider the map of A-modules

Ar →M where ei → mi

We claim that this is an isomorphism. If not, then it has a cokernel, N

Ar →M → N → 0

Tensor with k:
Ar ⊗ k →M ⊗ k → N ⊗ k → 0

But M ⊗k is generated by mi, so N ⊗k = 0, which implies N = 0 by Nakayama’s lemma.
Therefore, Ar →M → 0 is surjective. Consider the kernel

0→ N → Ar →M → 0

If we tensor with the fractional field we get

0→ N ⊗K → Ar ⊗K →M ⊗K → 0

But this is surjective, and N ⊗K = 0. This is a contradiction, because N is a submodule
of a free module. N ⊗ K = 0 means: for all n ∈ N there exists some a ∈ A such that
an = 0. (N ⊗K is basically the localization.) This is impossible, because n is in a free
module Ar, in which no element is torsion.

(We’re using the fact that localization preserves short exact sequences.) �

15. October 27

Proposition 15.1. Let V and W be two (finite-dimensional) vector spaces. Suppose there
is an isomorphism

ψ : P(V )→ P(W )
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Then there is a lifting

ψ̃ : V
∼=→W

of vector spaces. In addition, ψ̃ is unique up to a non-zero multiple.

Let L be a linear system on X. Suppose we choose an isomorphism ψ : L
∼→ (Pm)∨.

L = P(V ); V is a subspace of a complete linear system L(D) for D ∈ L. Then

ϕ̃ : V → k{x0, · · · , xm}
(Recall (Pm)∨ is the space of all hyperplanes in P, and hence the projectivization P(k{x0, · · · , xm}) =

P(S1).) We can define fi = ψ̃−1(xi) ∈ V ⊂ L(D) ⊂ k(X)×. So we get a map

X 99K Pm where x 7→ (f0(x), · · · , fm(x))

that is well-defined because ψ̃ is unique up to constant multiple. The codimension 2 base
points are not used.

Proposition 15.2. x ∈ X is smooth iff ΩX,x is free of rank r over OX,x.

In the proof, we showed that ΩX,x ⊗ k
∼→ T ∗xX = m/m2. More explicitly, we have

m �
� //

��

OX,x // ΩX,x

��
mx/m

2
x

∼ // ΩX,x ⊗ k

In particular, if {x1, · · · , xr} ⊂ m such that x1, · · · , xr mod m2 form a basis of m/m2,
then dx1, · · · , dxr form a basis of ΩX,x over OX,x. (If they form a basis mod m2, then
the dxi ⊗ k form a basis of ΩX,x ⊗ k. Using Nakayama’s lemma, if there are elements
dx1, · · · , dxr that form a basis mod k, then they form a basis of ΩX,x.) Such x1, · · · , xr
are called local parameters of X at x.

Then for every f ∈ OX,x,

df =
∑ ∂f

∂xi
dxi

∂

∂xi
∈ HomOX,x(ΩX,x,OX,x) = DerOx,x(OX,x,OX,x)

Observation: For X affine, every element in ΩX can be regarded as a map from X →
tT ∗xX. Namely, let ω ∈ ΩX . Since the map commutes with localization:

Ωx → ΩX,x → ΩX,x ⊗ k ∼= T ∗xX

ω 7→ ωx 7→ ω(x)

There are many such maps; we claim that this one is algebraic. If f ∈ O(X) then df ∈ ΩX .
Regard df as a map like above:

df : X → tT ∗xX where x 7→ f − f(x)modm2
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m/m2 is the cotangent space; f − f(x) is map that vanishes at x. This does not require
the definition of ΩX . In the spirit of defining regular functions on X,

ΩO(X)/k = ΩX = {ω : X → tx∈XT ∗xX : ∀p ∈ X ∃V ∈ p open, fi, gi ∈ O(V )s.t.ω =
∑

fidgi}

We know that ΩX is generated over O by those relations; this automatically gets an
inclusion ⊂. It is an exercise to show that this is actually an equality. Unlike our other
definition, this makes sense for all varieties, not just affine ones.

Definition 15.3. Let X be a smooth variety of dimension r.

ωX,x = ∧rOX,xΩX,x

is a free OX,x-module of rank one, with a basis given by

dx1 ∧ · · · ∧ dxr
If {x′1, .., x′r} is another set of local parameters then dx′1, · · · , dx′r is another basis, and the

difference is given by the determinant det(
δx′i
δxj

)dx1∧ · · · ∧dxr. Remember det(
δx′i
δxj

) ∈ OX,x
that is invertible, because both the xi’s and x′i’s are bases.

Definition 15.4.
ωK/k = ∧rΩK/k

is a 1-dimensional K-vector space. Elements in ωK/k are called rational r-forms.

Definition-construction 15.5. Let ω ∈ ωK/k − 0.

ωK/k ∼= ωX,x ⊗OX,x K =⇒ ω = f(dx1 ∧ · · · ∧ dxr)
Define (ω) =

∑
niZi where ni = ordZif . For each i, the definition depends on x ∈

Zi. You can show that, in fact, everything is well-defined: the dxi are defined on open
neighborhoods.

Exercise 15.6. ni does not depend on the choice of x ∈ Zi and local parameters {x1, · · · , xr} ∈
OX,x. (This is similar to the proof of the definition of principal divisors.)

If f ∈ K then (fω) = (f) + (ω), by definition. This implies that

{(ω) : ω ∈ ωK/k − 0}
is a well-defined divisor class called the canonical divisor [class] ; this is usually denoted
by KX .

Likewise, we define the n-fold canonical class as follows. Let ω ∈ ωK/k⊗n (recall ωK/k
is a one-dimensional vector space over K, but is infinite-dimensional over k). Locally,
ω = f(dx1 ∧ · · · ∧ dxr)n, where (ω) =

∑
niZi and ni = ordZi(f) for x ∈ Zi.

Obvious fact: If ω1 ∈ ωn1

K/k and ω2 ∈ ωn2

K/k then (ω1⊗ω2) = (ω1)+(ω2). This immediately

implies that if ω ∈ ωnK/k then (ω) ∼ nKX .

63



Math 232a Xinwen Zhu Lecture 15

Now assume X is projective. If ω ∈ ω⊗nK/k then consider the complete linear system

L((ω)) = {f ∈ K : f = 0 or (f) + (ω) ≥ 0}
= {ω ∈ ωnK/k : (ω) ≥ 0}
=: L(nKX)

Definition 15.7.
Pn(X) = `(nKX)

is called the nth plurigenera of X. In particular, P1(X) = Pg(X) is called the geometric
genus of X.

⊕
n≥0 L(nKX) has a k-algebra structure, where multiplication is given by the tensor

product, which preserves effectiveness. If ω1 ∈ L(n1KX) and ω2 ∈ L(n2KX) then ω1⊗ω2 ∈
L((n1 + n2)KX). This is called the canonical ring of X. Here is a quite recent theorem:

Theorem 15.8 (Siu, Hacon-McKernan,. . . ). The canonical ring is a finitely generated
k-algebra.

Example 15.9. X = Pn. (The divisor class group is isomorphic to Z; the divisors are
multiples of hyperplanes.)

Claim 15.10. KX = −(n+1)H where H is a hyperplane. This is not effective; Pg(Pn) = 0.

Let x0, · · · , xn be homogeneous coordinates yi = xi
x0

, and y1, · · · , yn are coordinates of
Pn −H0

∼= An.
ω = dy1 ∧ · · · ∧ dyn

These form a basis at every point. (ω)|Pn−H0 = 0. Therefore, there is some multiple m
such that (ω) = mH0. We need to show that m = −(n+ 1). To do this, represent ω in a
different coordinate system. Define zi = xi

xn
for i = 0, · · · , n− 1. y0 = 1

z0
and yi = zi

z0
for

1 ≤ i ≤ n− 1.

ω = d(
z1

z0
) ∧ · · · ∧ d(

zn−1

z0
∧ d(

1

z0
))

= ± 1

zn+1
0

dz0 ∧ · · · ∧ dzn−1

The dxi are independent; this is determined by the coefficients 1
zn+1
0

. So (ω) = −(n+1)H0.

Example 15.11. X = V (y2z = x3 + xz2) ⊂ P2 where char(k) 6= 2. I claim that KX = 0,
and so the genus is Pg(X) = 1.

(P2 −HZ) ∩X =
o
X = V (y2 = x3 + x).

ΩK/k = Kdx+Kdy/(2ydy − (3x2 + 1)dx)

For (a, b) ∈
o
X, ΩX,(a,b) ⊗ k = kdx + kdy/(2bdy − (3a2 + 1)dx). (The tangent space is

given by the thing you’re modding out by; this is how you get the cotangent space.)
Homework. . .
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dx 6= 0 in ΩX,(a,b) ⊗ k if b 6= 0 implies that x is a local parameter at (a, b) is b 6= 0.

Let ω = dx
y = dx√

x2+x
. This is a rational differential. The restriction (ω)| o

X−(y=0)
is zero,

because it is invertible away from y = 0. This is almost the whole curve, just missing the
points where y = 0, and the point at infinity. In ΩK/k, 2ydy = (3x2 + 1)dx so dx

y = 2dy
3x2+1

.

At (a, b) if 3a2 + 1 6= 0 then dy 6= 0 in ΩX,(a,b) ⊗ k and this implies that y is a local

parameter at (a, b) if 3a2 + 1 6= 0, i.e.

(ω)| o
X−(3x2+1=0)

Two closed subsets do not have an intersection on the curve; that is, these two open affines
cover the curve:

o
X = (X − {y = 0}) ∪ (X − {3x2 + 1 = 0})

so (ω) = 0 on X. Now X −
o
X = X ∩HZ = p(0, 1, 0). So there is one more point to deal

with.

First get local parameters at p. Using the affine coordinates X̃ = X − (X ∩ Hy) =
V (z = x3 + xz2). Now ΩX,p ⊗ k = kdx + kdz/(dz = 3x2dx + z2dx + 2xzdz). At this
point, x = 0 and z = 0, so you only have to mod out by dz (but the relation dz = 0
only holds at the point p, and not necessarily in a neighborhood; below, you will need to
make the whole expression well-defined there before plugging in the relation). Therefore,
x is a local parameter at p. Write ω = fdx around p. ω = dx

y ; changing coordinates

(x, y, 1) 7→ (x, 1, z) means you’re doing x 7→ x
z and y 7→ y

z . So this differential is

ω =
d(xz )
y
z

=
zdx− xdz

z
∈ ΩK/k

In ΩK/k we have dz = 3x2dx+ zdx+ 2xzdz. So we can solve for dz:

dz =
3x2 + z2

1− 2xz
dx

We get

ω = dx− x

z
· 3x2 + z2

1− 2xz
dx

Remember z = x3 + xz2. x3

z = 1− xz so we can rewrite

ω = dx−
3x3

z + xz

1− 2xz
dx

= dx− 3− 3xz + xz

1− 2xz
dx

= dx− 3− 2xz

1− 2xz
dx

=
−2

1− 2xz
dx

But this is invertible in the local ring (it takes the value 1 at the point), so the order is
zero. That is, (ω) = 0 on X.
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Proposition 15.12. If X,Y are birational then Pn(X) = Pn(Y ).

Proof. If X and Y are birational, then there are neighborhoods such that X ⊃ U
∼=→

V ⊂ Y . By Zariski’s main theorem, X\U and Y \V have codimensions ≥ 2. Removing a
codimension 2 variety doesn’t affect divisors. Birationality means k(X) ∼= k(Y ). ωk(X)/k

∼=
ωk(Y )/k. All of this implies that there is a canonical isomorphism

L(nKX) ∼= L(nKY )

�

Corollary 15.13. X = V (y2 = x3 + x) is not birational to P1.

(This was proved differently in the homework.)

16. November 1

If ϕ : X → Y is a morphism, define the pullback ϕ∗ : ΩY → ΩX . If X,Y are affine,

we get a pullback ϕ∗ : O(Y ) → O(X). Suppose A → B
ϕ∗
→ C is a chain of maps of

commutative rings. (B represents O(Y ), and C represents O(X).) We claim that there is
a natural map ϕ∗ : ΩB/A ⊗B C → ΩC/A. For any C-module M (which is necessarily also

a B-module), HomB(ΩB/A,M) = DerA(B,M)
restriction← DerA(C,M) = HomC(ΩC/A,M).

Take M = ΩC/A and take the identity map in HomC(ΩC/A,M). Then we get

ϕ∗ = restr(Id) : ΩB/A ⊗B C → ΩC/A

Remark 16.1.

(1) This map commutes with the derivation d associated with Ω: ϕ∗(df) = d(ϕ∗f).
(2) The kernel is DerB(C,M) so there is an exact sequence

0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M)

which gives
ΩB/A ⊗B C → ΩC/A → ΩC/B → 0

Geometrically, if ω ∈ ΩY then ω is a map Y → ty∈Y T ∗y Y and ϕ∗ω is a mapX → tx∈XT ∗xX
which takes x 7→ (dϕ)∨(ω(ϕ(x))) ∈ T ∗xX where

x
ϕ
7→ ϕ(x)

ω→ T ∗Y
(dϕ)∨→ T ∗xX

It’s easy to see that if ω = df then ϕ∗(df) = d(ϕ∗f) = d(f ◦ ϕ) Therefore if locally on Y
ω =

∑
fidgi then locally on X

ϕ∗ω =
∑

(fi ◦ ϕ)d(gi ◦ ϕ)
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Now consider the case A = k, B = k(Y ), C = k(X). Then ϕ∗ : k(Y ) → k(X) is induced
by a dominant morphism ϕ : X → Y .

Ωk(Y )/k ⊗ k(X)→ Ωk(X)/k → Ωk(X)/k(Y ) → 0

If ϕ : X → Y is separable (the dimension is the same as the degree of the transcendental
field extension, and Derk(K, k) = HomK(ΩK/k,K) is the dual space )

dimk(X) Ωk(X)/k(Y ) = dim(X)− dim(Y )

So the right exact sequence is also left exact, by dimension reasons. In particular, if
dim(X) = dim(Y ), then Ωk(Y )/k ⊗k(Y ) k(X) ∼= Ωk(X)/k.

Last time we had define ωk(Y )/k = ∧dim(Y )Ωk(Y )/k then

ϕ∗ : ωk(Y )/k ⊗k(Y ) k(X) ∼= ωk(X)/k

Let ω ∈ ωk(Y )/k (a rational top form on Y ). We could associate two divisors on X. We
could consider ϕ∗(ω⊗1) (which we will write ϕ∗(ω)). On the other hand, we get a divisor
ω on Y , and we can get a divisor on X ϕ−1(ω). These are not the same, but it turns out
that the difference is an effective divisor.

Lemma 16.2. Let ϕ : Xr → Y r be separable. B := (ϕ∗(ω ⊗ 1)) − ϕ−1(ω) is an effective
divisor, called the branched divisor.

Recall ϕ−1 : Div(Y )→ Div(X) which takes a divisorD =
∑
niYi 7→ ϕ−1D =

∑
niϕ

−1(Yi).
Write ϕ−1(Yi) =

∑
mjZj . Let x ∈ Xj and a local equation for Yi at ϕ(x). Locally, Yi is

just (f) around ϕ(x). mj = ordxj ϕ
∗(f) is shown to be well-defined in the homework.

Proof. Write ω = fdy1∧· · ·∧dyr where (y1, · · · , yr) are local parameters at y = ϕ(x)
(we can always represent a rational differential this way). Then ϕ∗ω = (f ◦ ϕ)d(y1 ◦ ϕ) ∧
· · · ∧ d(yr ◦ ϕ). If x1, · · · , xr are local parameters at x, then this is

(f ◦ ϕ) det

(
∂(yi ◦ ϕ)

∂xj

)
dx1 ∧ · · · ∧ dxr

This determinant is in OX,x.

(ϕ∗ω)− ϕ−1(ω) = (f ◦ ϕ) det(
∂(yi ◦ ϕ)

∂xj
)− (f ◦ ϕ)

= (det
∂(yi ◦ ϕ)

∂xj
)

In other words,

Supp(B) = {x ∈ X : (det
∂(yi ◦ ϕ)

∂xj
) /∈ O∗X,x}

If this element is a unit, then the associated divisor is zero. The condition that the
determinant is not in O∗X,x is the same as it being in mx. So

Supp(B) = {x ∈ X : (dϕx)∨ : T ∗ϕ(x)Y → T ∗xX not an isomorphism}

If these are two vector spaces of the same dimension, this is equivalent to requiring that
dϕx : TxX → Tϕ(x)Y is not surjective. (It has to be injective, maybe because the variety
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is smooth(?)) Supp(B) is sometimes called the branched locus of ϕ. (Geometrically, think
about the places where the tangent is vertical: the size of the fiber is anomalous).

�

Example 16.3. Let X = (y2z = x3 + x2) in characteristic 6= 2. There is a projection
P(0,1,0) : (x, y, z) 7→ (x, z). There is a rational map P2 99K P1; but since this is a smooth
curve, it extends to a morphism.

Let (x, y, z) be homogeneous coordinates on P2 and (u, v) be homogeneous coordinates

on P1. Then ϕ : (x, y, z) 7→ (x, z) is a map ϕ :
o
X → A1 = {v 6= 0} (where

o
X is the

affine piece). Then ϕ∗ : k[u] → k[x, y]/y2 − x3 − x is u 7→ x the projection to the first
coordinate. Let du ∈ Ωk(P1)/k. By last time, u is a local parameter on the entire affine

line, so ϕ−1(du) = 0 but ϕ∗du = dx. x is a local parameter on
o
X − {y = 0} is a local

parameter. Around {y = 0} = {(1, 0), (0, 0), (−1, 0)}, dx is a local parameter (no zeroes
or three anomalous points. But at all of these three points, 3x2 + 1 6= 0; and y is a local

parameter so the vanishing order is 1. Therefore, (dx) on
o
X = [1] + [0] + [−1].

There is a point at infinity. Consider the blowup X̃ ⊂ P1 × P2. There is an isomorphism

X̃ → X, and a projection to P1. {
y2z = x3 + xz2

xv = zu

These two equations cut out an algebraic set with two components, one of which is the

blowup X̃, and the other is the exceptional divisor. In the case y 6= 0 and v 6= 0 (we’re in
A2 × A1) this turns into {

z = x3 + xz2

xv = z

X̃∩(A2×A1) is given by k[x, z, v]/xv = z. Combine the equations above as xv = x3 +xz2.
The exceptional. divisor corresponds to x = 0 in the first of the equations above. Outside
of the exceptional divisor, we can divide this by x.

Remember that the rational differential ω is du. This is given by ω = −dv
v2

. If p ∈ X∩{y 6=
0}, then there is a p̃ ∈ X̃ ∩ (A2 × A1). x is a local parameter around p̃. Therefore, B

around p or (p̃) is given by the local parameter ∂(v◦ϕ)
∂xj

. Last time, we showed that x is a

local parameter around p. X ∩P2 is given by z = x3 +xz2; x is a local parameter because
the x-derivative is nonzero. So B around p or p̃ is given by 3d(v◦ϕ)/dx = det(dy◦ϕ/∂xj).

v = x2 + y2v2 and dv = 2xdx + 2xv2dx + 2x2vdv which gives dv
dx = 2x+2xv2

1−2x2r
= x · 2+2v2

1−2x2v
.

So this function has vanishing order exactly one at p. So B = [1] + [0] + [−1] + [∞].

Alternatively, write z = x3

y2=xz
and map (x, y, z) 7→ (1, x2

y2−xz ), and do some calculations.
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The point is that an elliptic (cubic) curve can be written as a double cover of P1 with
branching at four points.

16.1. Hilbert polynomial.

Theorem 16.4 (Hilbert). Let M be a finitely generated graded module over the graded
polynomial ring S = k[x0, · · · , xn]. Then there exists a polynomial pM (t) ∈ Q[t] of degree
at most n such that pM (d) = dimkMd for d sufficiently large.

Proof. By induction. If n = −1 this is trivial, because S = k and the module M is a
finite-dimensional k-vector space. So Md = 0 for d sufficiently large; this implies pM = 0.

Now, suppose the theorem holds for < n. Let

N ′ = {m ∈M : xnm = 0}
N ′′ = M/xnM

Then N ′ and N ′′ are finitely generated graded k[x0, · · · , xn−1]-modules. By induction,
there is a PN ′(t) ∈ Q[t] and PN ′′(t) ∈ Q[t] such that PN ′(d) dimkN

′
d and PN ′′(d) =

dimkN
′′
d . We have the following short exact sequence:

0→ N ′d →Md
xn→Md+1 → N ′′d+1 → 0

This implies that

dimMd+1 − dimMd = dimN ′′d+1 − dimN ′d = PN ′′(d+ 1)− PN ′(d)

Observe that R(t) := PN ′′(t+ 1)− PN ′(t) ∈ Q[t] is of degree ≤ n− 1 by induction.

Lemma 16.5. Let f(t) ∈ Q[t] be of degree m. There exists g(t) ∈ Q[t] of degree 1 such
that g(t+ 1)− g(t) = f(t). Therefore, there exists p(t) ∈ Q[t]] such that p(t+ 1)− p(t) =
pN ′′(t+1)−pN ′(t) = dimMd+1− imMd for d large enough. This implies that dimMd+1−
p(d+1) = dimMd−p(d). Then dimMd−p(d) = constant and dimMd = p(d) + constant︸ ︷︷ ︸

pM (d)

for d large enough.

�

17. November 3

Theorem 17.1. If M is a finitely generated graded S = k[x0, · · · , xn]-module, then there
exists a polynomial PM ∈ Q[t] of degree ≤ n such that PM (d) = dimkMd for d large
enough. In particular, let M = S/I(X) where X is an algebraic set in Pn. Then PX =
PS/I(X) is the Hilbert polynomial of X.

Example 17.2.
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(1) Let X = Pn. Then M = S, Sd is the set of homogeneous polynomials of degree

d, and the dimension dimk Sd =
(
n+d
n

)
. Therefore, the Hilbert polynomial for Pn

is

PPn(t) =

(
t+ n

n

)
=

(t+ n)(t+ n− 1) · · · (t+ 1)

n!

This is 1
n! t

n + lower terms.
(2) Now suppose X = V (f) ⊂ Pn is a hypersurface. S(X) = S/(f). Suppose

deg f = d. Then there is a short exact sequence

Sm
f→ Sm+d → S(X)m+1 → 0

So dimk S(X)m+d = dimk Sm+d − dimk Sm =
(
m+d+n

n

)
−
(
m+n
n

)
for m ≥ d. So

the Hilbert polynomial is

PX(t) =

(
t+ n

n

)
−
(
t− d+ n

n

)
This is d

(n−1)! t
n−1+ lower terms.

(3) X = {p1, · · · , pm}. We can assume that pi /∈ H0 = V (X0) (there is a hyperplane
that does not intersect any of the finite set of points). We get a short exact
sequence

0→ I(X)d → Sd
Φ→ km

where

f 7→
(
f

xd0
(p1) · · · f

xd0
(pm)

)
A priori this is just left exact (the RHS might not be surjective). But for d large
enough, there exist fi where deg fi = d, and fi(pj) 6= 0 iff i = j. Specifically,
fi =

∏
j 6=i(ajx0− x1). So for d large enough, Φ is surjective. So for large enough

d, S(X) ∼= km and PX(t) = m.

Remark 17.3.

(1) If X is smooth an projective, LX(d) = P(S(X)) and dimLX(d) = PX(d)− 1 for
d large enough. But we also showed that this is complete, for d large enough. So
we can write this as dim |dH| = PX(d)− 1, and PX(d) = `(dH).

(2) Let X be smooth and projective. Then consider the graded ring
⊕

d≥0 L(dKX).

You can show that there exists some polynomial P (t) such that Pt(d) = `(dKX)
for d large enough. (This does not follow from our theorem.) The degree of this
polynomial is called the Kodaira dimension of X, and is in the range [−1,dimX].
(−1 is for the zero polynomial.)

Definition 17.4. Let Xr ⊂ Pn be projective. The arithmetic genus of X is

Pa(X) = (−1)r(PX(0)− 1)
Theorem 17.5.

(1) If X ∼= Y as varieties, then Pa(X) = Pa(Y ).
(2) If X,Y are smooth and birational, then Pa(X) = Pa(Y ).
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This is hard; no proof.

Example 17.6. (1) Pa(Pn) = 0, because PPn(0) = 1
(2) Pa(V (f)).

PX(t) =

(
t+ n

n

)
− P

(
t+ n− d

n

)
PX(0) = 1−

(
n− d
n

)
Pa(X) = (−1)n

(
n− d
n

)
=

{
0 d� n(
d−1
n

)
d > n

(3) Pa(y
2z = x3) = Pa(y

2z = x3 + zx2) = Pa(y
2z = x3 + z2x) = 1 because these are

all smooth projective rational curves, and hence isomorphic to P1

Theorem 17.7 (Serre duality). If X is a smooth projective curve, then Pa(X) = Pg(X).

Note that geometric genus was only defined for smooth varieties, but algebraic genus is
defined for any variety.

Proposition 17.8. Let Xr ⊂ Pn be projective. Then the Hilbert polynomial PX(t) = d
r! t

r+
lower terms, where d ∈ Z>0.

Definition 17.9. d as used in the previous proposition is called the degree of X. (This
coincides with the degree of a hypersurface.)

Proof. We know that this is true if X is a hypersurface. Now let (n− r − 2)-plane.
Then

PM : X → X ′ := PM (X) ⊂ Pr+1

is birational (homework). We know that

(1) S(X) is a finite S(X ′) module (proven before)

(2) k(X)
∼=← k(X ′) because they’re birational. But this implies Frac(S(X)) ∼=

Frac(S(X ′)), because Frac(S(X)) = k(X)(x0), and Frac(S(X ′)) = k(X ′)(x0)
can be written as transcendental extensions. Why? Elements are the ratio of ho-
mogeneous polynomials of the same degree. But f

g ∈ Frac(S(X)) can be written
as ∑ λαx

α

g
=
∑ λα

g
xα

=
∑

λα/x
α·β
0

∑
λβ

xβ

βxα
xα·β0

Let f1, · · · , fs be the generators of S(X) over S(X ′). Because they have the
same fractional field we can write fi = gi

hi
for gi, hi ∈ S(X ′). If h =

∏
hi then

S(X) ⊂ 1
hS(X ′). This is equivalent to saying that hS(X) ⊂ S(X ′). Decompose h

into homogeneous components: h =
∑

d. Each component is in S(X ′). So we can
assume that there is some h ∈ S(X ′) homogeneous such that h · S(X) ⊂ S(X ′)
homogeneous of degree d0. Therefore,

dimS(X)d ≤ dimS(X)d ≤ dimS(X)d+d0
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Therefore,
PX′(d) ≤ PX(d) ≤ PX′(d+ d0)

for d large enough. So PX − PX′ is a polynomial of degree < degPX′ . But we
know that PX′(t) = D

r′ t
r + · · · . So PX = D

r! t
r+ lower terms.

�

17.1. Introduction to intersection theory.

Proposition 17.10. Let Zn be an affine variety and Xr, Y s be closed subvarieties. Let
x ∈ Xr ∩ Y s. Assume that X is smooth in Zn and write Xr ∩ Y s = W1 ∪ · · · ∪Wm ∪W ∗
where Wi are irreducible components and W ∗ is some algebraic set that does not contain
x. Then dimWi ≥ r + s− n.

Corollary 17.11. Let Xr, Y s ⊂ Pn be projective and r + s ≥ n. Then Xr ∩ Y s 6= ∅.

Proof of corollary. Take the affine cone C(Xr), C(Y s) ⊂ An+1.

C(Xr) ∩ C(Y s) 3 0

where dimC(Xr) = r+1 and dimC(Y s) = s+1. The proposition implies that dimC(Xr)∩
C(Y s) ≥ (r + 1) + (s+ 1)− (n+ 1) ≥ 1. So Xr ∩ Y s 6= ∅. �

Proof of proposition. X ∩Y = (X×Y )∩∆ where ∆ : Z → Z×Z is the diagonal
embedding. X × Y has dimension r + s. Once the intersection is cut out by n equations,
each component has dimension ≥ r+ s− n. It is enough to show that around (x, x), ∆ is
cut out by f1, · · · , fn ∈ O(Z × Z). Each time you cut out a variety by one equation, the
dimension drops by at most one.

Let x1, · · · , xn be local parameters at x (we’re assuming that x is a smooth point). By
shrinking Z, we can assume that xi is actually in O(Z). Consider fi = xi ⊗ 1− 1⊗ xi ∈
O(Z×Z). fi(p, p

′) = xi(p)−xi(p′) for (p, p′) ∈ Z×Z. Clearly, fi|∆ = 0. But I claim that
df1, · · · , dfn are linearly independent in the cotangent space T ∗(x,x)(Z × Z) = T ∗xZ ⊕ T ∗xZ.

This is because
m(x,x) = mx ⊗O(Z) +O(Z)⊗mx

implies that x1 ⊗ 1, · · · , xn ⊗ 1, 1 ⊗ x1, · · · , 1 ⊗ xn form local parameters at (x, x). dfi =
d(xi ⊗ 1)− d(1⊗ xi) are linearly independent. Consider the regular map

ϕ = (f1, · · · , fn) : Z × Z → An(y1, · · · , yn)

which is smooth at (x, x). ϕ∗(dyi) = dfi. We can write f−1(0) = Z∗ ∪ Z∗∗, where
Z∗ 3 (x, x) and Z∗∗ 63 (x, x). dimZ∗ = n, Z∗ is smooth at (x, x). ∆ ⊂ f−1(0) implies
Z∗ = ∆ i.e. ∆ = V (f1, · · · , fn) around (x, x). �

Theorem 17.12. Let Xr ⊂ Pn be of degree d (i.e. degree defined by the Hilbert polynomial).
Then there is an open subset U ⊂ G(n− r,Pn) such that for any L ∈ U , #L ∩Xr = d.
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Proof. Recall the incidence correspondence

C
π2

  

π1

{{
G(r, n) Pn

C
π2→ Pn is smooth with fibers isomorphic to G(n− r−1, n−1). Why? We proved that π1

is a fiber bundle with fiber = projective space. In this case, if we consider π2 : π−1
2 (Ui)→

Ui = Pn −Hi then
π−1

2 (Ui) ∼= Ui ×G(n− r − 1, n− 1)

in which (x, L) ∈ π−1
2 (Ui) maps to (x, L ∩Hi). You can check that this map induces an

isomorphism. Therefore,

π−1
2 (X)

π2

""

π1

xx
G(n− r, n) X

where π−1
2 (X) is irreducible of dimension r+r(n−r) = r(n−r+1), since the Grassmannian

has dimension r(n − r + 1). The claim is that π1 is separable. If this is separable, then
there is an open subset of the Grassmannian such that the fiber is the transcendental
degree; identify this with d. �

18. November 8

Theorem 18.1. Let Xr ⊂ Pn be projective of degree d. Then there exists an open U ⊂
G(n− r,Pn) nonempty such that for any L ∈ U

• Xr ∩ L = {p1, · · · , pk}
• For any pi ∈ Xr ∩ L, Xr, L are smooth at pi and TpiX

r + Tp1L = TpiPn. Equiv-
alently (by dimension reasons) TpiX

r ∩ TpiL = 0

In this case, k = d.

(So degree is the number of intersection points of a “generic” hyperplane.)

Proof.
C

p2

  p1yy
G(n− r, n) Pn

p1 is smooth with fibers isomorphic to Pn−r, and p2 is smooth with fibers isomorphic to
G(n − r − 1, n − r). Consider the preimage p−1

2 (X) ⊂ C where X ⊂ Pn. Then p−1
2 (X)
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is irreducible of dimension (n − r + 1)r. For any L, p−1
1 (L) ∩ p−1

2 (X) ∼= X ∩ L which is
nonempty, so p1 is surjective, and in particular it is dominant.

Smooth at a point ⇐⇒ separable. We claim that p1 : p−1
2 (X)→ G(n− r, n) is separable.

Equivalently, there exists (x, L) ∈ p−1
2 (X) such that p1 : p−1

2 (X) → G(r, n) is smooth at

(x, L). Equivalently there exists (x, L) ∈ p−1
2 (X) such that p−1

2 (X) is smooth at (x, L)

and dp1 : T(x,L)p
−1
2 (X)→ TLG(n−r, n) is surjective. Locally on Pn C → Pn is a fibration,

with fiber G(n− r − 1, H). If x ∈ X ∩ (Pn −H) has preimage (x, L) then

T(x,L)p
−1
2 (X) ∼= TxX ⊕ TLG(n− 1− r,H) = dp−1

2 (TxX)

So p−1
2 (X) is smooth at (x, L) iff X is smooth at x.

(Note: ker dp1(x,L) = T(x,L)p
−1
1 )

What is the kernel of dp1 : T(x,L)C → TLG(r, n)?

dp2(ker(dp1)) = TxL

(The kernel are the vectors tangent to L.) dp2 : ker(d[1)∩T(x,L)p
−1
2 (X)

∼=→ TxL∩TxX Injec-

tivity means this kernel is zero: i.e. TxL ∩ TxX = 0 is equivalent to dp1 : T(x,L)p
−1
2 (X)�

TLG(n − r, n). Now choose x ∈ X such that X is smooth at x. Choose x ∈ Ln−r ⊂ Pn
such that TxX ∩ TxL = 0. Then dp1 : p−1

2 (X)→ G(n− r, n) is smooth at (x, L). But we
proved that once there is one point where the map is smooth, there is an open set where
it’s smooth. But these spaces have the same dimension, and we don’t need char = 0 to
say: there exists U ⊂ G(n−r, n) non-empty and open such that p1 : p−1

1 (U)∩p−1
2 (X)→ U

is smooth.

For all L ∈ U , L ∩X = {p1, · · · , pk} (it’s smooth, and the relative dimension is zero).

TxL ∩ TxX = 0 ⇐⇒ TxL+ TxX = TxPn

We need to show that k = d. Reduce to the case where X is a hypersurface. Let L ∈ U .
Let L ∈ U . Let x ∈ L such that x /∈

⋃
pipj (the union of the lines through the pi).

px : Pn → Pn−1 induces a birational morphism X → p2(X). degX = degPx(X) (last
time we proved that birational projection does not change the leading term of the Hilbert

polynomial.) Also, X ∩ L
∼=→ px(X) ∩ px(L)

Therefore, we reduce to the case X is a hypersurface in Pn of degree d. Set X = V (f).
L is a line pq; X ∩ L contains the zeroes of f(λp + µq) = 0, and this is homogeneous of
degree d. The condition TxX ∩ TxL = 0 is equivalent to f and f ′ not having common
zeroes; i.e. f has distinct roots. Since this is an equation of degree d there are exactly d
solutions.

�

Definition 18.2. Let Xr, Y s ⊂ Zn where Z is smooth. Let Xr∩Y s =
⋃
Wi where Wi are

irreducible components. We say that X and Y intersect at Wi properly if dimWi = r+s−n
(the minimum). We say that X,Y intersect transversely if there exists x ∈ Wi such that
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X,Y are smooth at x and TxX + TxY = TxZ (so the intersection of these vector spaces
has dimension r + s− n).

Lemma 18.3. If X,Y intersect transversely at W and x ∈W is a point as in the definition
then W is smooth at x.

Proof. X ∩ Y = X × Y ∩∆; since Z is smooth, the diagonal is locally cut out by n
equations. So X ∩ Y = ϕ−1(0) where ϕ : X × Y → An is smooth at (x, x). �

Theorem 18.4 (Bézout’s Theorem). Let Xr, Y s ⊂ Pn are projective varieties. Assume
that X ∩ Y transversely. Then

degX · deg Y =
∑

deg Wi∈X∩Y
irred. components

Wi

Proof.

Notation 18.5. For Wi let W ′i ⊂ Wi be the open subset consisting of x such that X,Y
are smooth at x and TxX + TxY = TxPn.

Case 1: Y s = Ls is an s-plane. Xr ∩ Ls =
⋃
Wi where dimWi = r + s − n. Choose a

plane M2n−r−s such that M ∩Wi transversely for any i.

#X ∩ (L ∩M) = #(X ∩ L) ∩M =
∑

#Wi ∩M =
∑

degWi

Since L ∩M is an (n− r)-plane, the expression on the left is degX.

Case 2: r+ s = n. Consider X ⊂ Pn ⊂ P2n+1 where the map Pn → P2n+1 has coordinates
(a0, · · · , an) 7→ (a0, · · · , an, 0, · · · , 0). Y ⊂ Pn ⊂ P2n+1 with the embedding (b0, · · · , bn) 7→
(0, · · · , 0, b0, · · · , bn). The Hilbert polynomial does not change in this embedding.

Definition 18.6. J(X,Y ) =
⋃
x∈X,y∈Y xy. In other words,

J(X,Y ) = {(a0, · · · , a2n+1) : (a0, · · · , an, 0, · · · , 0) ∈ X, (0, · · · , 0, an+1, · · · , a2n+1) ∈ Y }

In terms of coordinate rings, S(J(X,Y )) = S(X) ⊗ S(Y ); the homogeneous ideal is S ⊗
I(Y ) + I(X)⊗ S. dimS(J(X,Y ))` =

∑`
i=0 dimS(X)i dimS(Y )`−1.

dimS(X)i =
dx
r!
ir + o(ir) =

(
i+ r

r

)
+ o(ir)

dimS(Y )`−i =

(
`− i+ s

s

)
+ o((`− i)s)

75



Math 232a Xinwen Zhu Lecture 19

dimS(J(X,Y ))` =
∑̀
i=0

((
i+ r

r

)
+ o(ir)

)((
`− i+ s

s

)
+ o((`− i)s)

)

= dxdy
∑̀
i=0

(
i+ r

r

)(
`− i+ s

s

)
+ o(`r+s+1)

= dxdy

(
i+ r + s+ 1

r + s+ 1

)
+ o(`r+s+1)

Therefore,

PJ(X,Y )(t) =
dxdy

(r + s+ 1)!
tr+s+1 + lower terms

i.e. J(X,Y ) is of dimension r + s+ 1 and deg = dxdy.

Take L = (x0−xn+1, x1−xn+2, · · · , xn−x2n+1) (an n-plane). Then L∩J(X,Y ) = X∩Y .
X∩Y is transverse means that L∩J(X,Y ) is transverse. Then #X∩Y = #L∩J(X,Y ) =
dxdy.

General case. Choose a plane M2n−r−s that intersects each Wi transversely. Then #M ∩
(X∩Y ) = #M∩(

⋃
Wi) =

∑
degWi. On the other hand, M∩(X∩Y ) = X∩(Y ∩M). We

want Y ∩M to be transverse. Let x ∈ Y ∩M . Then TxWi+TxM = TxPn and this implies
that TxY = TxM = TxPn which shows that Y ∩M transversely. Therefore, Y ∩M =

⋃
Yi.

Finally, #X ∩ (Y ∩M) = #X ∩ (
⋃
Yi) =

∑
#(X ∩ Yi). But Yi has dimension n− r, by

transversality. We reduce to case 2, which gives · · · =
∑

degX deg Yi = degX(
∑

deg Yi)
which is degX deg Y by case 1.

�

19. November 10

Theorem 19.1 (Bézout’s theorem). If Xr, Y s ⊂ Pn intersect properly and transversely
(i.e. X and Y are smooth at a point and their tangent spaces together span the tangent
space of Pn), and X ∩ Y =

⋃
Wi then

degX · deg Y =
∑

degWi

In particular, if X and Y are plane curves in P2 of degree d and e respectively, then
#X ∩ Y = de.

We introduced a new variety J(X,Y ) ⊂ P2n+1, the union of all the lines joining a point of
X with a point on Y . By calculating the Hilbert polynomial we know that deg J(X,Y ) =
degX · deg Y . #X ∩ Y = #J(X,Y ) ∩ L for some plane L. This eventually reduces to
the case where Y is a plane. In the general case, we had X ∩ Y = ∪Wi where W ′i ⊂ Wi

is open. Look at the points where X and Y intersect transversely. If X ad Y intersect
transversely, then there is only one component through that point. We can always find
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a plane M2n−r−s such that M ∩Wi = {p1, ..., pk1}. Then
∑

degWi = #(X ∩ Y ) ∩M =
#X ∩ (Y ∩M) = degX · deg Y .

Now we want to drop the restriction that the varieties intersect transversely; what if they
only intersect properly?

Clarification 19.2. Two varieties intersecting transversely means that for every compo-
nent there is a point at which they intersect transversely. (If the intersection has multiple
components, usually the intersection will not be transverse in the intersection point of the
intersection variety.) In this case, transverse intersection implies proper intersection.

Assume Xr, Y s ⊂ Zn are smooth and intersect properly. So each irreducible component
has dimension r+ s−n. Let X ∩Y =

⋃
Wi. Then one can define the intersection number

i(X,Y,W ) of X,Y along Wi. The definition will not be given here. But here is a special
case: if X = V (f) and Y = V (g) are plane curves in A2 or P2 and p ∈ X ∩ Y then
i(X,Y,Wi) is the length of OA2,p/(f, g) as an OA2,p-module.

Theorem 19.3 (Bézout’s theorem, general case). If X,Y ⊂ Pn intersect properly then

degX · deg Y =
∑

Wi∈X∩Y
i(X,Y,Wi) degWi

19.1. Curve theory.

Definition 19.4. An algebraic curve is an algebraic variety of dimension one.

Lemma 19.5. Let X be a smooth curve and Y be a projective variety. Then every rational
map ϕ : X 99K Y is a morphism.

This is basically Zariski’s main theorem, but there we require X to be at least quasipro-
jective. But here, look at the graph Γϕ with projections to X and Y . We need to show
that Γϕ → X is an isomorphism. But Γϕ|U = p−1(U), so we can reduce to the affine case.
So Γϕ|U is quasiprojective and we can use Zariski’s main theorem.

Corollary 19.6. Let X,Y be two smooth projective curves. If X,Y are birational, then
they are isomorphic.

So classifying smooth projective curves up to birational isomorphism is the same as clas-
sifying them up to actual isomorphism. Note that this is not true for surfaces: take a
surface and blow up at a point.

Now suppose we have X → k(X) where tr.d.k(X)/k = 1. Can we find a smooth projective
curve with function field k(X)? (If there is one it’s unique by the corollary.(So classifying
smooth projective curves up to birational isomorphism is the same as classifying them up
to actual isomorphism.))

Definition 19.7. A function field K/k is a finitely generated field over k of transcendental
degree 1.
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Question 19.8. Given K can we find a smooth projective curve with k(X) ∼= K? (You
can always find a curve with the right function field, but is it birational to something
smooth and projective?) Equivalently, given any curve Y can we find a smooth projective
X birational to it?

Theorem 19.9. Given K there exists such X.

Definition 19.10. A variety X is called normal if for every x ∈ X, OX,x is integrally
closed in k(X).

Fact 19.11. If X is affine, then X is normal iff O(X) is integrally closed in k(X).

Proof. Suppose O(X) is integrally closed; we want to show each local ring is inte-
grally closed. let u ∈ k(X) where

un + a1u
n−1 + ...+ an = 0

for ai ∈ OX,x. Write ai = bi
ci

where bi, ci ∈ O(X) and ci /∈ mx. Multiplying out denomina-
tors,

d0u
n + d1u

n−1 + ...+ dn = 0

for di ∈ O(X) and if v = d0u, vn + e1v
n−1 + ...+ en = 0 for ei ∈ O(X). So v ∈ O(X) and

u = v
d0
∈ OX,x.

Now suppose X is normal. Let u ∈ k(X).

un + a1u
n−1 + ...+ an = 0

for ai ∈ O(X) ⊂ OX,x. So u ∈ OX,x. etc. �

Let X be an algebraic variety. Then the normalization of X is X̃ normal, together with

a morphism π : X̃ → X such that if Y is normal and f : Y → X is dominant, then there

exists a unique f̃ : Y → X̃ making the diagram commute:

Y
f̃ //

f

��

X̃

π

��
X

Fact 19.12. The normalization exists and is unique.

Proof. If X is affine, then let A be the integral closure of O(X) in k(X), and X̃ =

Spec(A). By the previous fact, X̃ is normal, because A is integrally closed.

Let f : Y → X be dominant. Because X is affine, this corresponds to a map f∗ :
O(X) → O(Y ), which produces an injective (because the morphism is dominant) map
k(X) ↪→ k(Y ). Write Y = ∪Yi for Yi an affine open. SO k(Y ) ⊃ O(Yi): But now the
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composition map naturally factors through A:

O(X) //

""

��

O(Yi)� _

��

A

||
k(X) // k(Y )

If u ∈ k(X), u ∈ A then
un + a1u

n−1 + ...+ an = 0

for ai ∈ O(X). So
f∗(u)n + ...+ f∗(an) = 0

which implies f∗(u) ∈ O(Yi). So f factors through its normalization:

Yi� _

��

// X̃

��
Y

f̃ // // X

In the general case, X =
⋃
Xi where Xi are affine. You can make the maps factor through

the intersection, and glue all the X̃i’s to get a X̃:

X̃i
π //

||

Xi� _

��
X̃ X̃i ∩Xj

//

��

OO

Xi ∩Xj� _

��
X̃j

//

bb

Xj

The intersection of two affine varieties is still affine, because it is X × Y ∩ ∆, and the
product of two affine varieties is affine and ∆ is closed by assumption.

�

Theorem 19.13. If X is smooth, then X is normal.

But the converse is not true: xy = z2 is normal but not smooth. (Exercise for you:
k[x, y, z]/z2 − xy is integrally closed.)

Fact 19.14. If OX,x is a UFD then it is integrally closed.

Proof.
un + a1u

n−1 + ...+ an = 0
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for ai ∈ OX,x. u = f
g and (f, g) = 1

fn + a1gf
n−1 + ...+ ang

n = 0

Let P be a prime divisor of g. Then P - fn, which is a contradiction. �

Theorem 19.15. If X is normal, then Xsing has codimension ≥ 2.

Proposition 19.16. Let X be normal and Y ⊂ X be a closed subvariety of codimension
one. Then there exists some open subset U ⊂ X with U ∩ Y 6= ∅ and Y = V (f) on U .

Proof of theorem, given proposition. Suppose Xsing has codimension 1. That
is, there exists a subvariety Y ⊂ XSing of codimension one. By shrinking X we can assume
that Y = V (f). Let y ∈ Y be a smooth point (of Y , not X of course!). Let y1, ..., yn−1

be local parameters of Y at y. That is, y1, ..., yn−1 generates the maximal ideal mY,y. But
the yi are regular functions on Y that can be lifted to regular functions on X.

0→ (f) = I(Y )→ O(X)→ O(Y )→ 0

so y1, ..., yn−1, f generate mX,y. So dy1, ..., dyn−1 generate mX,y/m
2
X,y. This is a contra-

diction: this vector space has dimension > n because X is singular there. �

Proof of proposition. We will prove the proposition for dimX = 1; the higher
dimensional case just requires more definitions. Y = {y} ∈ X. If X is normal, then
we claim that this is defined by one equation on some open neighborhood of X. We
can assume X is affine. Let f ∈ O(X) such that f(y) = 0. By shrinking X we can
assume that the zero locus of f is just {y} (if there are other zeroes can just throw them

away). By Hilbert’s Nullstellensatz,
√

(f) = my. Therefore, there exists some r such that
mr
y ⊂ (f) ⊂ my (the last inclusion is automatic because f vanishes at y). Let r be the

smallest integer such that mr
y = (f).

To be continued... �

20. November 15

Presentations: December 1-3, 20 minute presentations. Proofs only if there is time. Maybe
examples. Written survey due later: 5-10 pages.

Proposition 20.1. Let X be a normal variety, Y ⊂ X of codimension 1. Then locally on
X, Y is defined by one equation. That is, there is some open U ⊂ X such that U ∩ Y 6= ∅
and I(U ∩ Y ) ⊂ O(U) is generated by one element.

Proof. First do the case where dimX = 1. Let Y = {x}. By shrinking X we can
find f ∈ O(X) such that x is the only zero of f . In OX,x, mr

x ⊂ (f) ⊂ mx. Choose r
such that mr−1

x 6⊂ (f) and mr
x ⊂ (f). Then there are some a1, · · · , ar−1 ∈ mx such that

g = a1, · · · , ar−1 /∈ (f) and gmx ⊂ (f).
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Let u = g
f /∈ OX,x but umx ⊂ OX,x. I claim that umx 6⊂ mx. Otherwise, u : mx → mx is

an OX,x-module homomorphism. So there exists F ∈ OX,x[t] monic such that F (u) = 0,
which means that u is integral over OX,x. But OX,x is integrally closed. So u ∈ OX,x,

which is a contradiction. Therefore, umx = OX,x. This implies that mx = ( 1
u). We are

done: we were trying to prove that the ideal is generated by one element.

Remark 20.2. In fact, what we showed is that if X is a normal curve, OX,x is in fact a
principal domain.

Now do the general case. Recall that if x ∈ X is a point, then we have defined OX,x =
lim−→
U3x
O(U). Now if U ⊂ X is a closed subvariety, we can define OX,Y = lim−→

U∩Y=∅
= O(U).

It is easy to see that OX,Y is a local ring with residue field k(Y ) and maximal ideal
mX,Y = lim−→

U∩Y 6=∅
I(U ∩ Y ).

Now the proof is the same if we replace OX,x in the 1-dimensional case with OX,Y . Namely,
(1) there exists some open set U ⊂ X such that U ∩ Y 6= ∅ and U ∩ Y is set-theoretically
defined by one equation; and (2) OX,Y is integrally closed (proof is the same as the fact
that in the affine case X normal ⇐⇒ OX,x is integrally closed). �

For normal varieties, the singular locus has codimension≥ 2. So normal curves are smooth.

Theorem 20.3. For any finitely-generated function field K/k, there is some smooth variety
such that k(X) = K.

Proof. Let K/k be a function field; i.e. tr.d.K/k = 1. Choose any projective curve
X such that k(X) = K: take any finitely generated k-algebra B ⊂ K (whose fraction field
is K), and take U = Spec(B) affine, embed this in Pn and take the closure. However, the
point is that this might not be smooth.

Now let X̃ be the normalization of X. Then X̃ is smooth. Cover X by affine opens Ui
such that any two points of X are contained in some Ui. By construction, X̃ =

⋃
Ũi,

where Ũi is the normalization of Ui. The Ũi are affine smooth. Let Ui be the closure of
Ũi in some projective space; each Ui is projective. There is a rational map Ũi → Ui, and

Ũi ⊂ X̃, so this extends to a rational map from X̃
ϕ
→ Ui. Let ϕ : X̃ →

∏
Ui, and X be

the closure of the image of ϕ. So we have

X̃ → X
closed
↪→

∏
Ui

X̃
ϕ // X �

�

closed
//
∏
Ui

��
Ũi
?�

OO

open // Ui
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Now I claim that ϕ is an isomorphism (this implies the theorem). It is clear that ϕ is

injective. If x, y ∈ X̃, there is some Ũi such that x, y ∈ Ũi. If ϕ(x) = ϕ(y) then x = y by
diagram chasing. (Same in Ui means same to begin with.)

To show that ϕ is surjective, we need a lemma:

Lemma 20.4. Let π : X̃ → X be the normalization of a variety. Then π is surjective.

Proof. By construction, it is enough to show that this is true if X is affine. (The
whole thing is made by gluing together affine pieces.)

A = O(X) ⊂ B = O(X̃) ⊂ k(X)

Let x ∈ X; then mx ⊂ A. It is enough to show mxB 6= B. If B is integral over A then
it is finite over A. By Nakayama’s lemma, if B is a finite A-module and mxB = B then
B = 0.

(If X̃ is smooth, then the closure of its image is smooth and projective.)

X

��
X X̃oo // X

Let X be the normalization of X. X̃ is a smooth normal variety that maps to X via a
dominant morphism. I claim that ϕ is an open embedding; this will be proved at the end.

X̃ can be regarded as an open subset of X. We can extend X̃ → X to get a morphism

X → X. This is dominant, and factors through a unique morphism X → X̃.

X̃ �
� // X

��
ww ��

X X̃oo // X

The morphism X̃ → X extends X → X because X is projective and X is smooth. Since

X̃ is the normalization of X, it factors as

X
ψ //

��

X̃

��
X

Now let x ∈ X, and choose x′ ∈ bX a lift of x. Then x = ψ(x′) ∈ X̃ so ϕ : X̃ → X is
surjective.
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So it remains to show that ϕ is an open embedding.

X̃ // X ⊂
∏
Ui

dominant
��

Ũi
?�

OO

� � // Ui

At the level of local rings we have

O
X̃,x

∼
��

OX,ϕ(x)
oo

O
Ũi,x

OUi,x
?�

OO

∼
oo

The isomorphisms and injections in this picture force O
X̃,x

ϕ∗
← OX,ϕ(x) to be injective.

�

Definition 20.5. Let ϕ : X → Y be a morphism of algebraic varieties. Then ϕ is
called finite if for any affine open V ⊂ Y , ϕ−1(V ) =: U is affine and O(U) is a finite
O(V )-module.

Proposition 20.6. Let ϕ : X → Y be a non-constant morphism of smooth projective
curves. Then ϕ is finite.

Proof. ϕ is surjective and therefore dominant: the image is closed, it is not a point,
and is connected, so it must be all of Y . Let V ⊂ Y affine. Consider A = O(V ) ⊂ k(V )

A = O(V ) //
� _

��

B� _

��
k(Y ) �

� // k(X)

where B is the integral closure of A in k(X). Let U = Spec(B). U is integrally closed,
hence normal, hence smooth. In terms of varieties, this is

V

��

Uϕ|U
oo

��
Y Xϕ
oo

Where U 99K X is the natural rational map that is induced. But this extends to a
morphism because U is smooth and projective.

B is finite over A by general commutative algebra, so we are done if we show ϕ−1(V ) = U .
Suppose this is false. Then there is some y0 ∈ V and x0 /∈ U such that ϕ(x0) = y0.
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Sub-claim: there is some f ∈ k(X) such that f has poles at x0, and f ∈ O(U). I first
show that, if true, this leads to a contradiction. f ∈ B = O(U) so

fn + a1f
n−1 + · · ·+ an = 0

for ai ∈ O(V ) = A. So

f = −a1 −
a2

f
− · · · − an

fn−1

But f having poles at x0 means 1
f = OX,x0 because OX,x0 . (If you choose a local parameter

you can write f = uxr for r < 0, so 1
f is a regular element.) This is a contradiction.

Now I prove the sub-claim. Let ϕ−1(y0) = {x0, · · · , xn}. Let f̃ be any function regular
on {x1, · · · , xn}∩U , but with poles at x0. This is possible, because there’s an affine open
such that x0, · · · , xn are in the affine open. So choose some rational function on the affine

open that is regular on the other xi but has a pole on x0. If f̃ has no poles in U , we are

done (function is regular on U and has a pole on x0). Otherwise, let x′ ∈ U . f̃ has a pole

at x′. f̃ is regular on xi so x′ is not one of these xi. So ϕ(x′) = y′ ∈ V for y′ 6= y0. Choose
h ∈ O(V ), h(y0) 6= 0, where h vanishes at y′ with sufficiently high order. (You can do

whatever you want, over an open affine.) Take f = f̃ϕ∗(h). Then f will have no pole at

x′. Continue: if f̃ has more than one pole, then do this finitely many times.

�

21. November 17

If ϕ : X → Y is a nonconstant projective morphism, and X and Y are smooth, projective
curves, then ϕ is a finite morphism: i.e. for V ⊂ Y affine open, U = ϕ−1(V ) is affine open
and O(U) is a finite O(V )-module.

Definition 21.1. If X is a smooth projective curve, recall the prime divisors are just
points. Define the degree map

deg : X → Z where D =
∑

nipi 7→ deg(D) =
∑

ni

Theorem 21.2. If X is a smooth projective curve and D = (f) is principal, then degD =
0.

Corollary 21.3. The degree map descends to a map

deg : Cl(X) = Pic(X) = Div(X)/Div0(X)→ Z

Definition 21.4.
Pic0(X) = ker(deg : Pic(X)→ Z)

Proposition 21.5. Let ϕ : X → Y be a dominant (i.e. nonconstant) morphism of smooth
projective curves. Let D ∈ Div(Y ). (We defined the pullback ϕ∗D ∈ Div(X): you just
have to define it by prime divisors, which are locally given by one equation. Pull back this
equation and take the degree; this defines a divisor.) Then degϕ∗D = degD · degϕ where
degϕ = [k(X) : k(Y )].
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Proof of theorem. Let f ∈ k(X); this can be regarded as a rational morphism ϕ :
X 99K P1; but we can extend this to a morphism. This is nonconstant if f is nonconstant.
Exercise: (f) = ϕ∗([0]− [∞]). Then deg(f) = degϕ · deg([0]− [∞]). �

Corollary 21.6. Let X be a smooth projective curve. If there are x, y ∈ X and x− y is
principal, then X ∼= P1.

Proof. If x−y = (f), ϕ : X → P1 then x = ϕ∗([0]). So degϕ = 1. So ϕ is birational;
if it’s birational, we have proved before that it is an isomorphism. �

Proof of proposition. (Use the natural embedding k(Y ) ⊂ k(X).) We can assume
that D = p. Write ϕ−1(p) = {p1, · · · , p`} ⊂ X.Let y be a local parameter at p ∈ Y . In
OX,pi , y = uix

ri
i where ui is a unit of OX,xi . Then ϕ∗D =

∑
ripi. We want to show

that
∑
ri = degϕ. Let V 3 p be an affine open. Define A =

∫
(V ), U = ϕ−1(V )

(affine), B = O(U). Then B/A is a finite A-module. Let mp ⊂ A be the maximal ideal
corresponding to p. By localization, there is a map OY,p ∼= Amp → Bmp , where Bmp is a
finite Amp-module. But Bmp is a free. Amp is a principal domain; any module over one
of these is free, plus some torsion module. The torsion could only happen in y; but y is
not torsion on B. Alternatively, this is an integral domain so it has no torsion. So we can
write Bmp

∼= A⊕nmp , where n = degϕ. Bmp ⊗ k(Y ) = k(X). Therefore, dimk Bmp/y is an

n-dimensional vector space. (y generates the maximal ideal mpBmp , so we are here just
modding out by the maximal ideal.)

Claim: Bmp =
⋂
OX,pi . The inclusion ⊂ is obvious; we prove the other direction.

Bmp = {f
g

: g ∈ O(V ), g(p) 6= 0, f ∈ B = O(U)}

Let h ∈
⋂
OX,pi . h is regular away from q2, · · · , qm, qi 6= pj . p ∈W := V −ϕ(q1, · · · , qm) ⊂

V (the qi are the places where h is not regular: these are not any pi). [If the qi are defined
by f , then O(W ) =

∫
(V )f . h ∈ O(ϕ−1(W )) = O(W )⊗O(V ) O(U).]

h ∈ O(U)⊗O(V ) O(W ) ⊂ Bmp

We can write y − u(xr11 · · ·xrnn ). We have

Bmp/y
∼=
∏
OX,pi/x

ri
i

This implies that dimk Bmp/y =
∑

dimk

∫
X,pi

/xrii =
∑
ri. �

Example 21.7 (Calculating Pic0(X)). Pic0(P1) = 0.

Let X be the elliptic curve defined by y2z = x3 − xz2. Consider the divisor class given
by a hyperplane section LX(1). We can consider the hyperplane {z = 0} =: Hz. Take
p0 = (0, 1, 0) to be the origin, and note that HZ ∩ X = p0; around this point, the local
equation is z = x3− xz2. x is a local parameter at p0. By the non-Archimedean property
of ord, ordp0 z = ordp0 x

3 − xz2 ≥ min{ordp0 x
3, ordp0 xz

2} ≥ 3. Since ordp0(xz2) ≥ 7,
ordp0 z = ordp0(x3 − xz2) = 3. So 3p0 ∈ LX(1). Define a map AJ : X → Pic0(X) sending
p 7→ p−p0. I claim that AJ is injective: if p−p0 ∼ q−p0 then p ∼ q. But by the corollary,
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if two points are equivalent, then your curve is P1. But this curve is not P1 (for example,
they have different genuses). So this is a contradiction.

Now I claim that AJ is surjective. Let D ∈ Div(X), where degD = 0. Because D has
degree zero, it can be written

∑
nipi with

∑
ni = 0, we can write this as D =

∑
ni(p−p0).

All the ni can be assumed to be positive: given x ∈ X, consider the line xp0 which intersect
X in x, p0, and somewhere else, say y. Then LX(1) 3 x+p0+y ∼ 3p0. Then x−p0 ∼ p0−y.
So if one of the ni were negative, we could replace x with y, which is linearly equivalent,
and switch the sign.

If
∑
ni = 1 we are done. Otherwise, write D = (p1 − p0) + (p2 − p0) + · · · . p1p2 ∩X =

{p1, p2, q}.
LX(1) 3 p1 + o2 = q ∼ 3p0

p1 − p0 + p2 − p0 ∼ p0 − q ∼ q′ − p0

where q′ is the other point on the line through q, p0. We have reduced
∑
ni by one; after

continuing this procedure sufficiently many times, we will eventually get D ∼ p− p0.

So here is the Abel-Jacobi map:

AJ : X
∼=→ Pic0(X)

Since the RHS is a group, this gives a group structure on X. More precisely, p0 is the
identity element. Addition is given as follows: p1 + p2 := AJ−1(AJ(p1) + AJ(p2)) =
AJ−1(p1 − p0) + (p2 − p0). This is just q′. So in other words, take a line through p1 and
p2, find where else q it hits the curve. Now find the other point q′ on the line through q
and p0. q′ is the desired sum. To get −p1, take the line through p1 and p0, and find where
else it intersects the curve.

Theorem 21.8. Let X be an elliptic curve. The multiplication map m : X ×X → X and
the inverse s : X → X are morphisms of algebraic varieties.

Proof. Push points around. �

Let x = (a, b, 1) ∈ X. The line xp0 is given by az − x = 0. Therefore,

xp0 ∩X =

{
az − x = 0

y2z = x3 + xz2

There should be three solutions: (0, 1, 0), (a, b, 1), (a,−b, 1). So s : (a, b, 1) 7→ (a,−b, 1).
This shows that this is a morphism when you restrict to this affine open.

Definition 21.9. A group variety is an algebraic variety G together with an element
e ∈ G, and regular morphisms m : G×G→ G and s : G→ G, such that (G, e,m, s) form
a group in the usual sense.

A group variety is called an abelian variety if G is projective. If G is projective, then the
group structure is necessarily abelian. Unfortunately, the converse is false.
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Corollary 21.10. X defined by xy2 = x3 − xz2 is an abelian variety.

Remark 21.11. In fact, if char(k) 6= 2, 3 then every (geometric) genus one projective
curve is isomorphic to a cubic curve in P2 of the form y2z = x3 + axz2 + bz3, with
4a3 + 27b2 6= 0. This is called the Weierstrass normal form. By the same argument, X is
an abelian variety, choosing (0, 1, 0) as the “infinity point.”

Suppose k = C. Write ω = dx
y ; this is a regular differential. In the elliptic case, this is

dx√
x3+ax+b

, and was called the elliptic integral. Let’s construct a map X → C/L where L is

a lattice, by taking p 7→
∫ p
p0
ω. This does not give a well-defined map X → C; it’s possible

to choose a path from p0 7→ p1 (i.e. one containing a non-contractible loop) that makes a
different integral. These are called periods. So to make this map well-defined, you have to
mod out by the lattice generated by the periods (in this case, there are only two periods,
which is good, since that way you get a two-dimensional R-lattice inside of C). This map
ends up being an isomorphism, so X turns out to be isomorphic to a torus.

Example 21.12 (Linear affine algebraic groups). GLn = {A ∈Mn×n : detA 6= 0}. Since
the determinant is a polynomial, this cuts out a linear variety.

PGLn = {GLn/k×In} has a group structure. You can also show that this is an affine
variety.

Gm = GL1 = A1 − {0} is a special case of GLn. This is a commutative group. . . but we
don’t call it an abelian variety.

Ga
∼= (A1,+) is A1 with the natural addition structure.

Given a quadratic form on your space, you can construct SO, the subgroup of GLn
preserving your form. Every linear affine algebraic group can be realized as a subgroup of
GLn.

But the situation is different for projective varieties:

Theorem 21.13. Every abelian variety is abelian.

Elliptic curves are examples here. In general, if X is a smooth projective curves of genus
g, Pic0(X) is an abelian variety of dimension g. (This is just a group, but it has a natural
algebraic variety structure.)

In fact, every algebraic group G is an extension

0→ N → G→ A→ 1

where A is an abelian variety and N is a linear algebraic group (any closed subgroup of
GLn).

87



Math 232a Xinwen Zhu Lecture 22

22. November 22

22.1. Riemann-Roch.

Theorem 22.1 (Riemann-Roch Theorem). Let X be a smooth projective curve over k of
geometric genus g1, and D a divisor on X. Then

`(D)− `(Kx −D) = 1− g + degD

Both sides depend only on the divisor class group of D. All the regular functions on X are
constant, so `(0) = 1. Also, `(D) = 0 if degD < 0, because (f) +D ≥ 0 =⇒ degD ≥ 0.
Substituting D = Kx in Riemann-Roch gives

Corollary 22.2.
degKx = 2g − 2

Corollary 22.3. If degD ≥ 2g − 1 then `(D) = 1− g + degD.

Proof. If deg(Kx −D) < 0 then `(Kx −D) = 0. �

Corollary 22.4. If degD ≥ 2g then `(D − p) = `(D)− 1.

Corollary 22.5. If degD ≥ 2g then |D| has no base point; in particular, the rational
map X 99K |D|∗ (the dual projective space (|D|)∨) is a morphism. (The base points are
exactly where the rational map cannot be extended to a morphism.)

Proof. If p were a base point, then `(D − p) = `(D), contradicting the previous
corollary. �

Theorem 22.6. Let D be a divisor on X. If p, q ∈ X such that `(D − p− q) = `(D)− 2
then Z|D| : X → |D|∗ is a closed embedding.

Corollary 22.7. If degD ≥ 2g + 1 then Z|D| : X → |D|∗ is a closed embedding.

Remark 22.8. |D|∗ is noncanonically isomorphic to PdegD−g.

Corollary 22.9. Let g ≥ 2. Then Z|3Kx| : X → P5g−6 is a closed embedding.

Proof. deg 3Kx = 6g − 6 ≥ 2g + 1 �

If you fix the genus, then every curve of genus g can be embedded into a projective space
of dimension 5g − 6. This is how you construct the moduli space of curves.

Proof of theorem 22.6. Easy fact: `(D)− `(D− p) ≤ 1, which implies `(D− p) =
`(D)−1. So |D| has no base points. Consider ϕ = Z|D| : X → |D|∗. Then ϕ is injective: if
ϕ(p) = ϕ(q) = x ∈ |D|∗. Let H be a hyperplane of |D|∗ then ϕ∗H ∈ |D|, and all elements

1recall g − `(Kx) and `(D) = dimL(D) where L(D) = {f ∈ k(X)∗ : (f) +D ≥ 0} ∪ {0}
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in the linear system |D| are obtained in this way. If x ∈ H then supp(ϕ∗(H)) ⊃ {p, q};
otherwise, supp(ϕ∗H) 63 p, 63 q. But L(D − p − q) ( L(D − p) ( L(D). So there is
f ∈ L(D − p)\L(D − p − q) and (f) + D ∈ |D| where p ∈ supp((f) + D) (because
(f) +D ≥ p) but q /∈ supp((f) +D). Contradiction.

Let X ′ = ϕ(X) ⊂ |D|∗. We need to show that ϕ : X → X ′ is an isomorphism. (The image
is closed because we are mapping from projective varieties.) We know it’s injective; so it
suffices to show that it induces an isomorphism on the local rings. We have

X
f→ X ′ ↪→ |D|∗

The second map is a closed embedding, hence a finite morphism. The first map is also
finite, because it is a nonconstant map of curves. Suppose V ⊂ |D|∗ is affine. Then
A = O(V ) comes from B = O(U) where U = ϕ−1(V ). Recall x ∈ V is in ϕ(X) if for any
f ∈ O(U). X ′ is defined by

V ∩X ′ = {x : ϕ∗f = 0 =⇒ f(x) = 0}
SoO(V ∩X ′) = Im(A→ B) and I(V ∩X ′) = ker(A→ B). (We can always factor a map as
a surjection followed by an injection; in this case, we have produced A� O(V ∩X ′) ↪→ B.)

Let p ∈ X. Then OX,p is finite over OX′,ϕ(p) (it was finite to begin with, and then we

localized).

Claim: ϕ is injective on tangent spaces. On the level of local rings, this says mX′,ϕ(p) →
mX,p/m

2
X,p is surjective.

If the claim is true then we’re done. This condition means it’s surjective on the cotangent
space; dually, it’s injective on the tangent space. Let A = mX′,ϕ(p)OX,p so A ⊂ mX,p.
From the claim, A contains a local parameter of X at p. So A is exactly the maximal
ideal mX,p (it’s a principal ideal generated by any local parameter).

Now consider the maps of OX′,ϕ(p)-modules OX′,ϕ(p) → OX,p. So the map

OX′,ϕ(p)/mX′,ϕ(p)
//

∼=
��

OX,p/mX′,ϕ(p)OX,p
∼=
��

// N/mX′.ϕ(p)
//

∼=
��

0

k
∼= // OX,p/mX,p

∼= k // 0 // 0

By Nakayama’s lemma, OX′,ϕ(p) → OX,p is a surjection of OX′,ϕ(p)-modules.

T ∗ϕ(p)|D|
∗ → T ∗ϕ(p)X

′ → T ∗pX

so it is enough to show that
T ∗ϕ(p)|D|

∗ → Tp(X)

is surjective. Let x0, · · · , xn be coordinates on |D|∗, where ϕ(p) = (1, 0, · · · , 0). Let’s
recall what rational functions look like. Let (f0, · · · , fn) be a basis of L(D). Then ϕ(p) =
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(f0(p), · · · , fn(p)). Then ϕ∗ xi
x0

= fi
f0
∈ OX,p; this is actually in mX,p because fi vanishes

at p, since each xi
x0

vanishes at ϕ(p). But the xi span the cotangent space T ∗ϕ(p)|D|∗ . If we

define x0 = 0 then the rest are local parameters at that point.

To show T ∗ϕ(p)
|D|∗ → T ∗p (X) = mX,p/m

2
X,p is surjective, it suffices to show that there is

some i for which fi
f0
/∈ m2

X,p.

L(D − 2p) ( L(D − p) ( L(D)

Let f ∈ L(D − p)\L(D − 2p). Choose p /∈ Supp(D) such that (f) + D = p + D. Then
f
f0

= λ0 + λ1
f1
f0

+ · · · + λn
fn
f0

implies that f
f0

has a zero of order 2 at p, which is a

contradiction.

Summary: use p = q case to show that ϕ is injective on tangent spaces; then use commu-
tative algebra to show it is a closed embedding. �

What is Z|Kx| : X 99K Pg−1? Let’s consider g = 2. We get ϕ : X → P1: a map between two
curves. Assume characteristic zero. Exercise: show that ϕ is separable (this is equivalent
to it being nonconstant). If ϕ is a separable map, then Kx−ϕ∗KP1 is the branched divisor.
Also, ϕ∗([0]) = KX . By taking degrees, we get degϕ = 2g − 2 = 2; taking degrees in the
previous equation gives degB − 6 where B is the branched divisor. So the morphism is
generically a double cover, which means [k(X) : k(P1)] = 2. So you can write this as a
quadratic extension

k(X) = k(X)[y]/y2 − f(x)

Exercise: The support of the branched divisor B consists of the points over the zeroes
of f(x) of odd order, and the points over ∞ if deg f is odd. For example, if f has simple
zeroes at six points, then these points are all the branched points.

Definition 22.10. A curve X is called hyperelliptic if there exists ϕ : X → P1 of degree
2.

Corollary 22.11. Every genus 2 curve is hyperelliptic. If g ≥ 3, most curves are not
hyperelliptic.

Example 22.12. Let g ≥ 3. If X is not hyperelliptic then the morphism

Z|KX | : X → Pg−1

is a closed embedding. (You have to check that this linear system satisfies the conditions
of the theorem.)

Theorem 22.13 (Riemann-Hurwitz formula). Let ϕ : X → Y be separable of degree n.
Let KX − ϕ∗KY = B be the branched divisor. Then

2gX − 2 = n(2gY − 2) + degB

Let x ∈ X, y = ϕ(x) ∈ Y . Let tx, ty be local parameters. Then ϕ∗(ty) = texx u where ex
is some power called the ramification index of ϕ at x, and y ∈ O∗X,x is some invertible

90



Math 232a Xinwen Zhu Lecture 23

element. In general, the branched divisor is a determinant of the Jacobian matrix. But
here, we can just take

dϕ∗ty
dtx

= ete−2
x u+ texx

du

dtx

Definition 22.14. ϕ is said to be tame at x if char(k) - e.

Corollary 22.15. If ϕ is tame at x then ordx

(
dϕ∗ty
dtx

)
= e−1. This gives the coefficients

of the branched divisor. So if ϕ is tame everywhere, then B =
∑

x∈X(ex − 1) and

degB =
∑
x∈X

(ex − 1).

23. November 29

Presentations Thursday 2:30-4, Friday 2-4, SC 530, papers due December 10

23.1. Sketch of the proof of Riemann-Roch. Let X be a smooth projective

curve over k. If x ∈ X then consider ÔX,x ∼= k[[t]], where we can choose t to be a local
parameter. Then the maximal ideal m̂x,x corresponds to tk[[t]]. Let Kx be the fractional

field of ÔX,x. (Write OX,x =: Ox because the curve will be fixed here.) K̂x
∼= k((tx)) is

the set of Laurent series
∑∞

i≥−N ait
i.

Ox �
� //
� _

��

k(X) = K� _

��

Ôx �
� // K̂x

These morphisms are given by taking the Taylor expansion of a function in Ox.

Definition 23.1. The adèles of X is

AX =

′∏
x∈X

K̂x

where
∏′ is the restricted product: more precisely, elements in AX are (fx)x∈X , where

fx ∈ K̂x and all but finitely many fx are in Ôx.

First observe that there is a natural k-algebra homomorphism K ↪→ AX given by using

the inclusion of f in each K̂x, and then taking f 7→ (fx)x∈X . Let D =
∑
np ·p be a divisor

on X. We defined

AX(D) = {(fx)x∈X ∈
∏

K̂x : fx ∈ m̂−nxx Ôx} ⊂ Ax

(There are only finitely many x such that nx 6= 0.) If m̂x = tx · k[[tx]] =⊂ Ôx then we can

find m̂−1
x = t−1

x ·k[[tx]] ⊂ K̂x such that m̂x
−1 ·m̂x = Ôx. If D ≤ D′ then AX(D) ↪→ AX(D′)

and AX = lim−→
≤

AX(D)
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Given D consider K⊕AX(D)
dD→ AX where (f, 0) 7→ (fx)x∈X and (0, (fx)x∈X) 7→ (−fx)x∈X

(aside from the minus sign, we’re just using the natural embeddings here). The kernel is

ker dD = L(D) = {f ∈ K× : (f) +D ≥ 0} ∪ {0}
The cokernel is a vector space which we call H1(X,D).

If D ≤ D′ then we have a natural commutative diagram

0

��

0

��
K ⊕ AX(D)

dD //
� _

��

AX
∼
��

K ⊕ AX(D′)
dD′ //

����

AX

��
V //

��

0

0

where V is the cokernel of the first vertical chain of maps, and dimk V = degD′ − degD.
Now use the snake lemma to get a sequence

0 // ker dD // ker dD′ // V // H1(X,D) // H1(X,D′) // 0

The key point is to prove that H1(X,D) is a finite-dimensional vector space. We know
that ker dD is finite, because it is just L(D). Let Dm ∈ LX(m) = P(S(X)m). We can
choose Dm for m ∈ Z such that Dm ≤ Dm+1. Now, if m � 0 consider the short exact
sequence

0→ L(Dm)→ L(Dm+1)→ V → H1(X,Dm)→ H1(X,Dm+1 → 0)

dimk V = degDm+1 − degDm = degD1 = degX (note that Dm ∈ |m ·D1| and therefore
degDm = m · degD1, as degree does not change under linear equivalence). If m is large
enough, then the linear system is complete, and `(Dm+1) = PX(m + 1), and `(Dm) =
PX(m) so the difference is

`(Dm+1)− `(Dm) = PX(m+ 1)− PX(m) = degX

(The last equality is because the Hilbert polynomial is PX(t) = (degX)t + (1 − pa).) In

particular, the canonical map H1(X,Dm)
∼→ H1(X,Dm+1) is an isomorphism.

Claim 23.2. For m large enough, H1(X,Dm) = 0.

Proof. Let (fx) ∈ AX → H1(X,Dm) := AX/K ⊕ AX(Dm). We just said that this
maps isomorphically to AX/K ⊕ AX(Dm+1). We can choose n, and Dm+n ∈ LX(m+ n)
such that fx ∈ AX(Dm+1). Then (fx) = 0 in H1(X,Dn+m), so (fx) = 0 in H1(X,Dm). �
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Summary: We have proved: if m� 0 then for any Dm ∈ LX(m) and Dm+1 ∈ LX(m+1)
such thatDm+1 ≥ Dm, thenH1(X,Dm) ∼= H1(X,Dm+1). Now we have claimed that these
spaces are zero.

Corollary 23.3. For any divisor D, dimkH
1(X,D) <∞.

Proof. Find some Dm > D with m sufficiently large.

V → H1(X,D)→ H1(X,Dm)→ 0

H1(X,Dm) = 0, so because V is finite-dimensional, so is H1(X,D). �

Definition 23.4. χ(D) := `(D)− dimkH
1(X,D)

Theorem 23.5 (Cheap Riemann-Roch).

χ(D) = 1− pa + degD

Proof. If D′ = D + x, then we have a sequence

0→ L(D)→ L(D′)→ V → H1(X,D)→ H1(X,D′)→ 0

This implies χ(D′) = χ(D) + 1. So it suffices to prove this for hyperplane sections Dm,
for m very large. We have already done this. For Dm,

χ(Dm) = `(Dm) = PX(m) = 1− pa +m · degX = 1− pa + degDm

�

Corollary 23.6.
pa = dimkH

1(X,D = 0)

In particular, pa ≥ 0.

The other part of Riemann-Roch follows from Serre duality:

Theorem 23.7 (Serre duality). There is a canonical isomorphism H1(X,D)×
∼→ L(KX−

D) where KX is the canonical divisor.

Corollary 23.8. pa = g (geometric genus)

Proof. Use D = 0. Also, χ(D) = `(D)− `(Kx −D) so we get Riemann-Roch. �

Finally, we will give a sketch of the proof of Serre duality.

Definition 23.9. Let Ω
K̂x

= ΩK ⊗K K̂x. Then ΩÔx = Ω̂Ox = ΩOx ⊗Ox Ôx. Elements of

this are f(t)dt for f(t) ∈ k[[t]], and elements of Ω
K̂x

have the form f(t)dt for f(t) ∈ k((t)).

Theorem 23.10. There exists a k-linear map

resx : Ω
K̂x
→ k

that satisfies:
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(a) resx|ΩÔx = 0

(b) resx(fndf) = 0 for all f ∈ K× and all n 6= −1
(c) resx(f−1df) = ordx(f)

Corollary 23.11. If ω ∈ Ω
K̂x

, then ω =
∑
aitidt with resxω = a−1.

This is hard in characteristic p. If k = C, then resxω = 1
2πi

∮
ω. In this case, it is clear

that a−1 is independent of the choice of local coordinates. In general:

Theorem 23.12 (Residue theorem). Let ω ∈ ΩK . Then∑
x∈X

resxω = 0

(This is due to Tate.)

Notation 23.13. If D is a divisor, then

ΩX(D) := {ω ∈ ΩK : (ω) +D ≥ 0} = L(KX +D)

Consider the pairing ΩX(−D)×AX → k that sends (ω, (fx)) 7→
∑

x∈X resx(fxω). Clearly,
this k-bilinear map factors through ΩX(−D) × Ax/K ⊕ AX(D) → k (that is, it vanishes
on K ⊕ AX(D)). Since K ⊕ AX(D) = H1(X,D), we get

ΩX(−D)⊗H1(X,D)

The claim is that this is a perfect pairing:

Theorem 23.14. This pairing induces H1(X,D)∨
∼→ ΩX(−D).

All of this is contained in a paper of Tate.

The End.
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