# A course in Algebraic Geometry 

Taught by Prof. Xinwen Zhu

Fall 2011

## Contents

1. September 1 3
2. September $6 \longrightarrow 6$
3. September 8 11
4. September $20 \quad 16$
5. September 22 21
6. September $27 \quad 25$
7. September 2930
8. October 4 34
9. October 6 37
10. October 11 41
11. October 13 45
12. October 18 49
13. October 20 53
14. October 25 57
15. October 27 60
16. November 1 65
17. November 3 68
18. November 8 72
19. November 10 75
20. November 15 79
21. November 17 83
22. November 22 87
23. November 29

## 1. September 1

1.1. Algebraic sets. We start with an algebraically closed field $k$. First define the affine space

DEFINITION 1.1. $\mathbb{A}_{k}^{n}=\left\{\left(a_{1} \cdots a_{n}\right): a_{i} \in k\right\}$
Definition 1.2. An algebraic set $X \subset \mathbb{A}^{n}$ is the set of common zeroes of a collection of polynomials $f_{1} \cdots f_{m} \in k\left[x_{1} \cdots x_{n}\right]$. We denote this set $V\left(f_{1} \cdots f_{n}\right)$. That is, $V\left(f_{1} \cdots f_{n}\right)=\left\{\left(a_{1} \cdots a_{n}\right): f_{1}\left(a_{1} \cdots a_{n}\right)=\cdots=f_{m}\left(a_{1} \cdots a_{n}\right)=0\right\}$.

But there might be some other polynomials $g_{1} \cdots g_{n}$ such that $V\left(f_{1} \cdots f_{n}\right)=V\left(g_{1} \cdots g_{n}\right)$. In general, this set is determined by the ideal generated by the polynomials $f_{i}$, or $g_{i}$. So if $I=\left(f_{1} \cdots f_{n}\right)$, we can write $V\left(f_{1} \cdots f_{n}\right)=V(I)=\left\{\left(a_{1} . . a_{n}\right) \in \mathbb{A}^{n}: f\left(a_{1} \cdots a_{n}\right)=\right.$ $0 \forall f \in I\}$. Since the polynomial ring is Noetherian, every ideal is finitely generated, and so every $V(I)$ can be written as $V\left(f_{1} \cdots f_{n}\right)$ for some finite collection of $f_{i}$.

The following relations are really useful, and are not hard to check.
Lemma 1.3. The sets $V(I)$ act like closed sets in a topological space, in the following sense:
(1) If $I_{1} \subset I_{2}$, then $V\left(I_{1}\right) \supset V\left(I_{2}\right)$.
(2) $V\left(I_{1}\right) \cup V\left(I_{2}\right)=V\left(I_{1} \cap I_{2}\right)=V\left(I_{1} \cdot I_{2}\right)$.
(3) $\cap_{\alpha} V\left(I_{\alpha}\right)=V\left(\sum_{\alpha} I_{\alpha}\right)$
(4) $V(\{0\})=\mathbb{A}^{n}$ and $V\left(k\left[x_{1} \cdots x_{n}\right]\right)=\emptyset$

Therefore, we can define a topology on this affine space.
Definition 1.4. The Zariski topology on $\mathbb{A}^{n}$ is given as follows:
The closed subsets are algebraic sets (i.e. sets of the form $V(I)$ for some ideal I defined as above).

Example 1.5. Consider $\mathbb{A}_{k}^{1}$. I claim that the algebraic sets are finite sets, as well as all of $\mathbb{A}^{1}$ and the empty set. Algebraic sets are zeroes of polynomials in some ideal. In this case we are considering ideals in $k[x]$, which is a PID, so those ideals all look like $(f)$. Our field is algebraically closed, so write $f=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$. So all the closed sets look like $V(f)=\left\{\alpha_{1} \cdots \alpha_{n}\right\}$. (And, of course, for every finite set we can find a polynomial where those are the only roots, so every finite set is closed.)

Example 1.6. Now consider $\mathbb{A}^{2}$. Obviously, we have $\mathbb{A}^{2}$ and $\emptyset$ are algebraic sets. Also, we have things that are plane curves: $V(f)$. However, not every ideal is generated by one polynomial: we also have the ideals $V\left(f_{1}, f_{2}\right)$. Suppose $f_{1}$ is irreducible, and $f_{2}$ is not divisible by $f_{1}$. Then $V\left(f_{1}, f_{2}\right)$ is a finite set. Why? (Homework.) But every other set is some union of sets of the form $V\left(f^{\prime}\right)$ and $V(f, g)$.

Of course, we can write $\mathbb{A}^{2}=\mathbb{A}^{1} \times \mathbb{A}^{1}$. But this does not work topologically. Why? (Homework, again.)

Definition 1.7. $\sqrt{I}=\left\{f \in k\left[x_{1} \cdots x_{n}\right]: f^{r} \in I\right\}$ is the radical of the ideal $I$. A radical ideal is a set whose radical is itself.

Example 1.8. Consider $I=(f)$ where $f=(x-1)^{3}$. Then $x-1 \notin I$ but $x-1 \in I$. However, if $I=(f)$ where $f$ does not have any repeated roots, then $\sqrt{I}=I$.

Theorem 1.9 (Hilbert's Nullstellensatz). Let $X=V(I)$. Then

$$
\left\{f \in k\left[x_{1} \cdots x_{n}\right]: f(p)=0 \quad \forall p \in X\right\}=\sqrt{I} .
$$

We already had a mapping $I \mapsto V(I)$ from ideals to sets. The theorem motivates defining a map from sets to ideals:

$$
X \mapsto I(X):=\{f: f(p)=0 \quad \forall p \in X\}
$$

Corollary 1.10. There is an order-reversing bijection between radical ideals in $k\left[x_{1} \cdots x_{n}\right]$ and algebraic sets in $\mathbb{A}^{n}$.

Let $f=x y$ and consider $V(f) \subset \mathbb{A}^{2}$; this is the union of the two coordinate axes, and so we can write $V(x y)=V(x) \cup V(y)$. This suggests a question: what algebraic sets cannot be written as the (nontrivial) union of two algebraic sets? More precisely,

Definition 1.11. Let $X \neq \emptyset$ be a topological space. We say $X$ is irreducible if $X$ cannot be written as the union of two proper closed subsets.

Zariski-land is really different from what we're used to in $\mathbb{R}^{n}$, where the only irreducible closed sets are single points. Here, something as big as $\mathbb{A}^{1}$ is irreducible: we just said that closed subsets consist of finitely many points, and we were assuming that $k$ is infinite.

Proposition 1.12. There is a 1-1 correspondence between irreducible algebraic sets (with the induced topology) and the prime ideals in $k\left[x_{1} \cdots x_{n}\right]$. In addition, every algebraic set can be written as the union of its irreducible components, by which we mean irreducible closed subsets. (For example, $V(x y)$ is the union of two irreducible components.)

Proof. We have already shown a bijection between radical ideals and irreducible algebraic sets. We want to show that $V(I)$ is irreducible iff $I$ is prime.
$(\Longrightarrow)$ Assume that $I$ is not the whole thing, or empty. We want to show that if $f g \in I$, then either $f$ or $g$ is in $I$. Consider the ideal generated by $f g$; this is in $I$. By the first lemma, $V(f g) \supset V(I)$. Now, $V(I) \subset V(f) \cup V(g) . V(I)=(V(f) \cap V(I)) \cup(V(g) \cap V(I))$. By irreducibility, either $V(I)=V(f) \cap V(I)$ or $V(I)=V(g) \cap V(I)$. So $V(I) \subset V(f)$ or $V(I) \subset V(g)$, which implies $f \in I$ or $g \in I$.
$(\Longleftarrow)$ By contradiction. Write $V(I)=V\left(I_{1}\right) \cup V\left(I_{2}\right)=V\left(I_{1} \cap I_{2}\right)$. The intersection of radical ideals is radical. So $I=I_{1} \cap I_{2}$ implies $I=I_{1}$ or $I=I_{2}$.

Any radical ideal can be written as the intersection of finitely many prime ideals (by commutative algebra): $I=B_{1} \cap \cdots \cap B_{r}$ with $B_{i}$ minimal prime ideals containing $I$. Therefore, $V(I)=V\left(B_{1}\right) \cup \cdots \cup V\left(B_{v}\right)$ for $B_{i}$ prime. So each piece is an irreducible component of $V(I)$.
Definition 1.13. An affine algebraic variety is an irreducible algebraic set in $\mathbb{A}^{n}$, with its induced topology. (So it's an irreducible closed space). A quasi-affine variety is an open subset of an affine variety.
Example 1.14. Examples of affine varieties.
(1) We have seen that $\mathbb{A}^{1}$ is an affine variety. In fact, so is every $\mathbb{A}^{n}$ : use the fact that $\mathbb{A}^{n}=V(0)$, and zero is prime in the polynomial ring.
(2) Linear varieties: let $\ell_{1} \cdots \ell_{m}$ be independent linear forms of $x_{1} \cdots x_{n}$. (These are linearly independent homogeneous polynomials of degree 1.) Let $a_{1} \cdots a_{m} \in k$. Then $V\left(\ell_{1}-a_{1}, \ell_{2}-a_{2}, \cdots, \ell_{m}-a_{m}\right) \in \mathbb{A}^{n}$ is an affine variety, which we call a linear variety of dimension $n-m$. For example, if $\ell=a x+b y$ then $V(\ell-c)$ is just the line $a x+b y=c$.
(3) Points are affine varieties. Use $\ell_{1}=x_{1}, \ell_{2}=x_{2}, \cdots, \ell_{n}=x_{n}$ in the previous example. Then $V\left(x_{1}-a_{1}, \cdots, x_{n}-a_{n}\right)$ is exactly the point $\left(a_{1} \cdots a_{n}\right)$. (Two points are an algebraic set, but are not irreducible.)
(4) Consider $f \in k\left[x_{1} \cdots x_{n}\right]$ such that $(f)$ is prime. Then $V(f)$ is usually called a hypersurface in $\mathbb{A}^{n}$, and is an algebraic variety.
(5) If $f \in k[x, y]$ then $V(f)$ is usually called a plane curve: for example, think about the graph of $y^{2}=x^{3}$ (this has a cusp at the origin). $y^{2}-x^{3}-x^{2}$ passes the origin twice, and is called nodal. $y^{2}-x^{3}-x$ is called an elliptic curve (it has two disconnected components). If $k$ is the complex numbers, this curve is a torus.
(6) Parametrized curves. Given $f_{1}(t) \cdots f_{n}(t) \in k[t]$, then $x_{i}-f_{i} \in k\left[t, x_{1} \cdots x_{n}\right]$ and we can consider $V\left(x_{1}-f_{1} \cdots x_{n}-f_{n}\right) \subset \mathbb{A}^{n+1}$. For example, we have $V\left(x-t^{2}, y-t^{3}\right) \subset \mathbb{A}^{3}$. It looks like $y^{2}-x^{3}$ if you project to the $x y$ plane.
1.2. Morphisms between quasi-affine varieties. Recall that an affine variety is a special case of a quasi-affine variety.
Definition 1.15. Let $X \subset \mathbb{A}^{n}$ be a quasi-affine variety. A function $f: X \rightarrow k$ is considered regular at $p \in X$ if there is some set $U \ni p$ open in $X$, and $f_{1}, f_{2} \in k\left[x_{1} \cdots x_{n}\right]$ such that
(1) $f_{2}(q) \neq 0$ for $q \notin U$
(2) $f=\frac{f_{1}}{f_{2}}$ on $U$
(Basically, it agrees with a well-defined rational function on a neighborhood.)
$f: X \rightarrow k$ is called regular if it is regular at every point in $X$.

Observe that the set of regular functions on $X$ form a ring, denoted by $\mathcal{O}(X)$. For example, $k\left[x_{1} \cdots x_{n}\right] \subset \mathcal{O}\left(\mathbb{A}^{n}\right)$, but you can actually prove equality.

So now we have a notion of functions on $\mathbb{A}^{n}$. Are they continuous?
Lemma 1.16. Let $f: X \rightarrow k$ be a regular function. Regard it as map $f: X \rightarrow \mathbb{A}_{k}^{1}$ naturally. Then $f$ is continuous.

COROLLARY 1.17. Let $f$ be a regular function on a quasi-affine variety $X$. If $f=0$ on some open subset $U \subset X$, then $f=0$ on $X$. (So there are no bump functions.)

Proof of corollary. Consider $Z=\{p \in X: f(p)=0\}$. This is closed, because $f$ is continuous and points are closed. We can write $X=Z \cup(X \backslash U)$. These are two closed subsets, and $X$ is irreducible, so one of them must be all of $X$. But $X \backslash U$ is not $X$, which implies that $X=Z$.

Proof of lemma. In fact, it is enough to show that $f^{-1}(0)$ is closed. Why? We want to show that, for every closed subset of $\mathbb{A}^{n}$, the preimage is closed. But the closed subsets of $\mathbb{A}^{n}$ are either the whole set, the empty set, or finite sets. But since this is a ring, to show that $f^{-1}(a)$ is closed, it suffices to show that $(f-a)^{-1}(0)$ is closed.

For every $p$, we need to find some neighborhood $U \ni p$ such that $f^{-1}(0) \cap U$ is closed. By definition of regular functions, we can choose $U$ such that $f=\frac{f_{1}}{f_{2}}$ on $U$, with $f_{1}$ and $f_{2}$ polynomials. But $f^{-1}(0) \cap U=f_{1}^{-1}(0) \cap U=V\left(f_{1}\right) \cap U$, which is closed in $U$.

## 2. September 6

RECALL that a set is quasi affine if it is open in an affine variety (irreducible algebraic set). Let $X$ be a quasi-affine variety over a field $k$, and let $\mathcal{O}(X)$ be the ring of regular functions on $X$. (A function is regular at a point if it agrees with a well-defined rational function on a neighborhood.)

Proposition 2.1. If $f: X \rightarrow k$ is regular, then $f: X \rightarrow \mathbb{A}^{1}$ is continuous with respect to the Zariski topology.

Corollary 2.2. If $f=0$ on $U \in X$ open, then $f=0$ on $X$.
Corollary 2.3. $\mathcal{O}(X)$ is an integral domain.

Proof. If $f g=0$, then if $Z_{1}=\{x: f(x)=0\}$ and $Z_{2}=\{x: g(x)=0\}$, then $Z_{1} \cup Z_{2}=X$. Since $X$ is irreducible, then one of the $Z_{i}=X$, and so one of $f$ or $g$ is zero.

DEfinition 2.4.
(1) The field of rational functions on $X$ is the fraction field of $\mathcal{O}(X)$, denoted by $K=k(X)$.
(2) Let $p \in X$. The local ring of $X$ at $p$ is given by $\mathcal{O}_{X, p}=\underset{U \ni p}{\lim } \mathcal{O}(U)$. (For every $V \subset U$ there is a $\operatorname{map} \mathcal{O}(U) \rightarrow \mathcal{O}(V)$, and that is where the direct limit is taken.) For every $p$ define an equivalence relation on $\mathcal{O}(X)$, where two regular functions are equivalent if they agree on some neighborhood of a point. Then $\mathcal{O}_{X, p}=\mathcal{O} / \sim$. Our ring is local because it has a unique maximal ideal: $\mathfrak{m}$ is the set of functions that vanish at 0.
REMARK 2.5. Let $f \in k(X)$ be a rational function $f=\frac{f_{1}}{f_{2}}$, for $f_{1}, f_{2} \in \mathcal{O}(X)$. Therefore, $f$ defines a regular function on $U=X-\left\{f_{2}=0\right\}$. Conversely, if $f \in \mathcal{O}(U)$ then we claim that $f$ can be regarded as a regular function. Why? Choose $p \in U$. There is some open neighborhood $V \subset U$ such that $f=\frac{f_{1}}{f_{2}}$ on $V$, where $f_{1}$ and $f_{2}$ are polynomials. In particular, $f_{i} \in \mathcal{O}(U)$. So $f \in K$, at least in this neighborhood. However, we want this to be well-defined over all $p$. If you choose any $p^{\prime} \in V^{\prime} \subset U$, and write $f=\frac{f_{1}^{\prime}}{f_{2}^{\prime}}$ on $V^{\prime}$, then $\frac{f_{1}}{f_{2}}=\frac{f_{1}^{\prime}}{f_{2}^{\prime}}$ on $V \cap V^{\prime}$. So $f_{1} f_{2}^{\prime}=f_{1}^{\prime} f_{2}$ on $V \cap V^{\prime}$. But since all the $f_{i}$ and $f_{i}^{\prime}$ were well-defined everywhere, we can write $\frac{f_{1}}{f_{2}}=\frac{f_{1}^{\prime}}{f_{2}^{\prime}} \in K$. So we've just gotten an injective map $\mathcal{O}(U) \hookrightarrow K$ which is in fact a ring homomorphism. You end up getting a sequence

$$
\mathcal{O}(X) \hookrightarrow \mathcal{O}(U) \hookrightarrow \mathcal{O}_{X, p} \hookrightarrow K=k(X)=k(U)
$$

To clarify the first inclusion, note that $\mathcal{O}(X)$ contains functions that agree with rational functions on $X$, whereas in $\mathcal{O}(U)$ they only have to agree on the smaller set $U$.

If $X$ is affine, it is defined by some prime ideal: $X=V(\mathfrak{P})$. Can we determine the regular functions in terms of $\mathfrak{P}$ ?

THEOREM 2.6. Let $X=V(\mathfrak{P}) \subset \mathbb{A}^{n}$ be affine. Then
(1) There is a natural isomorphism $A(X):=k\left[x_{1} \cdots x_{n}\right] / \mathfrak{P} \rightarrow \mathcal{O}(X)$ (all regular functions are restrictions of polynomials).
(2) There is a 1-1 correspondence between points on $X$ and maximal ideals of $A(X)$. We will denote the maximal ideal corresponding to $\{p\}$ as $\mathfrak{m}_{p}$. These are the functions that vanish at the point $p$.
(3) The localization $A(X)_{\mathfrak{m}_{p}}$ is isomorphic to $\mathcal{O}_{X, p}$.

We call $A(X)$ the coordinate ring of $X$.

Proof. (2) Obvious. All the nonempty irreducible algebraic sets correspond bijectively to prime ideals. If $Y \subset X$ is a nonempty irreducible algebraic set, it corresponds bijectively to a containment $I(Y) \supset I(X)=\mathfrak{P}$. In particular, points in $X$ correspond to maximal ideals that contain $\mathfrak{P}$. [Points are closed by Example 1.14, and are certainly irreducible.] These are the same as the maximal ideals of $A(X)$.
(3) There is a natural map $k\left[x_{1} \cdots x_{n}\right] \rightarrow \mathcal{O}(X)$ that factors through $k\left[x_{1} \cdots x_{n}\right] / \mathfrak{P}$ : all the polynomials that vanish on $X$ are exactly the elements of $\mathfrak{P}$. On the other hand, we have a natural inclusion $\mathcal{O}(X) \rightarrow \operatorname{Frac}(A(X))$, by the same argument as we saw earlier:
any regular function on some open subset, can be written as $f=\frac{f_{1}}{f_{2}}$. (We showed that this is well-defined.) So we have inclusions

$$
A(X) \hookrightarrow \mathcal{O}(X) \hookrightarrow \operatorname{Frac}(A(X))=K
$$

( $K$ is the fractional field of $\mathcal{O}(X)$, but $\mathcal{O}(X) \subset \operatorname{Frac}(A(X))$. )


The map $A(X)_{\mathfrak{m}_{p}} \rightarrow \mathcal{O}_{X, p}$ is given by writing things in $A(X)$ as fractions on an appropriate open set. However, we claim it is an isomorphism. It is a fact from commutative algebra that every integral domain is the intersection of its localizations. We have

$$
A(X)=\bigcap_{\mathfrak{m}} A(X)_{\mathfrak{m}} \hookrightarrow \bigcap_{p} \mathcal{O}(x, p)
$$

$\mathcal{O}(X)$ is contained in any local ring, so it is contained in the last intersection. Since $\mathcal{O}_{X, p}=\underset{\longrightarrow}{\lim \mathcal{O}}(U)$, we can write these as rational functions and shrink the open set, to get rational functions that do not vanish at $p$.

So we get an isomorphism for the infinite intersections, which makes $A(X)=\mathcal{O}(X)$.
Definition 2.7. Let $X$ and $Y$ be two quasi-affine varieties. A morphism $\varphi: X \rightarrow Y$ is a continuous map such that for any $V \subset Y$ open and $f: V \rightarrow k$ regular,

$$
f \circ \varphi: \varphi^{-1}(V) \rightarrow k
$$

is regular.

The collection of quasi-affine varieties, with morphisms defined as above, forms a category.
Definition 2.8. A morphism $\varphi: X \rightarrow Y$ is called an isomorphism if there is some $\psi: Y \rightarrow X$ such that $\psi \varphi=\varphi \psi=I d$.

Definition 2.9. A quasi-affine variety is also said to be affine if it is isomorphic to an affine variety.

Example 2.10. $\mathbb{A}^{1}-\{0\}$ is a quasi-affine variety. But later we will see that it is isomorphic to $V(x y-1) \subset \mathbb{A}^{2}$. So it is also an affine variety.

Here is an easier way to see what things are morphisms.
Lemma 2.11. Let $\varphi: X \rightarrow Y \subset \mathbb{A}^{n}$ be a map with $X$ quasi-affine and $Y$ affine. Then $\varphi$ is a morphism iff $x_{i} \circ \varphi$ is regular (where $x_{i}$ is any coordinate function on $Y$ : a restriction to the $i^{\text {th }}$ coordinate).

Proof. $x_{i}$ is certainly a regular function, so if $\varphi$ is a morphism, then so is $x_{i} \circ \varphi$.
Conversely, if $x_{i} \circ \varphi$ is regular for any $x_{i}$, we need to show
(1) $\varphi$ is continuous;
(2) For any open $V \subset Y$ and $f \in \mathcal{O}(V)$, the composition $f \circ \varphi$ is regular on $\varphi^{-1}(V)$.

Now let's prove these things.
(1) Let $f \in k\left[x_{1} \cdots x_{n}\right]$. We can write a generic closed set as $Z=V\left(f_{1}\right) \cap \cdots \cap V\left(f_{n}\right)$. So the goal is to show that $\varphi^{-1}(V(f))$ is closed. This is the set of $x$ such that $f(\varphi(x))=0$. So it suffices to show that $f \circ \varphi$ is continuous. In fact, we claim that it is regular. Write

$$
f \circ \varphi=f\left(x_{1} \circ \varphi, \cdots, x_{n} \circ \varphi\right)
$$

and recall that, on an affine space, regular functions are rational functions. Substituting the regular $(\Longrightarrow$ rational $)$ functions $x_{i} \circ \varphi$ into the variables of the regular $(\Longrightarrow$ rational $)$ function $f$ still produces a rational function.
(2) (Now since $V$ need not be affine, we cannot directly use the trick that regular $=$ rational. But we can still do this if we say things are rational in a neighborhood.) If $V \subset Y$ and $p \in U \subset V$ we want to show that $\varphi$ is regular at $p$. At $\varphi(p)$ we can write $f=\frac{f_{1}}{f_{2}}$, where $f_{1}$ and $f_{2}$ are polynomials and $f_{2}(p) \neq 0$. Around $p$, $f \circ \varphi=\frac{f_{1} \circ \varphi}{f_{2} \circ \varphi}$; numerator and denominator are regular functions, so $f \circ \varphi$ is also regular at $p$.

ExAMPLE 2.12. $G_{m}:=\mathbb{A}^{1}-0 \rightarrow V(x y-1) \subset \mathbb{A}^{2}$ where $t \mapsto\left(t, t^{-1}\right)$. Composing with $x_{1}$ gives a regular function, as does composition with $x_{2}$. Conversely, you can give a map $(x, y) \rightarrow x y$ backwards. This gives an isomorphism of quasi-affine varieties; and now we can say that $\mathbb{A}^{1}-0$ is an affine variety.

Proposition 2.13. Let $X$ be quasi-affine and $Y$ be affine. Then there is a natural isomorphism

$$
\operatorname{Hom}(X, Y) \xrightarrow{\sim} \operatorname{Hom}(\mathcal{O}(Y), \mathcal{O}(X))
$$

where $\operatorname{Hom}(X, Y)$ is the set of all morphisms $X \rightarrow Y .($ Note that $\mathcal{O}(Y)=A(Y)$.)

Proof. There is clearly a forwards map. Any $\varphi: X \rightarrow Y$ induces a pullback map $\varphi^{*}: \mathcal{O}(Y) \rightarrow \mathcal{O}(X)$, where $f \mapsto f \circ \varphi$. We want to construct an inverse map:

$$
\operatorname{Hom}_{\text {alg }}(A(Y), \mathcal{O}(X)) \rightarrow \operatorname{Hom}(X, Y)
$$

Let $Y \subset \mathbb{A}^{n}$. Start with a map $\psi: A(Y) \rightarrow \mathcal{O}(X)$, construct $\varphi: X \rightarrow \mathbb{A}^{n}$, where $\varphi: p \mapsto\left(\psi\left(x_{1}\right)(p), \psi\left(x_{2}\right)(p), \cdots\right)$ sends any function in the ideal defining $Y$ to zero. So the previous map sends $p$ into $Y$. So send $p \mapsto p(\varphi(x))$. To check it is a morphism, we have to look at the coordinate functions. But we constructed it so that we knew what they were: $x_{i} \circ \varphi=\psi\left(x_{i}\right)$.

Corollary 2.14. There is a contravariant equivalence of categories between affine varieties and finitely-generated integral $k$-algebras. A morphism between $X$ and $Y$ is the same as a morphism between their coordinate rings, by the previous proposition.

Given any finitely generated $k$-algebra $k\left[x_{1} \cdots x_{n}\right] / \mathfrak{P}$, since $A$ is integral $\mathfrak{P}$ is a prime ideal, and $A$ is exactly the coordinate ring of $V(\mathfrak{P})$.

In the homework, you will see that $\mathbb{A}^{2}-\{(0,0)\}$ is not an affine variety, but its coordinate ring is the same as $k[x, y]$. So the coordinate ring is not really enough to determine the variety.
Definition 2.15. Let $A \rightarrow B$ be a homomorphism of commutative algebras, and $M$ a $B$-module. We define the derivations

$$
\operatorname{Der}_{A}(B, M)=\{D: D: B \rightarrow M \text { satisfying (1) and (2) }\}
$$

(1) $D\left(b_{1} b_{2}\right)=b_{1} D\left(b_{2}\right)+b_{2} D\left(b_{1}\right)$
(2) $D(a)=0 \forall a \in A$

Example 2.16. If $A=k$ and $B=k\left[x_{1} \cdots x_{n}\right]$. Then $M=k$ is a $B$-module, defined by the map $B \rightarrow k$ taking every $x_{i} \mapsto 0$.

We have:

$$
\operatorname{Der}_{k}(B, k)=\left\{D=\sum \lambda_{i} \frac{\partial}{\partial x_{i}}: \lambda_{i} \in k\right\}
$$

By definition, $\frac{\partial}{\partial x_{i}}\left(x_{j}\right)=\delta_{i j}$.
Also note that $k \cong \mathcal{O}_{X, p} / \mathfrak{m}$. This is because the map $A(X) \rightarrow k$ given by evaluation at $p$ has, by definition, kernel $\mathfrak{m}_{p} \ldots$ and so does the map $\mathcal{O}_{X, p} \cong A(X)_{\mathfrak{m}_{p}} \rightarrow k$.
Definition 2.17. The Zariski tangent space of $X$ at $p$ is defined as

$$
T_{p} X=\operatorname{Der}_{k}\left(\mathcal{O}_{X, p}, k\right)
$$

Observe that the space of all derivations $\operatorname{Der}_{A}(B, M)$ is a $B$-module. (Adding and scalar multiplication by $b$ also makes a derivation.) Therefore, $T_{p} X$ is a $\mathcal{O}_{X, p}$-module. But this factors through $\mathfrak{m}$, making it a $k$-vector space.
Lemma 2.18.

$$
T_{p} X \cong\left(\mathfrak{m} / \mathfrak{m}^{2}\right)^{\times}
$$

Note that the $\times$ means dual space!

Proof. Given a derivation $D: \mathcal{O}_{X, p} \rightarrow k$, we can restrict to $\mathfrak{m}$ and get a map $\mathfrak{m} \rightarrow k$. But this vanishes on $\mathfrak{m}^{2}: D(f g)=f D(g)+g D(f)$ but because $f, g \in \mathfrak{m}$, when you mod out by $\mathfrak{m}$ you have $D(f g)=0 \in \mathfrak{m} / \mathfrak{m}^{2}$. Given such a map, the derivation is uniquely determined. As a $k$-vector space, $\mathcal{O}_{X, p} \cong k \oplus \mathfrak{m}$. By definition this tangent space is the $k$-derivations $\operatorname{Der}_{k}\left(\mathcal{O}_{X, p}, k\right)$. You can easily check that this gives a bijective correspondence.

Exercise: Show $\mathfrak{m} / \mathfrak{m}^{2}$ is a finite-dimensional $k$-vector space.

We will prove the following theorem next time:
Theorem 2.19. Let $X$ be quasi-affine. Then there is some non-empty Zariski-open subset $U \subset X$ such that $\operatorname{dim}_{K} \operatorname{Der}_{k}(K, K)=\operatorname{dim}_{k} T_{p} X$ for all $p \in U$.

This number is called the dimension of $X$.

## 3. September 8

Next week no class. After that, class is at 2:30-4:00.

### 3.1. Smooth points.

ThEOREM 3.1. Let $X$ be a quasi-affine variety over $k$. Let $K=k(X)$ be the function field.
(1) For all $p \in X, \operatorname{dim} \operatorname{Der}_{k}(K, K) \leq \operatorname{dim}_{k} T_{p} X$
(2) There is a nonempty open subset $U \subset X$ such that

$$
\operatorname{dim}_{k} T_{p} X=\operatorname{dim}_{K} D e r_{k}(K, K) \quad \forall p \in U
$$

This motivates a definition:
Definition 3.2.

$$
\operatorname{dim} X=\operatorname{dim}_{K} D e r_{k}(K, K)=\min _{p \in X} \operatorname{dim}_{k} T_{p} X
$$

Definition 3.3. $p \in X$ is called non-singular (or smooth) if $\operatorname{dim} T_{p} X=\operatorname{dim} X$. Otherwise, $p$ is called a singular point of $X . X$ is called smooth or nonsingular if every point on $X$ is smooth.

On a smooth manifold, the dimension of the tangent space is always the same. But here, we can have points that are not smooth.

Proof of theorem. We can assume that $X$ is affine. (Otherwise take the Zariski closure, and the function field does not change.) There is a natural map obtained by restriction:

$$
\operatorname{Der}_{k}(K, K) \rightarrow \operatorname{Der}_{k}(\mathcal{O}(X), K)
$$

Because the fraction field is in $\mathcal{O}(X)$, this is an isomorphism. If $X=V(\mathfrak{P}) \subset \mathbb{A}^{n}$, then

$$
\operatorname{Der}_{k}(\mathcal{O}(X), K)=\left\{D=\sum \lambda_{i} \frac{\partial}{\partial x_{i}}, \lambda_{i} \in K: D(f)=0 \forall f \in \mathfrak{P}\right\}
$$

If we choose a set of generators $f_{1} \cdots f_{m}$ for $I$, we can rewrite the above as

$$
\left\{D=\sum \lambda_{i} \frac{\partial}{\partial x_{i}}: \lambda_{i} \in K, \sum \lambda_{i} \frac{\partial f_{j}}{\partial x_{j}}=0 \forall j\right\}
$$

If it vanishes on $x_{j}$, then it vanishes on the whole ideal: $D(f g)=f D(g)+g D(f)$. This is the kernel of the map $K^{n} \rightarrow K^{m}$ by the derivation $\frac{\partial f_{j}}{\partial x_{i}}$. So the dimension of the derivations is just $n-r k_{K} J$, where $J$ is the matrix of partials described above.

All the entries of this matrix are polynomials, so you can evaluate at $p$. By the same reasoning, $\operatorname{dim}_{k} T_{p} X=n-r k_{K} J(p)$. We want to show that

- $r k_{k} J(p) \leq r k_{K} J$
- there is some nonempty subset $U$ such that $r k_{k} J(p)=r k_{K} J$

Assume $r k_{K} J=r$. Then there are invertible $n \times n$ matrices $A, B$ with entries in $K$ such that you can write $A J B$ as a block matrix with $I_{r}$ in the upper left and zeroes elsewhere. Write $A=A_{0} / \alpha, B=B_{0} / \beta$ such that $\alpha$ and $\beta \in \mathcal{O}(X)$ and $A_{0}$ and $B_{0}$ have entries in $\mathcal{O}(X)$. Let $f=\alpha \beta \operatorname{det} A_{0} \cdot \operatorname{det} B_{0}$. This is something in $\mathcal{O}(X)$ which is not zero (since none of the terms is zero). Just consider $U=X-V(f)$. This is nonempty. You can write $A_{0} J B_{0}=\alpha \beta\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$. So for all $p \in U, r k_{k} J(p)=r$.

Lemma 3.4. The function $p \mapsto \operatorname{dim}_{k} T_{p} X$ is upper semicontinuous. That is,

$$
X_{\ell}=\left\{p \in X: \operatorname{dim} T_{p} X \geq \ell\right\}
$$

is closed. So $\operatorname{dim} T_{p} X \geq n-r$ for all $p \in X$.

An open subset of $X$ has dimension exactly $n-r$. Others have dimension $\geq$ this.

Proof. $\operatorname{dim} T_{p} X=n-r k_{k}\left(\frac{\partial f_{i}}{\partial x_{j}}(p)\right)$.
$X_{\ell}=V(\mathfrak{P}+$ the ideal generated by all $(n-\ell+1) \times(n-\ell+1)$ minors of $J)$
So this is a closed subset.

EXAMPle 3.5. Assume $k$ does not have characteristic 2. Remember $y^{2}=x^{3}$ has a cusp, $y^{2}=x^{3}+x^{2}$ intersects itself at the origin, and $y^{2}=x^{3}+x$ has two connected components. Since these are plane curves, we hope they have dimension one.

In the first case, take $f=y^{2}-x^{3}$. Taking the partials, we find $f_{x}=-3 x^{2}, f_{y}=2 y \neq 0$. So $J=\left(-3 x^{2}, 2 y\right)$. Consider $J(p)$. We know $J(0,0)=0$. The Zariski tangent space at this point is two-dimensional, so it is a singular point. You can check that any other point on the curve is smooth.

In the case of $f=y^{2}-x^{3}-x^{2}$, we find $J=(2 x, 2 y)$, and again $J(0,0)=0$ and the origin is singular.

In the case of $f=y^{2}-x^{3}-x$, we have $J=\left(-3 x^{2}-1,2 y\right)$. We find that the rank of $J(p)$ is always 1. This comes from solving the equations:

$$
\begin{aligned}
y^{2} & =x^{3}+x \\
-3 x^{2}-1 & =0 \\
2 y & =0
\end{aligned}
$$

There are no solutions. So all the points are smooth.
Example 3.6. $\operatorname{dim} \mathbb{A}^{n}=n$ and $\operatorname{dim} *=0$

### 3.2. Facts from commutative algebra.

Definition 3.7. Let $K / k$ be a field extension. We say that $K$ is separably generated over $k$ if there is some $L$ with $k \subset L \subset K$ such that $L / k$ is purely transcendental and $K / L$ is a finite separable algebraic extension.

THEOREM 3.8. If $K / k$ is finitely separably generated, then

$$
\operatorname{dim}_{K} \operatorname{Der}_{k}(K, K)=t r \cdot d \cdot k K
$$

(where tr.d. is the transcendental degree).
Theorem 3.9. Let $k$ be a perfect field (e.g. $k=\bar{k}$ ). Then every finitely-generated $K / k$ is separably generated.

For example, in $\mathbb{A}^{n}$, if $K=k\left[x_{1} \cdots x_{n}\right]$ we know that the transcendence degree is $n$. But we could also find this by calculating the dimension of the Zariski tangent space.
Proposition 3.10. Let $X$ be an affine variety. Then $\operatorname{dim} X=n-1$ if and only if $X=V(f)$ for some irreducible $f \in k\left[x_{1} \cdots x_{n}\right]$. (We call such $V(f)$ a hypersurface.)
REMARK 3.11. If $\operatorname{dim} X=n-2$, then it is not necessarily true that $I(X)$ is generated by two elements.

Proof. Suppose $X=V(f)$ is a hypersurface. We want to show that $\operatorname{dim} X=n-1$. The rank of $\frac{\partial f}{\partial x_{i}}$ is at most 1 , so $\operatorname{dim} X=n-r k\left(\frac{\partial f}{\partial x_{i}}\right) \geq n-1$. We want to show that $r k\left(\frac{\partial f}{\partial x_{i}}\right) \neq 0$. Remember that this is going on in a space in which we have modded out by $f$. Otherwise, $\frac{\partial f}{\partial x_{i}}$ lands in the ideal generated by $f$ (i.e. $f$ divides this); but the degree is smaller, which can only happen if $\frac{\partial f}{\partial x_{i}}=0$ (here zero is in $k$ ). This can happen if the field has characteristic $p>0$, and you can write $f=g\left(x_{1}^{p}, x_{2}^{p}, \cdots, x_{n}^{p}\right)$. (Note that in characteristic $p, x^{p}$ has zero derivative.) Since $k$ is algebraically closed, we can write $g=g_{1}\left(x_{1} \cdots x_{n}\right)^{p}$ (we're using the formula $(a+b)^{p}=a^{p}+b^{p} \bmod p$; write $\left.a x^{p}+b y^{p}\right)$. We assumed $X$ was irreducible, so this is a contradiction.

Now assume $\operatorname{dim} X=n-1$. We want to conclude that $X$ is a hypersurface. Let $g \in \mathfrak{P}=$ $I(X)$. We have $X \subset V(g)$. We could assume that $g$ is irreducible. If $g$ is a product of things, at least one is in $\mathfrak{P}$ because $\mathfrak{P}$ is prime. We already know that $\operatorname{dim} V(g)=n-1$. So now the proposition will follow from a lemma:

Lemma 3.12. Let $A$ be an integral domain over $k$, and $\mathfrak{P} \subset A$ be a prime ideal. Then

$$
\text { tr.d.k. } A / \mathfrak{P} \leq \text { tr.d.k. } A
$$

with equality iff $\mathfrak{P}=0$ or both are infinity.
Remark 3.13. By definition, tr.d.k $A / \mathfrak{P}=\operatorname{tr} \cdot d_{\cdot k} \operatorname{Frac}(A / \mathfrak{P})$.

From this lemma, we can conclude that hypersurfaces have dimension 1.

Proof. Assume the contrary: that $n=t r . d{ }_{k} A$. Then there is some $x_{1} \cdots x_{n} \in A$ such that $\overline{x_{1}} \cdots \overline{x_{n}}$ are algebraically independent over $A / \mathfrak{P}$. Let $0 \neq y \in \mathfrak{P}$. Since we assumed the transcendental degree of $A$ is $n$, there exists a polynomial $P \in k\left[Y, X_{1} \cdots X_{n}\right]$ such that $P\left(y, x_{1} \cdots x_{n}\right)=0$. But $A$ is an integral domain, so we can assume that $P$ is irreducible. If $P$ factors as the product of two polynomials, then this relation still holds for one of them (this is by integrality). Note that $P$ is not a multiple of $Y$ : if you plug in $y$, it is not zero. Therefore, $P\left(0, \bar{x}_{1} \cdots \bar{x}_{n}\right)$ is an algebraic relation in $A / \mathfrak{P}$. Contradiction.

Here is a theorem that says how to construct affine varieties containing certain smooth points.

Theorem 3.14. Let $f_{1} \cdots f_{r} \in k\left[x_{1} \cdots x_{n}\right]$ have no constant term (i.e. all the polynomials vanish at the origin), and have independent linear terms. (That is, if you write $f_{i}=$ $\sum a_{i j} x_{j}+\cdots$, then $r k\left(a_{i j}\right)=r$.) Let $\mathfrak{P}=\left(f_{1} \cdots f_{r}\right) \mathcal{O}_{\mathbb{A}^{n}, 0} \cap k\left[x_{1} \cdots x_{n}\right]$. Then
(1) $\mathfrak{P}$ is a prime ideal
(2) $X=V(\mathfrak{P})$ has dimension $n-r$, and $0 \in X$ is smooth
(3) $V\left(f_{1} \ldots f_{n}\right)=X \cup Y$ for some algebraic set $Y$ not containing zero

Corollary 3.15. Let $X$ be an affine variety of dimension $n-r$ in which 0 is a smooth point. Then there is some $f_{1} \cdots f_{r} \in I(X)$ such that

$$
I(X)=\left(f_{1} \cdots f_{r}\right) \mathcal{O}_{\mathbb{A}^{n}, 0} \cap k\left[x_{1} \ldots x_{n}\right]
$$

Of course, we can transform any point to be the origin. Then this says that our variety $X$ is defined by $r$ equations (even if the original variety is not defined by $r$ equations: it is $X \cup Y$ for $Y$ not containing the chosen point).

Proof of the corollary. We need to find $r$ polynomials with independent linear terms; then we can apply the theorem. Let $\mathfrak{m}=\left(x_{1} \cdots x_{n}\right) \subset k\left[x_{1} \cdots x_{n}\right]$ and $\mathfrak{m}_{0}$ be the maximal ideal of $\mathcal{O}(X)$ corresponding to zero. We have a sequence

$$
\begin{gathered}
0 \rightarrow \mathfrak{P} \rightarrow \mathfrak{m} \rightarrow \mathfrak{m}_{0} \rightarrow 0 \\
0 \rightarrow\left(\mathfrak{P}+\mathfrak{m}^{2}\right) / \mathfrak{m}^{2} \rightarrow \mathfrak{m} / \mathfrak{m}^{2} \rightarrow \mathfrak{m}_{0} / \mathfrak{m}_{0}^{2} \rightarrow 0
\end{gathered}
$$

$\mathfrak{m} / \mathfrak{m}^{2}$ has dimension $n$, $\left(\mathfrak{P}+\mathfrak{m}^{2}\right) / \mathfrak{m}^{2}$ has dimension $r$, and $\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2}$ has dimension $n-r$. Choose an arbitrary basis $\left(f_{1} \ldots f_{r}\right)$ for $\mathfrak{P}+\mathfrak{m}^{2} / \mathfrak{m}^{2}$, and that lifts to a basis of $\mathfrak{P}$. So $f_{1} \cdots f_{r}$ has independent linear terms. ( $\mathfrak{m}^{2}$ has a basis, which means that there are linearly independent terms.) From the theorem,

$$
\mathfrak{P}=\left(f_{1} \cdots f_{r}\right) \mathcal{O}_{\mathbb{A}^{n}, 0} \cap k\left[x_{1} \cdots x_{n}\right]
$$

is a prime ideal.

$$
\mathfrak{P}=\left\{\sum \frac{f_{i} g_{i}}{k_{i}}: k_{i}(0) \neq 0, \sum \frac{g_{i} f_{i}}{k_{i}} \in k\left[x_{1} \cdots x_{n}\right]\right\}
$$

This is inside of $I(X)$, because it vanishes on $X$. (Note that $\frac{g_{i} f_{i}}{k_{i}}$ is a regular function, except where the denominator vanishes.)

We have $Y=V(\mathfrak{P}) \supset X$. By the theorem, $\operatorname{dim} Y=n-r$. By assumption, $\operatorname{dim} X=n-r$. But if they have the same dimension, they have to be equal. So, locally around a point the ideal is always generated by $r$ polynomials.

Proof of the theorem. Let $(A, \mathfrak{m}, k)$ be a local ring. Then $\widehat{A}:=\lim A / \mathfrak{m}^{n}$. Recall that we have an inverse system

$$
. . \rightarrow A / \mathfrak{m}^{3} \rightarrow A / \mathfrak{m}^{2} \rightarrow A / \mathfrak{m}=k
$$

We have $\mathcal{O}_{\mathbb{A}^{n}, 0}=k\left[x_{1} \cdots x_{n}\right]_{\left(x_{1} \cdots x_{n}\right)}$. So then

$$
\widehat{\mathcal{O}}_{\mathbb{A}^{n}, 0}=k\left[\left[x_{1} \cdots x_{n}\right]\right]
$$

where we now allow infinite polynomials (a.k.a. power series).

$$
\mathcal{O}\left(\mathbb{A}^{n}\right)=k\left[x_{1} \cdots x_{n}\right] \subset \mathcal{O}_{\mathbb{A}^{n}, 0}=k\left[x_{1} \cdots x_{n}\right]_{\left(x_{1} \cdots x_{n}\right)} \subset k\left[\left[x_{1} \cdots x_{n}\right]\right]
$$

(Rational functions like $\frac{1}{1-f}$ have power series.) Remember $\mathfrak{P}=\left(f_{1} \cdots f_{v}\right) \mathcal{O}_{\mathbb{A}^{n}, 0} \cap k\left[x_{1} \cdots x_{n}\right]$ was defined as before. Now define

$$
\mathfrak{P}^{\prime}=\left(f_{1} \cdots f_{r}\right) \mathcal{O}_{\mathbb{A}^{n}, 0}
$$

and

$$
\mathfrak{P}^{\prime \prime}=\left(f_{1} \cdots f_{r}\right) k\left[\left[x_{1} \cdots x_{n}\right]\right]
$$

The ring homomorphism of the pullback of a prime ideal is always prime.
It is enough to show two things:
(1) $\mathfrak{P}^{\prime \prime}$ is prime in $k\left[\left[x_{1} \cdots x_{n}\right]\right]$
(2) $\mathfrak{P}^{\prime \prime} \cap \mathcal{O}_{\mathbb{A}^{n}, 0}=\mathfrak{P}^{\prime}$

The second fact comes from commutative algebra. By definition,

$$
\begin{aligned}
\mathfrak{P}^{\prime} \subset \mathfrak{P}^{\prime \prime} \cap \mathcal{O}_{\mathbb{A}^{n}, 0} & =\left\{\sum_{\infty} g_{i} f_{i}: g_{i} \in k\left[\left[x_{1} \cdots x_{n}\right]\right], \sum g_{i} f_{i} \in k\left[x_{1} \cdots x_{n}\right]_{\left(x_{1} \cdots x_{n}\right)}\right\} \\
& =\bigcap_{N=0}^{\infty}\left(\mathfrak{P}^{\prime}+\mathfrak{m}^{N}\right)
\end{aligned}
$$

If we just truncate this, then the remaining terms will be in $\mathfrak{P}^{\prime}+\mathfrak{m}^{N}$. That is, if $g_{i}=$ $\sum_{\alpha<N} x_{i}^{\alpha}+R$ then $R f_{i} \in \mathfrak{m}^{N}$ and $f_{i} \sum x_{i}^{\alpha} \in \mathfrak{P}^{\prime}$.

The second part is proven by the following theorem from commutative algebra Theorem 3.16 (Krull Theorem). If $(A, \mathfrak{m}, k)$ is Noetherian local, then for any ideal $I$,

$$
I=\bigcap_{N=0}^{\infty}\left(I+\mathfrak{m}^{N}\right)
$$

## 4. September 20

### 4.1. Finishing things from last time.

THEOREM 4.1. Let $f_{1} \cdots f_{r} \in k\left[x_{1} \cdots x_{n}\right]$ be polynomials with no constant term and independent linear terms. Then the ideal of the local ring

$$
\mathfrak{P}=\left(f_{1} \cdots f_{r}\right) \mathcal{O}_{\mathbb{A}^{n}, 0} \cap k\left[x_{1} \cdots x_{n}\right]
$$

is prime. $\operatorname{dim} V(\mathfrak{P})=n-r$ and zero is a smooth point on $V(\mathfrak{P})$. Moreover, $V\left(f_{1} \cdots f_{r}\right)=$ $V(\mathfrak{P}) \cup Y$ when $-\notin Y$ is some algebraic set.

Last time, we prove a corollary: If we have a smooth point, then locally this variety is cut out by $r$ equations.

$$
\begin{gathered}
\text { PROOF. } k\left[x_{1} \cdots x_{n}\right] \subset k\left[x_{1} \cdots x_{n}\right]_{\left(x_{1} \cdots x_{n}\right)}=\mathcal{O}_{\mathbb{A}^{n}, 0} \subset k\left[\left[x_{1} \cdots x_{n}\right]\right]=\widehat{O}_{\mathbb{A}^{n}, 0} . \text { Consider } \\
\mathfrak{P}^{\prime}=\left(f_{1} \cdots f_{r}\right) \mathcal{O}_{\mathbb{A}^{n}, 0} \\
\mathfrak{P}^{\prime \prime}=\left(f_{1} \cdots f_{r}\right) k\left[\left[x_{1} \cdots x_{n}\right]\right]
\end{gathered}
$$

It is enough to prove that $\mathfrak{P}^{\prime \prime}$ is prime, and that $\mathfrak{P}^{\prime}=\mathfrak{P}^{\prime \prime} \cap \mathcal{O}_{\mathbb{A}^{n}, 0}$.

To prove the second thing, note that

$$
\mathfrak{P}^{\prime} \subset \mathfrak{P}^{\prime \prime} \cap \mathcal{O}_{\mathbb{A}^{n}, 0}=\left\{n \mathcal{O}_{\mathbb{A}^{n}, 0}: f=\sum h_{i} f_{i}, h_{i} \in k\left[\left[x_{1} \cdots x_{n}\right]\right]\right\}
$$

Suppose $\mathfrak{m}$ is the maximal ideal of $\mathcal{O}_{\mathbb{A}^{n}, 0}$.

$$
0 \rightarrow \mathfrak{m}^{N} \rightarrow \mathcal{O}_{\mathbb{A}^{n}, 0} \rightarrow \mathcal{O}_{\mathbb{A}^{n}, 0} / \mathfrak{m}^{N} \rightarrow 0
$$

We can show that the last term is just $k\left[x_{1} \cdots x_{n}\right] /\left(x_{1} \cdots x_{n}\right)^{N}$. So $\mathcal{O}_{\mathbb{A}^{n}, 0}=\mathfrak{m}^{N} \oplus$ \{polynomials of degree $; \mathrm{N}\}$ as a $k$-vector space. (Every element in the local ring can be written as a polynomial of small degree plus something in a power of the local ring.)

We can write $f=f^{\prime}+$ remainders, where $f^{\prime}$ is a polynomial of degree $<N$. So going back to the expression of $\mathfrak{P}^{\prime \prime} \cap \mathcal{O}_{\mathbb{A}^{n}, 0}$ we have

$$
h_{i}=h_{i}^{\prime}+\text { degree } \geq N \text { terms }
$$

Then $\left.f-\sum h_{i}^{\prime} f_{i}=\left(f-\sum h_{i}^{\prime} f_{i}\right)+\mathfrak{m}^{N} \mathcal{O}_{\mathbb{A}^{n}, 0}\right)$ Look at the first term; it has degree $\geq N$. All of this is in $\mathfrak{m}^{N} \mathcal{O}_{\mathbb{A}^{n}, 0}$. So

$$
\mathfrak{P}^{\prime \prime} \cap \mathcal{O}_{\mathbb{A}^{n}, 0} \subset \bigcap_{N \geq 0}\left(\mathfrak{P}^{\prime}+\mathfrak{m}^{N}\right)
$$

which is equal to $\mathfrak{P}^{\prime}$ by Krull's theorem.
Now we want to show that $\mathfrak{P}^{\prime \prime}$ is prime. We need:
Proposition 4.2. (Formal inverse function theorem) Let $f=\sum a_{i} x_{i}+$ higher terms $\in k\left[\left[x_{1} \cdots x_{n}\right]\right]$ and $a_{i} \neq 0$. Then any $g \in k\left[\left[x_{1} \cdots x_{n}\right]\right]$ can be uniquely written as $g=$ $u \cdot f+h\left(x_{2} \cdots x_{n}\right)$

Proof. Easy. Expand $u$ and $h$ and show you can solve for all the coefficients.
Corollary 4.3.

$$
k\left[\left[x_{1} \cdots x_{n}\right]\right] /(f) \underset{)}{\leftarrow}\left[\left[x_{2} \cdots x_{n}\right]\right]
$$

Corollary 4.4. Let $f_{1} \cdots f_{r}$ be $r$ power series. Write

$$
f_{i}=\sum a_{i j} x_{j}+\text { higher terms }
$$

If $\operatorname{det}\left(\left(a_{i j}\right)_{1 \leq i, j \leq r}\right) \neq 0$, then

$$
k\left[\left[x_{1} \cdots x_{n}\right]\right] /\left(f_{1} \cdots f_{r}\right) \underset{\leftarrow}{\leftarrow}\left[\left[x_{r+1 \cdots x_{n}}\right]\right]
$$

Proof. Induction.

Back to the theorem. If $f_{1} \cdots f_{r}$ have independent linear terms, then

$$
k\left[\left[x_{1} \cdots x_{n}\right]\right] /\left(f_{1} \cdots f_{r}\right) \leftarrow k\left[\left[x_{r+1 \cdots x_{n}}\right]\right]
$$

This shows that $\mathfrak{P}^{\prime \prime}$ is prime, which in turn shows that $\mathfrak{P}$ is prime.

$$
A(V(\mathfrak{P}))=k\left[x_{1} \cdots x_{n}\right] / \mathfrak{P} \hookrightarrow k\left[\left[x_{1} \cdots x_{n}\right]\right] / \mathfrak{P} \cong k\left[\left[x_{n+1 \cdots x_{n}}\right]\right]
$$

They are algebraically independent because they are algebraically independent in the power series map.

We used commutative algebra to relate that dimension of a variety to the transcendental degree. Therefore, $\operatorname{dim} V(\mathfrak{P}) \geq n-r$. By definition

$$
\begin{gathered}
T_{p} V(\mathfrak{P})=\left(\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}\right)^{*} \\
0 \rightarrow \mathfrak{P} /\left(\mathfrak{P}+\left(x_{1} \cdots x_{n}\right)^{2}\right) \rightarrow\left(x_{1} \cdots x_{n}\right) /\left(x_{1} \cdots x_{n}\right)^{2} \rightarrow \mathfrak{m}_{p} / \mathfrak{m}_{p}^{2} \rightarrow 0
\end{gathered}
$$

$T_{p} V(\mathfrak{P})$ is cut out by the linear terms of $f_{1} \cdots f_{r}$ in $T_{p} \mathbb{A}^{n}$. Because the linear terms are independent, we have that $\operatorname{dim} T_{p} V(\mathfrak{P})=n-r$. We know that the dimension of the tangent space is $\geq$ the dimension of the variety. But this tangent space is exactly $n-r$, which is the upper bound anyway, so $\operatorname{dim} V(\mathfrak{P})=n-r$ and $p$ is smooth. We want to show that

$$
\begin{gathered}
V\left(f_{1} \cdots f_{r}\right)=V(\mathfrak{P}) \cup Y \\
18
\end{gathered}
$$

where $Y$ does not contain the origin. $\mathfrak{P}$ is not necessarily generated by $f_{1} \cdots f_{r}$; this is only true of the local ring $\mathcal{O}_{X, p}$. So let $g_{1} \cdots g_{s}$ be a set of generators of $\mathfrak{P}$ (recall this is finite because everything is Noetherian).

$$
g_{i} \in\left(f_{1} \cdots f_{r}\right) \mathcal{O}_{\mathbb{A}^{n}, 0} \cap k\left[x_{1} \cdots x_{n}\right]
$$

Equivalently, there are some $h_{i}$ not vanishing at the origin such that $h_{i} g_{i} \in\left(f_{1} \cdots f_{r}\right)$.

Let $h=\prod h_{i}$. Then $h \mathfrak{P} \subset\left(f_{1} \cdots f_{r}\right)$ and $V\left(f_{1} \cdots f_{r}\right) \subset V(h \mathfrak{P})=V(h) \int V(\mathfrak{P})$. In other words, $V\left(f_{1} \cdots f_{r}\right)=V\left(f_{1} \cdots f_{r}, h\right) \cup V(\mathfrak{P})$. Since $h(0) \neq 0,0 \notin Y$.

Corollary 4.5. Let $p=(0, \cdots, 0) \in X=V(\mathfrak{P})$ be a smooth point of $X$ with $\operatorname{dim} X=$ $n-r$. Choose $f_{1} \cdots f_{r}$ with independent linear terms. You can always do this because of the short exact sequence

$$
0 \rightarrow \mathfrak{P} /\left(\mathfrak{P}+\left(x_{1} \ldots x_{n}\right)^{2}\right) \rightarrow\left(x_{1} \ldots x_{n}\right) /\left(x_{1} \ldots x_{n}\right)^{2} \rightarrow \mathfrak{m}_{p} / \mathfrak{m}_{p}^{2} \rightarrow 0
$$

Then $\mathfrak{P}=\left(f_{1} \cdots f_{r}\right) \mathcal{O}_{\mathbb{A}^{n}, 0} \cap k\left[x_{1} \ldots x_{n}\right]$. (The idea is that locally the ideal is generated by $r$ functions.)

Corollary 4.6. Let $X$ be quasi-affine with dimension $r$. Let $p \in X$ be a smooth point. Then

$$
\widehat{\mathcal{O}_{X, p}} \cong k\left[\left[x_{1} \ldots x_{r}\right]\right]
$$

If we are in this situation $\mathfrak{P}=\left(f_{1} \cdots f_{r}\right) \mathcal{O}_{\mathbb{A}^{n}, 0} \cap k\left[x_{1} \ldots x_{n}\right]$ then the complete local ring is just the power series ring.

Note that this is false if we consider the local ring instead of its completion.

### 4.2. More general definitions.

Definition 4.7. Let $k=\bar{k}$ be a field. A (pre)variety over $k$ is a connected topological space together with a covering $\mathcal{U}=\left\{U_{\alpha}\right\}$ and homeomorphisms $\varphi_{\alpha}: U_{\alpha} \rightarrow X_{\alpha}$ with $X_{\alpha}$ quasi-affine, that plays well on overlaps:

$$
\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is a morphism of quasi-affine varieties. In addition, we require this covering $\mathcal{U}$ to be maximal; i.e., if $Y$ is quasi-affine $V \subset X$ is open and $\psi: V \xrightarrow{\sim} Y$ quasi-affine such that

$$
\varphi_{\alpha} \circ \psi^{-1}: \psi\left(U_{\alpha} \cap V\right) \rightarrow \varphi_{\alpha}\left(U_{\alpha} \cap V\right)
$$

is a morphism, then $V \in \mathcal{U}$.
Exercise 4.8. Prove that this is irreducible.
Definition 4.9. A function $f: X \rightarrow k$ is called regular if for every $\alpha$,

$$
f \circ \varphi_{\alpha}^{-1}: X_{\alpha} \rightarrow k
$$

is regular. We denote $\mathcal{O}(X)$ to be the ring of regular functions on $X$. We can also define the local ring at the point $p$ to be

$$
\mathcal{O}_{X, p}=\underset{U \ni p \text { open }}{\lim } \mathcal{O}(U)
$$

Definition 4.10. $k(X)$ is defined to be any $k\left(X_{\alpha}\right)$ : you have a covering by quasi affine varieties, so you can talk about the rational functions. But for every piece, there might be a different set of all such. But these are canonically identified.
Remark 4.11. $k(X)$ is not necessarily the fractional field of $\mathcal{O}(X)$.

We also have $\operatorname{dim} X, T_{p} X$, smoothness, $\ldots$
Definition 4.12. Let $X$ be a (pre)variety. An irreducible closed subset $Y \subset X$ with the canonical variety structure is called a closed subvariety of $X$. If you have a closed irreducible subset, it is connected. Restrict the covering to this subset, and you get a covering if this closed subset; restrict the homeomorphism and it will map to a closed subset of a quasi-affine variety. You can check that the transition maps work out.
Exercise 4.13.


If $Z \subset X$ is closed the bottom map is a morphism.
Definition 4.14. Let $X, Y$ be two varieties. A continuous map $\varphi: X \rightarrow Y$ is called a morphism if for any $p \in X, U \ni \varphi(p), f \in \mathcal{O}(U)$, we have

$$
f \circ \varphi \in \mathcal{O}\left(\varphi^{-1}(U)\right)
$$

(Continuity is needed, because we want $\varphi^{-1}(U)$ to be an open set.)

### 4.3. Projective varieties.

Definition 4.15. The projective $n$-space $\mathbb{P}^{n}$ is the set

$$
k^{n+1}-\{0, \cdots, 0\} / \sim
$$

where $\left(a_{0} \cdots a_{n}\right) \sim\left(\lambda a_{0}, \cdots, \lambda a_{n}\right)$ where $\lambda \in k^{*}$.
REmark 4.16. $\mathbb{P}^{n}$ can also be regarded as the set of 1-dimensional subspaces in $k^{n+1}$.

An element $p \in \mathbb{P}^{n}$ is called a point (even though it's just an equivalence class). Any $\left(a_{0} \cdots a_{n}\right) \in p$ is called a set of homogeneous coordinates of $p$. We need to give a natural variety structure; first we define the topology.

Definition 4.17. An algebraic set in $\mathbb{P}^{n}$ is the set $Z$ of zeroes for a set of homogeneous polynomials $f_{1} \cdots f_{m}$ :

$$
Z=V\left(f_{1} \cdots f_{r}\right)=\left\{p \in \mathbb{P}^{n}: * \text { holds }:\right\}
$$

(*) If $\left(a_{1} \cdots a_{n}\right)$ are homogeneous coordinates of $p$ then $f_{1}\left(a_{0} \cdots a_{n}\right)=\cdots .=f_{m}\left(a_{0}, \cdots, a_{m}\right)=0$.

Let $I=\left(f_{1} \cdots f_{r}\right)$. Then $I$ is a homogeneous ideal of $k\left[x_{0} \cdots x_{n}\right]$; i.e. if $f \in I$ and $f=\sum_{d} f_{d}$ then $f_{d} \in I$. There is a result of commutative algebra that said that any ideal of homogeneous polynomials has a finite set of homogeneous generators.

So an algebraic set in $\mathbb{P}^{n}$ is given by homogeneous polynomials.

Lemma 4.18.

- $V\left(k\left[x_{1} \ldots x_{n}\right]\right)=V\left(x_{1} \ldots x_{n}\right)=0$, and $V(0)=\mathbb{P}^{n}$
- $V\left(\cup_{\alpha} I_{\alpha}\right)=\cap_{\alpha} V\left(I_{\alpha}\right)$
- $V\left(I_{1} \cap I_{2}\right)=V\left(I_{1} \cup V\left(I_{2}\right)\right)$

Unlike the affine case, you can have two radical ideals corresponding to one set.
Definition 4.19. (Zariski topology on $\mathbb{P}^{n}$ ) We need to choose a set of subsets that are closed: these are the algebraic sets.

Theorem 4.20 (Hilbert's Nullstellensatz). For all homogeneous I and all homogeneous $f$ with $\operatorname{deg}(f) \geq 1$, then

$$
f \in \sqrt{I} \Longleftrightarrow f \text { vanishes on } V(I)
$$

Corollary 4.21. Algebraic sets in $\mathbb{P}^{n}$ are in 1-1 correspondence with homogeneous radical ideals. contained in $\left(X_{0} \cdots X_{n}\right)=S_{+}$.

Proposition 4.22. Let $I$ be a homogeneous ideal in $S=k\left[x_{0} \ldots x_{n}\right]$ (this will denote a ring with a grading; the un-graded ring will be denoted $k\left[x_{0} \ldots x_{n}\right]$ ). From commutative algebra, $\sqrt{I}$ can be written as an intersection of minimal prime ideals containing this radical:

$$
\sqrt{I}=\mathfrak{P}_{1} \cap \cdots \cap \mathfrak{P}_{r}
$$

Then the $\mathfrak{P}_{i}$ are homogeneous.

Proof. Exercise.
Corollary 4.23. V( $\mathfrak{P}$ ) is irreducible iff $\mathfrak{P}$ is a homogeneous prime (in $S_{+}$). Furthermore, every algebraic set in $\mathbb{P}^{n}$ can be uniquely written as the union of its irreducible components.

Definition 4.24. A projective variety is an irreducible algebraic set in $\mathbb{P}^{n}$. A quasi projective variety is an open subset of a projective variety.

PROPOSITION 4.25. $\mathbb{P}^{n}$ together with the Zariski topology has a natural variety structure over $k$. (So every projective variety has a natural variety structure.)

## 5. September 22

RECALL that we had introduced the projective $n$-space

$$
\mathbb{P}^{n}=\left\{\left(a_{0} \cdots a_{n}\right) \in k^{n+1}-0\right\} / \sim
$$

We can define the Zariski topology on $\mathbb{P}^{n}$, where the closed subsets are $V(I)$ where $I$ is a homogeneous ideal.

Proposition 5.1. There is a natural variety structure on $\mathbb{P}^{n}$.

Proof. The idea is to cover it with some cover, each of which is isomorphic to an affine variety (not just a quasi-affine). Let $H_{i}=\left\{\left(a_{0} \cdots a_{n}\right): a_{i}=0\right\} / \sim=V\left(x_{i}\right)$. This is closed. Let $U_{i}=\mathbb{P}^{n}-H$; this is open, and the collection of these cover the whole projective space. Now define $\varphi_{i}: U_{i} \rightarrow \mathbb{A}^{n}$ where $\left(a_{0} \cdots a_{n}\right) \rightarrow\left(\frac{a_{0}}{a_{i}}, \cdots, \frac{\widehat{a_{i}}}{a_{i}}, \cdots, \frac{a_{n}}{a_{i}}\right)$. This is a bijection. We need to show
(1) $\varphi_{i}$ is a homeomorphism
(2) $\varphi_{i} \circ \varphi_{j}^{-1}$ is a morphism

Because it's bijective, we just need to show that closed subsets go to closed subsets. Let $I \subset S$ be a homogeneous ideal (remember $S$ is the polynomial ring of $n+1$ variables, but regarded as a graded ring). Without loss of generality take $i=0$. Then we need to show $\varphi_{0}: U_{0} \cap V(I) \rightarrow \mathbb{A}^{n}$ goes to a closed thing. Define

$$
I^{i h}=\left\{f\left(1, \cdots x_{n}\right): f \in I\right\} \subset k\left[x_{1} \ldots x_{n}\right]
$$

But
$U_{0} \cap V(I)=\left\{\left(a_{0} \cdots a_{n}\right): f\left(a_{0} \cdots a_{n}\right)=0 \forall f \in I\right\} \mapsto\left\{\left(a_{0} \cdots a_{n}\right): g\left(\frac{a_{1}}{a_{0}}, \cdots, \frac{a_{n}}{a_{0}}\right)=0 \forall g \in I^{i h}\right\}$
Note that $\left(\frac{a_{1}}{a_{0}} \cdots \frac{a_{n}}{a_{0}}\right)=\left(1, \frac{a_{1}}{a_{n}} \cdots \frac{a_{n}}{a_{0}}\right)$ because things are homogeneous. On the other hand, let $I \subset k\left[x_{1} \ldots x_{n}\right]$ be any ideal. We define $I^{h} \subset S$ where

$$
\begin{gathered}
I^{h}=\left\{x_{0}^{\operatorname{deg} f} f\left(\frac{x_{1}}{x_{0}} \cdots \frac{x_{n}}{x_{0}}: \in I\right)\right\} \\
\varphi_{i}\left(U_{0} \cap V\left(I^{h}\right)\right)=V(I)
\end{gathered}
$$

Now assume $i=n, j=0$.

$$
\begin{gathered}
\varphi_{n} \circ \varphi_{0}^{-1}: \mathbb{A}^{n} \backslash\{x+n \neq 0\} \rightarrow \mathbb{A}^{n} \backslash\left\{x_{1} \neq 0\right\} \\
\left(a_{1} \cdots a_{n}\right) \mapsto\left(\frac{1}{a_{n}}, \frac{a_{1}}{a_{n}} \cdots \frac{a_{n-1}}{a_{n}}\right)
\end{gathered}
$$

This pulls back coordinate functions to regular functions, by definition:

$$
\left(\varphi_{n} \circ \varphi_{0}^{-1}\right)^{*}\left(x_{0}\right)=\frac{x_{i+1}}{x_{n}}
$$

This is the ratio of two polynomials, so it is a regular function.

In particular, every "projective variety" (i.e. $\left.V(\mathfrak{P}) \subset \mathbb{P}^{n}\right)$ is actually a variety.
EXAMPLE 5.2. $V\left(x y-z^{2}\right) \subset \mathbb{P}^{2}$.

$$
\begin{aligned}
& U_{x}=\{(x, y, z): x \neq 0\} \cong \mathbb{A}^{2} \\
& V\left(x y-z^{2}\right) \cap U_{x}=V\left(y-z^{2}\right)
\end{aligned}
$$

This is a parabola. I think that you can take $x=1$ because $x \neq 0$ and we're working with homogeneous coordinates. So choosing which "thing to set to 1 " is basically like choosing charts.

$$
\begin{gathered}
U_{z}=\{(x, y, z): z \neq 0\} \cong \mathbb{A}^{2} \\
V\left(x y-z^{2}\right) \cap U_{z}=V(x y-1) \subset \mathbb{A}^{2}
\end{gathered}
$$

This looks like a hyperbola. So in projective geometry, there is no difference between a parabola and a hyperbola.

Let $Y=V(\mathfrak{P}) \subset \mathbb{P}^{n}$ be a projective variety. We denote $S(y)=\frac{S}{\mathfrak{P}^{3}}$ the homogeneous coordinate ring of $Y$. So $S(Y)$ is a graded ring given by the degree of $S$. (The ideal is a homogeneous ideal, so the grading descends.)

$$
S(Y)=\oplus_{d} S(Y)_{d}
$$

By the equivalence of categories in the affine case, the coordinate ring is the same as the variety. But this does not work in the projective case. You could have isomorphic projective varieties with non-isomorphic coordinate rings.

This coordinate ring determines $Y$, but you could have different $S(Y)$ for the same $Y(? ? ?)$. Let $\mathfrak{P}^{\prime}$ be a homogeneous prime ideal of $S(Y)$. In other words, you have a homogeneous prime ideal containing $\mathfrak{P}$ and its quotient is $\mathfrak{P}^{\prime}$. We denote

$$
S(Y)_{\mathfrak{P}^{\prime}}=\left\{\frac{f}{g}: f, g, \text { homogeneous, } \operatorname{deg} g=\operatorname{deg} f, g \notin \mathfrak{P}^{\prime}\right\}
$$

Proposition 5.3. Let $Y=V(\mathfrak{P})$ be a projective variety, $p \in Y$ and $\mathfrak{m}_{p}$ the homogeneous maximal ideal corresponding to $p$. Then
(1) $\mathcal{O}_{Y, p} \cong S(Y)_{\left(\mathfrak{m}_{p}\right)}$
(2) $K=k(Y)=S(Y)_{(0)}=\left\{\frac{f(\bmod \mathfrak{P})}{g(\bmod \mathfrak{P})}: f, g \in S, \operatorname{deg} f=\operatorname{deg} g, g \notin \mathfrak{P}\right\}$
(3) $\mathcal{O}(Y)=k$

Rational functions can always be written as a quotient of fractions where the denominator does not vanish in the localization. This is the same as requiring $g \notin \mathfrak{m}_{p}$.

Proof. Let $Y_{i}=Y \cap U_{i}$ where $U_{i}$ was the open subset $\left\{\left(a_{0} \cdots a_{n}\right): a_{i} \neq 0\right\}$ from before. Observation: there is a natural isomorphism

$$
\begin{gathered}
\varphi_{i}^{*}: A\left(Y_{i}\right) \rightarrow S(Y)_{\left(x_{i}\right)} \\
23
\end{gathered}
$$

Assume $i=0$. There is a map $k\left[x_{1} \cdots x_{n}\right] \rightarrow S_{\left(x_{i}\right)}$ given by $f \mapsto f\left(\frac{x_{1}}{x_{0}} \cdots \frac{x_{n}}{x_{0}}\right)$. Wait. . . aren't we supposed to be dividing by everything that's not $x_{0}$ ? Via this map, $\mathfrak{P}^{i h} \Longleftrightarrow \mathfrak{P} S_{\left(x_{0}\right)}$. So $Y_{0}=V\left(\mathfrak{P}^{i h}\right)$.

Now (1) and (2) folow from the corresponding facts for affine varieties. That is, we can assume $p \in U_{0} \cap Y=Y_{0}$. So

$$
\begin{gathered}
\mathcal{O}_{Y, p}=\mathcal{O}_{Y_{0}, p}=A\left(Y_{0}\right)_{m_{p}^{i h}} \xrightarrow{\sim}\left(S(Y)_{\left(x_{0}\right)}\right) \\
\varphi_{0}^{*}\left(\mathfrak{m}_{p}^{i h}\right)=\mathfrak{m}_{p} S(Y)_{\left(x_{0}\right)}
\end{gathered}
$$

The localization is transitive, so this is $S(Y)_{\mathfrak{m}_{p}}$.
Now we will do part (3): we want to show that $\mathcal{O}(Y)=k$. Let $f \in \mathcal{O}(Y) \hookrightarrow k(Y)=$ $S(Y)_{(0)} \subset L$, where $L$ is the fractional field of $S(Y)$. Recall that $Y$ is covered by $Y_{i}$ (which are each $\left.Y \cap U_{i}\right)$. Each regular function on $Y$ gives a regular function on $Y_{i}$ :

$$
\mathcal{O}(Y) \rightarrow \prod_{i=0}^{n} \mathcal{O}\left(Y_{i}\right)
$$

But $\mathcal{O}\left(Y_{i}\right)=A\left(Y_{i}\right) \cong S(Y)_{\left(x_{i}\right)}$. So for each $i$ there is some $N_{i}$ such that

$$
\chi_{i}^{N_{i}} f \in S(Y)
$$

Now let $N \geq \sum N_{i}$. Then $S(Y)_{N} \cdot f \subset S(Y)_{N}$. This is because every element in $S(Y)$ is spanned by monomials: $x_{0}^{r_{0}}, \cdots$ Now watch the degrees (?) So for all $m, S(Y)_{N} \cdot f^{m} \subset$ $S(Y)_{N}$. Each $S(Y)_{N}$ is a finite-dimensional vector spaces. $f$ is a map $S(Y)_{N} \rightarrow S(Y)_{N}$. There is some $m$ such that

$$
f^{m}+a_{1} f^{m-1}+\cdots+a_{m}=0: S(Y)_{N} \rightarrow S(Y)_{N}
$$

implies $f^{m}+a_{1} f^{m-1}+\cdots+a_{m}=0$ in $L$.
$\left(S(Y)_{(0)}\right.$ requires that the denominator is always homogeneous; this is not a requirement in $L$.) $k$ is algebraically closed in $L$, which implies $f \in k$. This proves that every regular function on a projective variety is a constant.

### 5.1. Product of two varieties.

Definition 5.4. Let $X, Y$ be two varieties. The product $X \times_{k} Y$ is a variety together with two morphisms $X \times Y \rightarrow X, X \times Y \rightarrow Y$ (projections), such that for any other variety $Z$ the natural map $\operatorname{Hom}(Z, X \times Y) \rightarrow \operatorname{Hom}(Z, X) \times \operatorname{Hom}(Z, Y)$ is a bijection. So we have a diagram


ThEOREM 5.5. The product of $X$ and $Y$ exists, and is unique up to a unique isomorphism.

Proof. Uniqueness is clear.

Existence: there is a natural variety structure on the set $X \times Y$, making it the product $X \times_{k} Y$.
(1) If $X$ and $Y$ are affine, then $U_{i} \times_{k} Y$ exists.
(2) Let $\left\{U_{i}\right\}$ be a cover of $X$, and each $U_{i} \times_{k} Y$ exists, then $X \times_{k} Y$ exists.

This proves the theorem, because you can cover $X$ by affines $X=\cup U_{i}$ and $Y=\cup V_{i}$. Then each $U_{i} \times_{k} Y$ exists, because (by (2)) each $U_{i} \times_{k} V_{j}$ exists (by (1)). Applying (2) again says that $X \times_{k} Y$ exists.
$\{$ affine varieties over $k\} \xrightarrow{\sim}\{$ f.g. integral $k$-algebras $\}$
In the forwards direction, $X \mapsto \mathcal{O}(X)=A(X)$. In the backwards direction, write $\operatorname{Spec}(A) \leftarrow A$.

Lemma 5.6. Let $Z$ be any variety, and $X$ be affine.

$$
\operatorname{Hom}(Z, X) \rightarrow \operatorname{Hom}_{k-a l g}(\mathcal{O}(X), \mathcal{O}(Z))
$$

is bijective. (We proved this for quasi-affine varieties, but now we claim it for all varietes.)

Proof. Cover $Z=\cup U_{i}$ by quasi-affines. Then $\operatorname{Hom}(Z, X) \rightarrow \prod_{i} \operatorname{Hom}\left(U_{i}, X\right)$ by restricting the elements of $\operatorname{Hom}(Z, X)$. We can further restrict them to the intersection of two quasi-affines:

$$
\operatorname{Hom}(Z, X) \rightarrow \prod \operatorname{Hom}\left(U_{i}, X\right) \rightrightarrows \prod \operatorname{Hom}\left(U_{i} \cap U_{j}, X\right)
$$

The middle set is the equalizer. $\operatorname{Hom}(Z, X)$ is the equalizer of

$$
\prod_{i} \operatorname{Hom}\left(U_{i}, X\right) \rightrightarrows \prod \operatorname{Hom}\left(U_{i} \cap U_{j}, X\right)
$$

Concretely, this means: a morphism $\varphi: Z \rightarrow X$ is an equivalence to $\varphi_{i}: U_{i} \rightarrow X$ such that

$$
\begin{gathered}
\left.\varphi_{i}\right|_{U_{i} \cap U_{j}}=\left.\varphi_{j}\right|_{U_{i} \cap U_{j}} \\
\mathcal{O}(Z) \rightarrow \prod \mathcal{O}\left(U_{i}\right) \rightrightarrows \prod \mathcal{O}\left(U_{i} \cap U_{j}\right)
\end{gathered}
$$

(A function on $Z$ is the same as a function on $U_{i}$ that coincides on the intersection.)


Check the injectivity/surjectivity by diagram chasing. (Exercise.)

Back to (1). Let $X, Y$ be affine. $A=\mathcal{O}(X), B=\mathcal{O}(Y)$. Then $A \otimes_{k} B$ is a finitely generated integral k-algebra.

$$
\begin{gathered}
A=k\left[x_{1} \cdots x_{n}\right] /\left(f_{1} \cdots f_{m}\right) \\
B=k\left[y_{1} \cdots y_{s}\right] /\left(g_{1} \cdots g_{t}\right)
\end{gathered}
$$

Then

$$
A \otimes_{k} B=k\left[x_{1} \cdots x_{n}, y_{1} \cdots y_{s}\right] /\left(f_{1} \cdots f_{m}, g_{1} \cdots g_{t}\right)
$$

You can show that

$$
\operatorname{Spec}\left(A \otimes_{k} B\right)=V\left(f_{1} \cdots f_{m}, g_{1} \cdots g_{t}\right) \subset \mathbb{A}^{n+s}
$$

The underlying set is the underlying set of $X$ times the underlying set of $Y$.
Claim 5.7. $\operatorname{Spec}\left(A \otimes_{k} B\right)=X \times_{k} Y$
$\operatorname{Hom}(Z, \operatorname{Spec}(A \otimes B))=\operatorname{Hom}\left(A \otimes_{k} B, \mathcal{O}(Z)\right)$ (by the lemma) as $k$-algebras. By the definition of tensor products,

$$
\cdots=\operatorname{Hom}(A, \mathcal{O}(Z)) \times \operatorname{Hom}(B, \mathcal{O}(Z))=\operatorname{Hom}(Z, X) \times \operatorname{Hom}(Z, Y)
$$

Example 5.8. $\mathbb{A}^{n} \times_{k} \mathbb{A}^{m}=\mathbb{A}^{n+m}$. But the topology on $\mathbb{A}^{n} \times \mathbb{A}^{m}$ is not the same as the product topology on $\mathbb{A}^{n} \times \mathbb{A}^{m}$.

Rest of the proof: homework.

Example 5.9. $\mathbb{P}^{n} \times_{k} \mathbb{P}^{m}$ exists. What is it? We know that $\mathbb{P}^{n}=\cup_{i} U_{i}, \mathbb{P}^{m}=\cup_{j} V_{j}$. We have a lemma, which is proven in the homework.
Lemma 5.10. If $U \subset X$ open, then $U \times_{k} Y$ is equal to $U \times Y \subset X \times_{k} Y$ with the induced topology.

$$
\begin{aligned}
\mathbb{P}^{n} \times_{k} \mathbb{P}^{m} & =\cup\left(U_{i} \times_{k} \mathbb{P}^{m}\right) \\
& =\cup_{i, j}\left(U_{i} \times_{k} U_{j}\right)
\end{aligned}
$$

where each piece is isomorphic to $\mathbb{A}^{n_{m}}$.

## 6. September 27

6.1. Products of projective varieties. Last time we defined the product of two varieties. Consider $\mathbb{P}^{n} \times_{k} \mathbb{P}^{m}$. If we write $\mathbb{P}^{n}=\cup U_{i}$ and $\mathbb{P}^{m}=\cup V_{j}$ where each $U_{i}$ and $V_{j}$ is isomorphic to the affine space, then we have an open cover

$$
\mathbb{P}^{n} \times_{k} \mathbb{P}^{m}=\cup_{i, j} U_{i} \times_{k} V_{j}
$$

where $U_{i} \times V_{j} \cong \mathbb{A}^{n} \times_{k} \mathbb{A}^{m} \cong \mathbb{A}^{n+m}$.
LEMMA 6.1. The topology on $\mathbb{P}^{n} \times_{k} \mathbb{P}^{m}$ can be described as follows: closed subsets are of the form $V\left(f_{1} \cdots f_{N}\right)$ where $f_{i} \in k\left[x_{0} \cdots x_{n}, y_{0} \cdots y_{n}\right]$ that are bi-homogeneous; i.e. we can write

$$
f_{i}=\sum_{\substack{a_{0}+\cdots+a_{n}=d \\ b_{0}+\cdots+b_{m}=e}}(\operatorname{coeff}) x_{0}^{a_{0}} \cdots x_{n}^{a_{n}} y_{0}^{b_{0}} \cdots y_{m}^{b_{m}}
$$

We call $(d, e)$ the bi-degree of $f_{i}$.

Proof. We know the topology on $U_{i} \times V_{j}$, because we have an isomorphism

$$
U_{i} \times V_{j} \xrightarrow{\varphi_{i} \times \varphi_{j}} \mathbb{A}^{n} \times_{k} \mathbb{A}^{m} \cong \mathbb{A}^{n+m}
$$

where the LHS has the Zariski topology. (When we write $\mathbb{A}^{n} \times{ }_{k} \mathbb{A}^{m}$ we mean the topology inherited from this particular construction of product, not the usual product topology.) It suffices to show that

$$
\left(\varphi_{i} \times \varphi_{j}\right)\left(\left(U_{i} \times V_{j}\right) \cap V\left(f_{1} \cdots f_{N}\right)\right)
$$

are the algebraic sets in $\mathbb{A}^{n+m}$. This is the same as when we showed that $\varphi_{i}: U_{i} \rightarrow \mathbb{A}^{n}$ is a homeomorphism.

Our next goal is to show that $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is a projective variety: it is isomorphic to some projective variety (a closed subvariety of some $\mathbb{P}^{k}$ ).

Definition 6.2. Let $\varphi: X \rightarrow Y$ be a morphism of (pre)varieties. (So far when we say "variety" we mean "prevariety"; we will remove this later by imposing an additional condition.) We say that $\varphi$ is a closed embedding if $\varphi$ is one-to-one on to an irreducible closed subset $\varphi(X) \subset Y$ (therefore $\varphi(X)$ has a variety structure) and $\varphi: X \rightarrow \varphi(X)$ is an isomorphism.

ThEOREM 6.3. Let $N=m n+m+n$. Then there is a natural closed embedding

$$
s: \mathbb{P}^{n} \times_{k} \mathbb{P}^{m} \rightarrow \mathbb{P}^{N}
$$

called the Segre embedding.
Corollary 6.4. Let $X, Y$ be projective. Then $X \times_{k} Y$ is projective.

Proof of corollary. This follows from the theorem and the following lemma:
Lemma 6.5. Let $\varphi: X^{\prime} \rightarrow X, \psi: Y^{\prime} \rightarrow Y$ be closed embeddings. Then $\varphi \times \psi: X^{\prime} \times_{k} Y^{\prime} \rightarrow$ $X \times_{k} Y$.

PROOF OF THE THEOREM. We will define the map $\left(a_{0} \cdots a_{n}\right),\left(b_{0} \cdots b_{m}\right) \rightarrow\left(a_{i} b_{j}\right)$ where $1 \leq i \leq n+1,1 \leq b \leq m+1$. First, we show that it is a morphism. This is
a local condition, so we can check on each piece of an affine open cover. Suppose $\mathbb{P}^{n}$ has coordinate functions $x_{0} \cdots x_{n}, \mathbb{P}^{m}$ has coordinate functions $y_{0} \cdots y_{m}$, and $\mathbb{P}^{N}$ has coordinate functions $z_{i j}$. Let $U_{i j}=\mathbb{P}^{N}-H_{i j}$ where $H_{i j}=\left\{z_{i j}=0\right\}$.

where the left vertical map takes $\left(a_{0} \cdots a_{n}\right)\left(b_{0} \cdots b_{m}\right) \mapsto\left(\frac{a_{0}}{a_{i}} \cdots, \frac{\widehat{a_{i}}}{a_{i}} \cdots \frac{a_{n}}{a_{i}}\right),\left(\frac{b_{0}}{b_{j}} \cdots \frac{b_{m}}{b_{j}}\right)$. The right vertical map takes $\left(c_{i j}\right) \mapsto\left(\frac{c_{00}}{c_{i_{0} j_{0}}} \cdots \frac{c_{m n}}{c_{i_{0} j_{0}}}\right)$ Then the bottom map is $\varphi_{i_{0} j_{0}} \circ s \circ\left(\varphi_{i_{0}} \times\right.$ $\left.\varphi_{j_{0}}\right)^{-1}$. When you restrict $s$ to $U_{i_{0}} \times V_{j_{0}}$ it's not hard to see that it goes to the right place.

$$
\varphi_{00} \circ s \circ\left(\varphi_{0} \times \varphi_{0}\right)^{-1}=\left(x_{1} \cdots x_{n}\right)\left(y_{1} \cdots y_{n}\right) \rightarrow\left(x_{1} \cdots x_{n}, y_{1} \cdots y_{m}, x_{i} y_{i}\right)
$$

is a morphism.

We want to show that $s$ is injective. Suppose $s(a, b)=s\left(a^{\prime}, b^{\prime}\right)$. This means that $a_{i} b_{j}=$ $\lambda a_{i}^{\prime} b_{j}^{\prime}$ (they represent the same point in projective space), for any $i, j$. So there are some $i_{0}, j_{0}$ such that $a_{i_{0}} \neq 0$ and $b_{j_{0}} \neq 0$. So $(a, b) \in U_{i_{0}} \times V_{j_{0}} .0 \neq a_{i_{0}} b_{j_{0}}=\lambda a_{i_{0}}^{\prime} b_{j_{0}}^{\prime}$ and so $\left(a^{\prime}, b^{\prime}\right) \in U_{i_{0}} \times V_{j_{0}}$.

Let $\mu=\frac{a_{i_{0}}}{a_{i_{0}}^{\prime}}$ and $\nu=\frac{b_{j_{0}}}{b_{j_{0}}^{\prime}} . \lambda=\mu \cdot \nu$. From

$$
a_{i} b_{j_{0}}=\lambda a_{i}^{\prime} b_{j_{0}}^{\prime} \Longrightarrow a_{i}=\mu a_{i}^{\prime} \Longrightarrow a=a^{\prime}
$$

Similarly, $b=b^{\prime}$.

Let $\mathfrak{P}=\operatorname{ker}\left(k\left[z_{i j}\right] \rightarrow k\left[x_{0} \cdots x_{n}, y_{0} \cdots y_{m}\right]\right)$ where the map takes $z_{i j} \mapsto x_{i} y_{j}$. You can check that $\mathfrak{P}$ contains the ideal

$$
\mathfrak{P}^{\prime}=\left(z_{i j} z_{k \ell}-z_{i \ell} z_{k j}\right)
$$

Obviously, $s\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right) \subset V(\mathfrak{P}) \subset V\left(\mathfrak{P}^{\prime}\right)$. We now prove that the map is onto this closed subset: $s\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right)=V\left(\mathfrak{P}^{\prime}\right)$. In particular, $V(\mathfrak{P})=V\left(\mathfrak{P}^{\prime}\right)$. So the radical of $\mathfrak{P}^{\prime}$ is $\mathfrak{P}$. (Actually, $\mathfrak{P}^{\prime}$ is the same as $\mathfrak{P}$.)

Let $\left(c_{i j}\right) \in V\left(\mathfrak{P}^{\prime}\right)$; this means that $c_{i j} c_{k \ell}=c_{i \ell} c_{k j}$. This means that there is some $c_{i_{0} j_{0}} \neq 0$., and hence $\left(c_{i j}\right) \in U_{i_{0} j_{0}}$. Let $a_{i}=\frac{c_{i j_{0}}}{c_{i_{0} j_{0}}} \in \mathbb{P}^{n}$ and $b_{j}=\frac{c_{i_{0} j}}{c_{i_{0} j_{0}}} \in \mathbb{P}^{m}$. So

$$
s(a, b)=\left(a_{i} b_{j}\right)=\frac{c_{i j_{0}} c_{i_{0} j}}{c_{i_{0} j_{0}}^{2}}=\frac{c_{i j} c_{i_{0} j_{0}}}{=}\left(c_{i j}\right) \in \mathbb{P}^{N}
$$

From this argument we have that $s^{-1}\left(U_{i j}\right)=U_{i} \times_{k} V_{j}$.
Finally, we show that

$$
s: \mathbb{P}^{n} \times_{k} \mathbb{P}^{m} \rightarrow V(\mathfrak{P})
$$

is an isomorphism iff

$$
s^{-1}: V(\mathfrak{P}) \rightarrow \mathbb{P}^{n} \times_{k} \mathbb{P}^{m}
$$

is a morphism. But we only need to check on affine opens.

$$
s^{-1}: V(\mathfrak{P}) \cap U_{i_{0} j_{0}} \rightarrow U_{i_{0}} \times V_{j_{0}}
$$

We need to check this is a morphism. Consider $i_{0}=j_{0}=0$. We have


The vertical map is a closed embedding, and hence a morphism. The composition is then a morphism. We are done. The reverse direction of the diagonal map is $\left(a_{1} \cdots a_{n}, b_{1} \cdots b_{m}\right) \mapsto$ $\left(a_{1} \cdots a_{n}, b_{1} \cdots b_{m}, b_{i j}\right)$.

### 6.2. An important class of projective varieties.

DEFINITION 6.6. A hyperplane in $\mathbb{P}^{n}$ is defined by a linear polynomial $V\left(a_{0} x_{0}+\cdots .+a_{n} x_{n}\right)$ (a hypersurface where the defining polynomial is linear). A linear variety in $\mathbb{P}^{n}$ is the intersection of hyperplanes. A linear variety of dimension $r$ is also called an $r$-plane. 1-planes are called lines. For example, $H_{i}=\left\{x_{i}=0\right\}$.

Lemma 6.7.
(1) Let $X \subset \mathbb{P}^{n}$ be an $r$-plane. Then $X \cong \mathbb{P}^{r}$ and $I(X)$ can be generated by $n-r$ linear polynomials. (i.e. the intersection of planes is a plane!)
(2) There is a natural bijection between $(r+1)$-dimensional sub-vector-spaces in $k^{n+1}$ and r-planes in $\mathbb{P}^{n}$. (Just consider $L \mapsto X=\left\{\left(a_{0} \cdots a_{r}\right) \in L=\{0\}\right\} / \sim$; this turns out to be a bijection.)

Definition 6.8. The Grassmannian $G(r, n)$ is the set of all $r$-dimensional subspaces in $k^{n}$ (equivalently, the $(r-1)$-planes in $\mathbb{P}^{n-1}$ ). For example, $G(1, n)=\mathbb{P}^{n-1}$.

## Notations 6.9.

- $G(r, n)$ is also denoted as $\mathbb{G}(r-1, n-1)$.
- Let $V$ be a finite-dimensional $k$-vector space. Then $G(r, V)$ is the set of all $r$ dimensional subspaces in $V$. (No need to choose a basis.) In particular, $G(1, V)$ is denoted by $\mathbb{P}(V)$.

ThEOREM 6.10. $G(r, V)$ is naturally a smooth projective variety of dimension $r(n-r)$, where $n=\operatorname{dim} V$.

Proof. We could try to embed this in a projective space. Or, we could give it a cover which gives it a variety structure, and then embed into projective space. We will do the latter.

Let $\left\{e_{1} \cdots e_{n}\right\}$ be a basis for $V$. For each $I \subset\{1 \cdots n\}$ of cardinality $n-r$ consider $k^{I}=\operatorname{span}\left\{e_{i}, i \in I\right\} \subset V$. Let

$$
V_{I}=\left\{L \subset V: \operatorname{dim} L=r, L \cap k^{I}=0\right\} \subset G(r, n)
$$

Notice that

$$
G(r, V)=\bigcup_{\substack{I \subset\{1 \cdots n\} \\|I|=n-r}} V_{I}
$$

We claim that there is a natural bijection $\varphi_{I}: V_{I} \xrightarrow{\sim} \mathbb{A}^{r(n-r)}$. In fact, there is a natural bijection

$$
V_{I} \xrightarrow{\sim} \operatorname{Hom}\left(V / k^{I^{c}}, k^{I}\right)
$$

where the second thing is $\cong M_{(n-r) \times r}(k)$, the set of $(n-r) \times r$ matrices $\cong \mathbb{A}^{(n-r) r}$ (and $I^{c}$ means the complement of $\left.I\right)$. The thing on the left is $r$-dimensional, therefore we can take the graph. The backwards map is $\varphi \mapsto V=k^{I^{c}} \oplus k^{I} \supset \Gamma \varphi$. The other direction takes $L$ to the map

$$
L \subset V \rightarrow k^{I^{c}}, L \subset V \rightarrow k^{I} A
$$

Explicitly, this means each $L \subset V_{I}$ determines uniquely

$$
\left(v_{1} \cdots v_{r}\right)=\left(e_{1} \cdots e_{n}\right)
$$

Each $L \subset v_{i}$ is uniquely given by a basis as follows: have the matrix $A$ where the top half is the identity matrix and the bottom is

$$
\left(\begin{array}{ccc}
a_{r+1,1} & \cdots & a_{r+1, r} \\
& \ddots & \\
a_{n, 1} & \cdots & a_{n, r}
\end{array}\right)
$$

It is not hard to show $\varphi_{J} \circ \varphi_{I}^{-1}$ is a morphism. Therefore, there is a variety structure on $G(r, n)$.

We want to construct a closed embedding $\psi: G(r, n) \rightarrow \mathbb{P}^{N}$. There is a natural closed embedding; this is called the Plücker embedding. Let $W=\Lambda^{r} V$. Then $W$ is a vector space with $\operatorname{dim} W=\binom{n}{r}$. For each $L \in G(r, n)$ we can associate a vector, up to scalar. Namely, we choose a basis $v_{1} \cdots v_{r} \in L$ (for example, the standard basis). This gives us a vector $v_{1} \wedge \cdots \wedge v_{r} \in W$. This depends on the basis, but the difference depends on the determinant of the transition matrix. So it is unique up to scalar. We can define a map

$$
\psi: G(r, n) \rightarrow \mathbb{P}(W) \quad L \mapsto v_{1} \wedge \cdots \wedge v_{r}=[L]
$$

This is called the Plücker embedding. Consider $\psi: V_{I} \rightarrow \mathbb{P}(W)$, where $I=\{r+1 \cdots n\}$. We have standard coordinates $\left(a_{J}\right)$ with $J \subset\{1 \cdots n\}$ and $|J|=r$. Every element in $W$ can be written

$$
\sum a_{J} e_{j_{1}} \wedge \cdots \wedge e_{j_{r}}
$$

where $J=\left\{j_{1}<\cdots<j_{r}\right\}$. We have

$$
\left(v_{1} \cdots v_{r}\right)=\left(e_{1} \cdots e_{n}\right) A
$$

where $A$ was the matrix from earlier; the map takes this to the $r \times r$ minors. $a_{J}$ is the determinant of something, where the rows are chosen according to $J$. This is a polynomial map.

Next, we show that $\psi$ is injective. We can recover $L$ by its image.

$$
L=\left\{v \in V: v \wedge[L]=0 \text { in } \Lambda^{r+1} V\right\}
$$

In other words, $L$ is the kernel of $\Lambda[L]$ where $\Lambda[L]: \Lambda^{r+1} V$ is the map that takes $v \mapsto v \wedge[L]$.
Now we want to characterize its image: it is an irreducible closed subset in $W$, but we will not write down the generators of the basis. Let $w \in W$.

Question 6.11. When can $w$ be written as $w=v_{1} \wedge \cdots \wedge v_{r}$ ? (When this happens, we say it is decomposable.)

Obvious condition: the kernel of $\wedge w$ has dimension $\geq r$, where

$$
\wedge w: V \rightarrow \Lambda^{r+1} V
$$

We have the following easy lemma:
Lemma 6.12. Let $w \neq 0 \in W$. Then $\operatorname{dim} \operatorname{ker}(\wedge w) \leq r$, and equality holds iff $w$ is decomposable.

Proof. Use linear algebra.

We have

$$
\delta: W \rightarrow \operatorname{Hom}\left(V, \Lambda^{r+1} V\right) \supset\{\varphi: r k \varphi \leq n-r\}
$$

and $\psi(G(r, n))$ is exactly $\delta^{-1}\{\varphi: r k \varphi \leq n-r\}$.

## 7. September 29

We continue to study the Grassmannian, $G(r, V)=\{r-$ planes in $V\}$. We constructed a map

$$
\psi: G(r, n) \rightarrow \mathbb{P}(W)
$$

and showed that it was injective. We want to describe the image of $\psi$. Let $w \in W-\{0\}$. When does $w=v_{1} \wedge \cdots \wedge v_{r} \Longleftrightarrow w \in \psi(G(r, n))$ ? (If $w$ has this property we say that it is decomposable.) Then if $\wedge w: V \rightarrow \Lambda^{r+1} V$, then

$$
w \in \operatorname{Im} \psi \Longleftrightarrow \operatorname{dim} \operatorname{ker}(\wedge w) \geq r
$$

Consider

$$
\delta: W \rightarrow \underset{31}{\operatorname{Hom}\left(V, \Lambda^{r+1} V\right)} \quad w \mapsto \wedge w
$$

A linear map induces a map between projectivizations of vector spaces. So $\wedge$ induces a map

$$
\delta: \mathbb{P}(W) \rightarrow \mathbb{P} \operatorname{Hom}\left(V, \Lambda^{r+1} V\right)
$$

Let $Z_{r}\left(V, \Lambda^{r+1} V\right) \subset \mathbb{P} \operatorname{Hom}\left(V, \Lambda^{r+1} V\right)$ be the set

$$
\left\{\varphi: V \rightarrow \Lambda^{r+1} V: r k \varphi \leq n-r\right\}
$$

Then $\psi(G(r, n))=\delta^{-1}\left(Z_{n-t}\left(V, \Lambda^{r+1} V\right)\right)$.
Digression. In general, let $V_{1}, V_{2}$ be two vector spaces, and let $Z_{d}\left(V_{1}, V_{2}\right) \subset \mathbb{P} \operatorname{Hom}\left(V_{1}, V_{2}\right)$ be defined as $\left\{\varphi: V_{1} \rightarrow V_{2}: r k \varphi \leq d\right\}$. Then $Z_{d}\left(V_{1}, V_{2}\right)$ is an algebraic set in $\mathbb{P} \operatorname{Hom}\left(V_{1}, V_{2}\right)$. In fact, $Z_{d}\left(V_{1}, V_{2}\right)$ is a projective variety called the determinantal variety. (It is the variety generated by the $(d+1) \times(d+1)$ minors.) This shows that $\psi(G(r, n))$ is closed, and we have characterized the image as $\psi(G(r, n))=\delta^{-1}\left(Z_{n-r}\left(V, \Lambda^{r+1} V\right)\right.$ ). (When $d=1 Z_{d}$ is smooth; otherwise it is singular.)

Remark 7.1. Recall we have defined the embedding $s\left(\mathbb{P}^{n} \times \mathbb{P}^{m}\right)$. This is exactly the determinantal variety $Z_{1}\left(k^{n+1}, k^{n+1}\right)$. (We wrote down quadratic polynomials that generated the variety...)

## determinant

We want to show that $\psi: G(r, n) \rightarrow \psi(G(r, n))$ is an isomorphism of varieties. First we need the target to be a variety. (Why is it irreducible?) First we need it to be a homeomorphism, and you get the variety structure from there. In fact, it is an isomorphism of projective varieties.

It is enough to cover this with open affines, and show that each piece works out. So take the restriction

$$
\psi: V_{I} \rightarrow U_{I}=\mathbb{P}(W)-\left\{a_{I}=0\right\}
$$

Elements in $W$ can be expressed as $\sum a_{J} e_{J}$, where $e_{J}=e_{j_{1}} \wedge \cdots \wedge e_{j_{r}}$ for $j_{1}<\cdots<j_{r}$ and $J=\left\{J_{1} \cdots J_{r}\right\}$. Also, $U \subset\{1,2, \cdots, n\}$ and $|I|=n-r$. Recall that elements can be expressed as a matrix

$$
\left(\begin{array}{ccc}
1 & & \\
& \ddots & \\
& & 1 \\
a_{r+1,1} & \ddots & a_{r+1, n} \\
& \ddots & \\
a^{n, r} & & a_{n, r}
\end{array}\right)
$$

Take the $r \times r$ minors of this matrix; take one row upstairs and one row downstairs (uhhh?). Let $a_{J}=$ the set of $r \times r$ minors for $J$, where $J=\{1,2, \cdots \widehat{i}, \cdots, r\} \cup j$. $a_{J}=a_{j i}$. We
have


Somehow this shows that $\psi^{-1}$ is continuous and in fact a morphism.

Now we can say that the Grassmannian is a projective variety.
Remark 7.2. The ideal of

$$
\psi G(r, n)
$$

can be generated by quadratic polynomials, called the Plücker relations.
Definition 7.3. A correspondence from varieties $X$ to $Y$ is a relation given by a closed subset $Z \subset X \times_{k} Y$. (Since $X$ and $Y$ are varieties, now we know that the product exists, and that it is a closed subset.) Assume $X, Y$ quasi-projective. $Z$ is said to be a rational map if $Z$ is irreducible and there is an open subset $X_{0} \subset X$ such that every point $x \in X_{0}$ is related to exactly one point in $Y$.
$Z$ is said to be birational if $Z \subset X \times_{k} Y$ and $Z^{-1}=\left\{(y, x) \in Y \times_{k} X:(x, y) \in Z\right\} \subset$ $Y \times_{k} X$ are both rational.
REmARK 7.4. From now on we will always write $X \times Y$ to mean $X \times_{k} Y$.
Notation 7.5. A rational map from $X$ to $Y$ is also denoted by $f: X \rightarrow Y$.
Example 7.6. Let $X$ be projective, and $f \in k(X)$ be a rational function. Then $f$ gives rise to a rational map $f: X \rightarrow \mathbb{P}^{1}$. The rational functions are:

$$
k\left(\mathbb{P}^{1}\right)=k(t) \rightarrow k(X) \quad x \mapsto f
$$

$k(U)$ is the fractional field of $\mathcal{O}(U) . k(X)-\{0\}$ is the same as $k$-algebra homomorphisms $k(t) \rightarrow k(X)$. Because $X$ is projective, $f$ can be written as a ratio of two homogeneous polynomials of the same degree: $f=\frac{g}{h}$ for $g, h \in k\left[x_{0} \cdots x_{n}\right]$ ( $t$ must be invertible; it cannot map to zero.) Define

$$
X_{0}=X-(\{g=0\} \cap\{h=0\})
$$

Now define

$$
F: X_{0} \rightarrow \mathbb{P}^{1} \quad p \mapsto(g(p), h(p))
$$

This is well-defined because we were assuming $\operatorname{deg} g=\operatorname{deg} h=d$. Now let $y_{0}, y_{1}$ be the homogeneous coordinates on $\mathbb{P}^{1}$. Then $V\left(y_{0} h-y_{1} g\right) \subset \mathbb{P}^{n} \times \mathbb{P}^{1}$ where the things inside $V$ are bi-homogeneous of degree $(d, 1)$. Let

$$
Z=V\left(y_{0} h-y_{1} g\right) \cap X
$$

Over $X_{0}$, the intersection

$$
p r^{-1}\left(x_{0}\right) \cap Z \text { inside } X \times \mathbb{P}^{1}
$$

is just the graph of $F$, i.e.

$$
p r^{-1}\left(x_{0}\right) \cap Z=\left\{(x, F(x)): x \in X_{0}\right\}
$$

In fact, $p r: Z \cap p r^{-1}\left(x_{0}\right) \rightarrow x_{0}$ is an isomorphism. There is a map backwards by the universal property of the product.

Now let $Z^{*}$ be the closure of $Z \cap p r^{-1}\left(x_{0}\right)$ in $X \times \mathbb{P}^{1}$. When you restrict to $X_{0}$, you have a graph; but it could be more complicated (not irreducible) outside $X_{0}$. But inside $X_{0}$, $Z \cap p r^{-1}\left(X_{0}\right)$ is irreducible. Taking the closure $Z^{*}$ is irreducible and $Z^{*} \cap p r^{-1}\left(X_{0}\right)=$ $Z \cap p r^{-1}\left(X_{0}\right)$. Therefore, $Z^{*}$ is a rational map. Every point $x$ over $X_{0}$ is related to $F(x) \in \mathbb{P}^{1}$ by $Z^{*}$.

If $k(Y) \subset k(X)$ then we get a rational map $X \rightarrow Y$.
EXAMPLE 7.7 (Projection from a point, blow up). Let $O=(0,0, \cdots, 1) \in \mathbb{P}^{n}$. Let $p: \mathbb{P}^{n}-\{0\} \rightarrow \mathbb{P}^{n-1}$ take $\left(a_{0}, \cdots, a_{n}\right) \rightarrow\left(a_{0}, \cdots, a_{n-1}\right)$ be the projection. $p$ is a morphism. $p^{-1}(p(x))$ is the line joining $O$ and $x$, without the point $O$. You can show that there is a unique line through two points in projective space.

Consider $Z=V\left(x_{i} y_{j}-y_{i} x_{j}\right)_{0 \leq i, j \leq n-1} \subset \mathbb{P}^{n} \times \mathbb{P}^{n-1} . Z=\Gamma p \cup p r^{-1}(O)=\Gamma p \cup \mathbb{P}^{n-1}$. The whole fiber is always inside $Z$. Call the embedded $\mathbb{P}^{n-1}=E$. By definition, $Z$ is closed.

Claim 7.8. $Z$ is irreducible.

Proof. $Z \cap p r^{-1}\left(\mathbb{P}^{n}-\{0\}\right)$. This is nothing but the graph $\Gamma p=\left\{(x, p(x)) \in\left(\mathbb{P}^{n}-\right.\right.$ $\left.\{0\}) \times \mathbb{P}^{n-1}\right\}$. Then $\Gamma p$ is irreducible. To prove the claim, it is enough to show that $Z=\overline{\Gamma p}$. (The closure of an irreducible topological space is irreducible.) Let $q \in \mathbb{P}^{n-1}$ let $\ell_{q}=p^{-1}(q) \cup\{0\} . \ell^{q}$ is a line in $\mathbb{P}^{n} . \ell_{q} \subset \mathbb{P}^{n} \times\{q\} \subset \mathbb{P}^{n} \times \mathbb{P}^{n-1}$ and $\left(\ell_{q}-\{0\}\right) \times\{ \} \subset \Gamma p \subset Z$. In particular, $(O, q) \ell_{q} \times\{q\}$ lands in the closure $\overline{\Gamma p}$. (The point is in the closure of the graph.) $E=\{O\} \times \mathbb{P}^{n-1} \subset \overline{\Gamma p}$ implies $Z \subset \overline{\Gamma p}$.

So $Z$ is irreducible, and is a projective variety called the blowup of $\mathbb{P}^{n}$ at $O$. When you restrict $p r: Z \rightarrow \mathbb{P}^{n}$, then

$$
p r^{-1}(O) \cong P^{n-1}=E
$$

where $E$ is called an exceptional $\mathbb{P}^{n-1}$ divisor, and $p r: Z-E \rightarrow \mathbb{P}^{n}$ is $1-1$. (You replace the origin by $\mathbb{P}^{n-1}$.) (Imagine turning a pair of intersecting curves into a helix; the crossbars are the $\ell_{q} \times\{q\}$.)

Definition 7.9. Let $X \subset \mathbb{P}^{n-1}$ be quasi-projective. Assume $O \in X$. The blowup of $X$ at $O$ is $\overline{p r^{-1}(X-O)} \subset Z$.

where $\tilde{X}=p r^{-1}(X-O) \subset Z$. The $Z$ in the top right is the blow up of $\mathbb{P}^{n}$ at $O$.

Now, for arbitrary quasi-projective variety containing this point, we can define the blow up as the preimage of $X-\{0\}$ in $Z$ ?

EXAMPLE 7.10. $y^{2}=x^{3}+x^{2} \subset \mathbb{A}^{2} \subset \mathbb{P}^{2}$ contains the point $O=(0,0,1) \in X$. Let $\widetilde{X}$ be the blow up of $X$ at $O$. (Remember, this has a loop at the origin.) Let $(u, v)$ be coordinates on $\mathbb{P}^{1}$. Then the blow-up is given by

$$
Z=V(x u-y v) \subset \mathbb{P}^{2} \times \mathbb{P}^{1}
$$

Now take the blowup of $\widetilde{X}$. Let

$$
p r^{-1}(X) \subset \mathbb{P}^{2} \times \mathbb{P}^{1}
$$

The whole preimage is given by

$$
V\left(y^{2} z-x^{3}-x^{2} z\right)
$$

Look at $\operatorname{pr}^{-1}(X) \cap Z \supset \widetilde{X}$. To get the intersection, we want to solve

$$
\left\{\begin{array}{l}
x u-y v=0 \\
y^{2} z-x^{3}-x^{2} z=0
\end{array} \subset \mathbb{A}^{2} \times \mathbb{P}^{1}\right.
$$

Just cover $\mathbb{P}^{1}$ by two affines: $u \neq 0$ and later $v \neq 0$. That is if we have we are solving the equations

$$
\left\{\begin{array} { l } 
{ x u - y = 0 } \\
{ y ^ { 2 } - x ^ { 3 } - x ^ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
y=x u \\
x^{2}\left(u^{2}-x-1\right)
\end{array}\right.\right.
$$

This is not irreducible; it is given by two components

$$
V\left(y-x, x^{2}\left(u^{2}-x-1\right)\right)=V\left(y-x u, u^{2}-x-1\right) \cup V\left(u-x u, x^{2}\right)
$$

(We're trying to calculate $p r^{-1}(X) \cap Z$.) The second thing is the exceptional locus $E \cap$ $\left(\mathbb{A}^{2} \times \mathbb{A}^{1}\right)$. The first thing is $\widetilde{X}$, because when you map to $X$ it is an isomorphism away from zero. (The second one is totally contained in $E$.)
$E \cup \widetilde{X}$ is the preimage of $X$. We can remove $E$ because it isn't in the closure of $\ldots$..something? We will see that $\widetilde{X}$ is smooth. $p r^{-1}(O)$ is given by $x=0, y=0 ; u=$ $1, v=1 ; x=0, y=0 ; u=-1, y=1$.

## 8. October 4

We will show that the class of algebraic varieties contains all the quasi-projective varieties. Here is a corrected definition:

Definition 8.1. A rational map is a correspondence $Z \subset X \times Y$ irreducible, such that there is some $X_{0} \subset X$ open and $p r_{X}\left(Z \cap p r_{X}^{-1}\left(X_{0}\right)\right) \rightarrow X_{0}$ is an isomorphism.
(The previous definition works only when the characteristic is zero. Example: consider the Frobenius map $F: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$, where $x \mapsto x^{p}$. The graph $\Gamma_{F} \subset \mathbb{A}^{1} \times \mathbb{A}^{1}$; the projections are bijections. However, this is not a birational map; we will see that birational maps induce an isomorphism of the function field. This does not: $k(X) \rightarrow k(X)$ is an injective map of fields, but not an isomorphism. The graph is always isomorphic to the domain, but the projection to $Y$ is not an isomorphism.)

Let $O=(0, \cdots, 0,1) \in \mathbb{P}^{n}$. We have a projection: $p: \mathbb{P}^{n}-\{0\} \rightarrow \mathbb{P}^{n-1}$. We get the blowup $B l_{O}\left(\mathbb{P}^{n}\right)=Z \subset \mathbb{P}^{n} \times \mathbb{P}^{n-1}$ that has projections to each factor. If we have a subvariety $X \ni O$, then take $p^{-1}(X-\{0\})$ and take the Zariski closure; this is $B l_{O} X$. The preimage of $O$ is called $E$, which was called an exceptional divisor; it is isomorphic to $\mathbb{P}^{n-1}$. (For example, the blowup of a nodal curve was the union of the exceptional divisor, a copy of $\mathbb{P}^{1}$, and the curve whose singular point had been separated into another dimension. The original curve was not smooth, but after blowing up it is smooth.)

### 8.1. Resolution of singularity problem. Given an algebraic variety $X$, find $Y \rightarrow X$ a birational surjective morphism with $Y$ smooth.

Answer: Yes, if the characteristic is zero (Hironaka). Unknown, if $\operatorname{char}(k)>0$, unless the dimension is 1 or 2 . A common technique is to blow up the singular locus many times, and we hope that we get something smooth.

EXAMPLE 8.2 (Incidence correspondence). Let $C \subset \mathbb{G}(r, n) \times \mathbb{P}^{n}$. Define

$$
C=\{(L, x): x \in L\}
$$

We claim that $C$ is a correspondence. In fact, $C$ is a smooth projective variety of dimension $(r+1)(n-r) r$.

Proof. First, why is it closed? $\mathbb{P}^{n}=\mathbb{P}(V)$, $\operatorname{dim} V=n+1$. Let $e_{0} \cdots e_{n}$ be a basis of $V$. Let $W=\Lambda^{r+1} V$. We had constructed the Plücker embedding:

$$
\mathbb{G}(r, n) \times \mathbb{P}^{n} \xrightarrow{\psi \times I D} \mathbb{P}(W) \times \mathbb{P}^{n} \quad \text { where }(L, x) \mapsto([L], x)
$$

$\sum a_{I} e_{I} \in W, I \subset\{0, \cdots, n\}$ with cardinality $r+1 . x \in[L]$ iff $[L] \wedge x=0$, a.k.a. $\sum a_{I} e_{I} \wedge \sum x_{i} e_{i}=0 ;$ this is a bihomogeneous polynomial of degree $(1,1)$. This gives an equation $F\left(a_{I}, x\right)=0$. So we can write

$$
C=V(F) \cap\left(\psi(\mathbb{G}(v, n)) \times \mathbb{P}^{n}\right)
$$

We need to show that it is irreducible and smooth. To do this, we claim that for each $I \subset\{0, \cdots, n\}$ with cardinality $n-r$ we have

$$
p r^{-1}\left(V_{I}\right) \cap C \cong V_{I} \times \mathbb{P}^{r}
$$

(It has an open cover such that the open subset is smooth. Check that the RHS is irreducible smooth of dimension $(r+1)(n-r)+r$; use the homework that $\operatorname{dim} X \times Y=$ $\operatorname{dim} X+\operatorname{dim} Y$.) $I$ parametrizes coordinates in an $n-r$ dimensional vector space; we get a map $I \rightarrow k^{I}$.

You can get a $(n-r-1)$-plane $k^{I} /$ Image $:=M \subset \mathbb{P}^{n}$ so $M=\left\{\left(0, \cdots, 0, a_{1} \cdots a_{n-r-1}\right)\right\}$ We get a rational map

$$
p_{M}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{r} \quad \text { where }\left(a_{0} \cdots a_{n}\right) \mapsto\left(a_{0} \cdots a_{r}\right)
$$

and $p_{M}^{-1}(y)$ is an $(n-r)$-plane. I want to construct a map

$$
C \cap p r^{-1}\left(V_{I}\right) \rightarrow V_{I} \times \mathbb{P}^{r} \quad(L, x) \mapsto\left(L, p_{M}(x)\right)
$$

Remember $L \cap k^{I}=\{0\}$ so $x \in L \Longrightarrow x \notin M .\left(M=\mathbb{P}\left(k^{I}\right)\right.$, and you get an isomorphism between $\mathbb{P}^{r}$ and $\mathbb{P}(L)$.)

DEfinition 8.3. A morphism $f: X \rightarrow Y$ is called dominant if $f(X)$ contains an (open) dense subset. (Equivalently (?) require that the image is dense). A rational map $Z \subset$ $X \times Y$ is called dominant if $p r_{Y}: Z \rightarrow Y$ is dominant.

In the homework we have another notion of rational maps: if $U \subset X$ is open, and $f: U \rightarrow$ $Y$ is a morphism. We call this

$$
\operatorname{Maps}(X, Y)^{r a t^{\prime}}=\{(U, f): U \subset X, f: U \rightarrow Y\}
$$

There is an isomorphism from this to $\operatorname{Maps}(X, Y)^{\text {rat }}$ given by taking the closure of the graph of $f$. In the homework, we see that this is injective. But using the new definition, we see that it is bijective. If there is some $X_{0} \subset X$ such that the restriction $p r^{-1}\left(X_{0}\right) \cap Z \rightarrow X_{0}$ is an isomorphism, construct $U=X_{0}$ and $f$ to be the composition of this map with the map to $Y$. The dominant condition just means: $Z$ is dominant iff $f: U \rightarrow Y$ is dominant.

If $f: X \rightarrow Y$ is rational, then $f^{*}$ is the induced map $k(Y) \rightarrow k(Y)$. If $g \in k(Y)$ then $g$ is a regular function of some open $V \subset Y: g \in \mathcal{O}(V)$. Then $g \circ f \in \mathcal{O}\left(f^{-1}(V)\right) \subset k(X)$.
Proposition 8.4. Consider the functor
$F:($ alg.var $)+($ dominant rational maps $) \rightarrow($ f.gen. field extn of $k)+(k$-alg. homomorphisms $)$
Then $F$ is an equivalence of categories.

Proof. We have a natural map

$$
\operatorname{Maps}(X, Y)^{r a t, d o m} \rightarrow \operatorname{Hom}_{k . a l g}(X, Y)
$$

We need first to show that this is bijective; we do this by constructing an inverse. Let $\theta: k(Y) \rightarrow k(X)$. The function field of a variety is the same as the function field of any of its open subsets. So we can let $Y_{0} \subset Y, X_{0} \subset X$ be affine opens, and $Y_{0} \subset \mathbb{A}^{n}$, etc. There are some coordinate functions $\left(y_{1} \cdots y_{n}\right)$. So $\theta\left(y_{i}\right)$ is a rational function on $X$. $\theta\left(y_{i}\right)$ is a rational function, so $\theta\left(y_{i}\right)=\frac{f_{i}}{f_{0}}$ for $f_{i} \in \mathcal{O}\left(X_{0}\right)$ and $f_{0} \neq 0$. Let $U=X_{0}-\left\{f_{0}=0\right\} \neq \emptyset$. $\theta\left(y_{i}\right) \in \mathcal{O}(U)$. A morphism $U \rightarrow Y$ that is affine is equivalent to a map $\mathcal{O}\left(Y_{0}\right) \rightarrow \mathcal{O}(U)$. This gives a map in the other direction.
(We claim that this is dominant: image dense $\Longleftrightarrow$ image contains an open dense subset. If $U \rightarrow Y_{0}$ factors through $Z \subset Y_{0}$ then choose $f \in I(Z) \subset \mathcal{O}\left(Y_{0}\right) . Z \subset V(f)$. If it vanishes on a set, then it vanishes on the pullback.)

REMARK 8.5. The birational maps correspond to isomorphism; they are the invertible morphisms in these categories.

Let $K=k\left(x_{1} \cdots x_{r}\right)$ be a finitely generated field over $k$. Take $A=k\left[x_{1} \cdots x_{n}\right] \subset K$, a finitely generated ring. Under the equivalence of categories, denote the image of $A$ as $\operatorname{Spec}(A) ; k(X)=K$.
Corollary 8.6. Every algebraic variety $X$ is birational to a hypersurface in $\mathbb{P}^{n}$.

Proof. Let $K=k(X)$ be finitely generated over $k$. From commutative algebra, $k$ is algebraically closed so it is perfect. Therefore, $K / k$ is separably generated. That is, there are some $x_{1} \cdots x_{r}$ transcendental over $k$ such that $K /\left(k\left(x_{1} \cdots x_{r}\right)\right)$ is finite and separable (and hence generated by one element). So there is some $y \in K$ such that

$$
K=k\left(x_{1} \cdots x_{n}\right)(y)
$$

$y$ has some minimal polynomial $y^{n}+a_{1}\left(x_{1} \cdots x_{r}\right) y^{n-1}+\cdots+a_{n}\left(x_{1} \cdots x_{r}\right)=0$; each $a_{i}$ is an element of the field $k\left(x_{1} \cdots x_{n}\right)$ of rational functions, and so they can be written as the ratio of two polynomials. So we can write $f\left(x_{1} \cdots x_{r}, y\right)=0$ for $f \in k\left[x_{1} \cdots x_{r}, y\right]$.

We have $V(f) \subset \mathbb{A}^{r+1}$ an affine variety of dimension $r$ and the function field $k(V(f))=K$. Therefore, $X$ is birational to $V(f)$, and therefore to $\overline{V(r)} \subset \mathbb{P}^{r+1}$. (Birationally, every variety is the same as a hypersurface.)

THEOREM 8.7. The projection $\mathbb{P}^{n} \times \mathbb{P}^{m} \xrightarrow{p_{2}} \mathbb{P}^{m}$ is a closed map. That is, if every $Z \subset \mathbb{P}^{n}$ is closed, then $p_{2}(Z)$ is closed.

We will prove this next time. But this is not the same as for affine varieties.
REMARK 8.8. We claim that $\mathbb{A}^{1} \times \mathbb{A}^{1} \xrightarrow{p_{2}} \mathbb{A}^{1}$ is not closed. For example, consider $x y=1$ : $V(x y-1) \mapsto \mathbb{A}^{1}-\{0\}$.
Corollary 8.9. Let $X, Y$ be projective varieties. Let $Z \subset X \times Y$ be a correspondence. Then $\operatorname{pr}_{Y}(Z)$ is closed.

Corollary 8.10. Let $Z \subset \mathbb{G}(r, n)$ be a closed subvariety. Then the union

$$
\bigcup_{L \in Z} L \subset \mathbb{P}^{n}
$$

is a projective variety.

Proof. $C$ has projections to $Z \subset \mathbb{G}(r, n)$ and to $\mathbb{P}^{n}$. Since $Z$ is irreducible, $p r_{1}^{-1}(Z)$ is irreducible. $\cup L \subset \mathbb{P}^{n}=p_{2} p_{1}^{-1}(Z)$.
Corollary 8.11. Let $X \subset \mathbb{P}^{n}-\{0\}$. Then $p_{0}(X)$ is a projective variety in $\mathbb{P}^{n-1}$. We have $Z=B l_{0} \mathbb{P}^{n}$ with maps to $\mathbb{P}^{n}$ and $X \subset \mathbb{P}^{n}$. its image $p_{1}^{-1}(X)$ is still closed. The projection is exactly the projection $p_{0}(X)$; hence closed.

## 9. October 6

Theorem 9.1. $p_{2}: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{m}$ is closed.
Definition 9.2. An algebraic variety $X$ is called complete if for any algebraic variety $Y$, $X \times Y \rightarrow Y$ is closed.

The theorem implies: projective varieties are complete. (But it's not obvious.) Let $X, Y, Z$ be projective.

Corollary 9.3. If $Z \subset X \times Y$ is a correspondence, then $p r_{Y}(Z)$ is closed.
Corollary 9.4. Let $A \subset X \times Y, B \subset Y \times Z$ be correspondences. Then

$$
C=: B \circ A=\{(x, z) \in X \times Z: \exists y \in Y,(x, y) \in A,(y, z) \in B\}
$$

is a correspondence. (So you can compose correspondences.)
(If $A$ and $B$ are graphs of morphisms, then $C$ is the graph of the composition.)

Proof. Consider $X \times Z \xrightarrow{p_{12}, p_{23}, p_{13}} X \times Y, X \times Z, Y \times Z$. Then $C=p_{13}\left(p_{12}^{-1}(A) \cap\right.$ $\left.p_{23}^{-1}(B)\right)$
Corollary 9.5. Let $X \subset \mathbb{P}^{n}$ be projective, with $O \notin X$. Then $p_{0}(X)$ is projective and $p_{0}: X \rightarrow p_{0}(X)=X^{\prime}$ has finite fibers. In addition, $\operatorname{dim} X=\operatorname{dim} P_{0}(X)$ and $S(X) S^{n} / I(X)$ is a finite module over $S\left(X^{\prime}\right)=S^{n-1} / I\left(X^{\prime}\right)$.

Proof. For any point $y \in \mathbb{P}^{n-1}, p_{0}^{-1}(Y) \cong \mathbb{A}^{1}$ and therefore $p_{0}^{-1}(y) \cap X$ is closed in $\mathbb{A}^{1}$. It can't be the whole $\mathbb{A}^{1} ; X$ does not contain $O$. So $p_{0}^{-1}(y) \cap X$ is finite. (What are the closed things in $\mathbb{A}^{1}!$ )

Say $O=(0, \cdots, 0,1)$. Because $O \notin X$, there is some $f \in I(X)$ such that $f(0) \neq 0$ and $f=x_{n}^{d}+a_{1}\left(x_{0} \cdots x_{n-1}\right) x_{n}^{d-1}+\cdots+a_{d}\left(x_{0} \cdots x_{n-1}\right)$. So $S(X)$ is generated over $S\left(X^{\prime}\right)$ by $1, x_{n}, \cdots, x_{n}^{d-1}$. (It's a finite module.) So $S(X)$ is finite over $S\left(X^{\prime}\right)$, which implies

$$
t r . d_{\cdot k} S(X)=t r . d_{\cdot k} S\left(X^{\prime}\right)
$$

Transcendental degree over an integral domain means the transcendental degree of the fraction field. In the homework we defined the cone as a projective variety. But if we remove one hyperplane, we can consider this as the affine cone; the coordinate ring is exactly the affine coordinate ring. So the previous formula is

$$
t r \cdot d \cdot k S(X) \stackrel{w h y}{=} \operatorname{dim} C(X)=\operatorname{dim} C\left(X^{\prime}\right)=t r \cdot d \cdot k S\left(X^{\prime}\right) \Longrightarrow \operatorname{dim} X=\operatorname{dim} X^{\prime}
$$

Corollary 9.6 (Noether's normalization lemma). Let $X^{r} \subset \mathbb{P}^{n}$ be a projective variety. (The superscript $X^{r}$ means its dimension is $r$.) Then there is some $(n-r-1)$-plane $L$ such that $X \cap L=\emptyset$ and $p_{L}: X^{r} \rightarrow \mathbb{P}^{r}$ has finite fibers, and $S\left(X^{r}\right)$ is finite over $S^{r}=S\left(\mathbb{P}^{r}\right)$ (homogeneous polynomial ring of $r+1$ variables.)

If $L=\left(0, \cdots, 0, a_{r+1} \cdots, a_{n}\right)$ then the projection $P_{L}$ means you project to the first $r$ coordinates.

Proof of corollary. By induction. Choose one point, and use induction on $n-r$. If $n-r=1$ then there is nothing to do: choose a point, and do the projection $p_{0}: X \rightarrow$
$P_{0}(X) \subset \mathbb{P}^{n-1}$. The target space is closed, and has the same dimension of $X$; therefore, they coincide. In general, choose a point $0 \notin X$, and do the projection

$$
P_{0}: X \rightarrow P_{0}(X)=X^{\prime} \subset \mathbb{P}^{n-1}
$$

Choose some $(n-1)-(r-1)$ plane $L^{\prime} \subset \mathbb{P}^{n-1}$. Then

$$
P_{L^{\prime}}: X^{\prime} \rightarrow \mathbb{P}^{r}, P_{L^{\prime}} \circ P_{0}=P_{\operatorname{span}\left(L^{\prime}, 0\right)}
$$

But $L$ is the unique linear variety containing $L^{\prime}$ and the point $O$.

Proof of theorem. Let $Z-V\left(f_{1} \cdots f_{r}\right)$ be an algebraic set of $\mathbb{P}^{n} \times \mathbb{A}^{m}$. Closed subsets in this product are given by polynomials which are homogeneous in the first coordinates, and not in the second half of the coordinates. Let $f_{i}=f_{i}\left(x_{1} \cdots x_{n}, y_{1} \cdots y_{n}\right)$ be homogeneous of degree $d_{i}$ in $X . p_{2}(Z) \nexists b \Longleftrightarrow\left\{f_{i}(x, b)\right\}$ do not have common zeroes in $\mathbb{P}^{n}$. Equivalently, there is some $N$ such that $\left(x_{0} \cdots x_{n}\right)^{N} \subset\left(f_{1}(x, b) \cdots f_{r}(x, b)\right)$ (the radical). Let

$$
U_{N}=\left\{b \in \mathbb{A}^{m}:\left(x_{0} \cdots x_{n}\right)^{N} \subset\left(f_{1}(x, b) \cdots f_{r}(x, b)\right)\right\}
$$

$A^{m}-p_{2}(Z)=\cap_{N \geq 1} U_{N}$. It is enough to show that $U_{N}$ is open. Let $S=k\left[x_{0} \ldots x_{n}\right]=$ $\bigoplus_{d \geq 0} S_{d}$. For $b \in \mathbb{A}^{m}$ define a map $T_{b}^{(N)}: S_{N-d_{1}} \oplus \cdots \oplus S_{N-d_{r}} \rightarrow S_{N}$ that sends

$$
\left(g_{1}, \cdots, g_{r}\right) \mapsto \sum g_{i} f_{i}(x, b)
$$

This is a $k$-linear map between two $k$-vector spaces. This is given by some matrix; the entries of this can be expressed as polynomials of $b$. Therefore, we get a map

$$
T^{(n)}: \mathbb{A}^{m} \rightarrow \operatorname{Hom}_{k}\left(S_{N-d_{1}} \oplus \cdots \oplus S_{N-d_{r}}, S_{N}\right)
$$

and $b \in U_{N} \Longleftrightarrow T_{b}^{(N)}$ is surjective. In terms of $b, T^{(N)}$ is a morphism of affine varieties. Originally, we defined the determinantal variety as $Z_{r} \subset \mathbb{P}(\operatorname{Hom}(V, W))$; now we have to consider the affine version of this. Here, the cone is the affine cone.

Observations:
(1) $T^{(N)}$ is a morphism of affine varieties.
(2) Let $D=\operatorname{dim} S_{N}-1$. Then consider $Z_{D}$ the determinantal variety, which consists of matrices of rank $\leq D$. This is a closed projective variety; it might not be irreducible. Consider the affine cone

$$
C\left(Z_{D}\right) \subset \operatorname{Hom}\left(S_{N-d_{1}} \oplus \cdots \oplus S_{N-d_{r}}, S_{N}\right)
$$

is closed
(3) Therefore, $\mathbb{A}^{m}-U_{N}=\left(T^{(N)}\right)^{-1}\left(C\left(Z_{D}\right)\right)$

We saw an example that $\mathbb{A}^{1} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ might not be closed. (?)
Proposition 9.7. Let $\varphi: X^{r} \rightarrow Y^{s}$ be a morphism of (quasi-projective) varieties, $r \geq s$. Let $y \in \varphi\left(X^{r}\right)$, and let $W \subset \varphi^{-1}(y)$ be an irreducible component. (The fiber is closed, but not necessarily irreducible; choose any irreducible component.) Then $\operatorname{dim} W \geq r-s$.

Proof. By Noether normalization $Y^{s} \subset \bar{Y} \subset \mathbb{P}^{m} \rightarrow \mathbb{P}^{s}$

$$
X^{r} \rightarrow Y^{s} \rightarrow \mathbb{P}^{s}
$$

It is enough to assume $Y^{s}=\mathbb{P}^{s} \supset \mathbb{A}^{s}$, because $Y^{s} \rightarrow \mathbb{P}^{s}$ has finite fibers. We can assume that $Y=\mathbb{A}^{s}$, and $y=0$. Let $f_{i}=y_{i} \circ \varphi$ be the pullback of a coordinate function. Then

$$
\varphi^{-1}(0)=V\left(f_{1} \cdots f_{s}\right)
$$

It is enough to show: if $X \subset \mathbb{A}^{n}$ (some arbitrarily large space) is affine then every irreducible component of $X^{r} \cap V(f)$ has dimension $\geq r-1$. (When we're all done with the coordinate function $y_{i}$, use induction). Assume $S \not \subset V(f)$. We want to show that each irreducible component of $X \cap V(f)$ has dimension $r-1$. (It can't have dimension 1, because we proved earlier that any subvariety has dimension $<$ that of the original.) Replace $X, V(f)$ by their closures in $\mathbb{P}^{n} \supset \mathbb{A}^{n}$ (we're reducing to the projective situation.) Then $\overline{V(f)}=V(F)$, where $F$ is some homogeneous polynomial of some degree $d$.

Now consider the $d$-uple embedding; we can assume $\operatorname{deg} F=1$. (The hypersurface becomes a hyperplane.) So $V(F)=H$ is a hyperplane. ( $F$ is the homogenization of $f$, $\left.f^{\operatorname{deg} f} f\left(\frac{x_{1}}{x_{0}} \cdots \frac{x_{n}}{x_{0}}\right)\right)$. We want to say that each projective variety reduces the dimension by one. We know this is true if the projective variety is projective space. Let $O \in H$ with $O \notin X \cap H$. Consider the projection $P_{0}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n-1}$ (since we've used the $d$-uple embedding, $n$ might be different).

$$
\begin{gathered}
P_{0}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n-1} \\
\left(H \cong \mathbb{P}^{n-1} \longrightarrow P_{0}(H) \cong \mathbb{P}^{n-1}\right) \quad \text { where } X \longrightarrow P_{0}(X)
\end{gathered}
$$

Observation: $P_{0}(X \cap H)=P_{0}(X) \cap P_{0}(H)$. $\subset$ is obvious. To get the other direction, let $W \subset X \cap H$ be an irreducible component. $P_{0}(W)$ is irreducible in $P_{0}(X) \cap P_{0}(H)$. $\left(P_{0}(W)\right.$ is an irreducible component; need to check this.) By induction on $n-r$, $\operatorname{dim} P_{0}(W)=$ $\operatorname{dim} P_{0}(X)-1=\operatorname{dim} X-1$. But $\operatorname{dim} P_{0}(W)=\operatorname{dim} W$.

Next consider if $r=s$. From the proposition we know that the fiber has dimension to $\geq 0$; in this case we claim that the fiber has dimension zero. We know how many points are in the fiber.
Definition 9.8. Let $\varphi: X \rightarrow Y$ be a dominant morphism. We say that $\varphi$ is separable if $k(X)$ is separably generated over $\varphi^{*}(k(y))$ : it is a composition of a finite separable extension and a purely transcendental extension. ( $\varphi$ induces an inclusion from $k(Y) \rightarrow$ $k(X)$; regard this as a subfield.) This is not automatic: the field is not a perfect field.
Example 9.9. Let $F: X \rightarrow X$ be the Frobenius morphism. Then $F$ is dominant but not separable. For example, $X=\mathbb{A}^{1}$; if you look at $k(X) \rightarrow k(X)$ the power map $x \mapsto x^{p}$, this is not a separable field extension.
Remark 9.10. From now on, assume every variety is algebraic. You can reduce the general case to the affine case in the following.
Proposition 9.11. Let $\varphi: X^{r} \rightarrow Y^{r}$ be a separable morphism of varieties of the same dimension. Then there exists $Y_{0} \subset Y$ open such that $\varphi^{-1}(y)$ is finite, and

$$
\# \varphi^{-1}(y)=[k(X): k(Y)]
$$

for $y \in Y_{0}$. Each fiber has one point; but the extension is not degree 1 .

Let's start with a special case: $k(Y)=k(X)$. We want a Zariski open subset in $Y$ such that the fiber has just one point. We can assume $X, Y$ are affine (exercise). Let $Y \subset \mathbb{A}^{m}$, $X \subset \mathbb{A}^{n}$. Let $x_{1} \cdots x_{m}$ be coordinate functions on $\mathbb{A}^{m} . \varphi^{*}$ induces an isomorphism.

$$
\varphi^{*-1}\left(x_{i}\right)=\frac{f_{i}}{f_{0}} \text { for } f_{i} \in \mathcal{O}(Y)
$$

Consider $Y_{0}=Y-V\left(f_{0}\right)$. The preimage of $Y_{0}$ contains only one point. Then $\varphi^{-1}(y)=$ $\left(\frac{f_{1}(y)}{f_{0}(y)} \cdots \frac{f_{n}(y)}{f_{0}(y)}\right)$, for $y \in Y_{0}$ (there is no other choice of point).

## 10. October 11

PROPOSITION 10.1. If $f: X^{r} \rightarrow Y^{s}$ is a morphism (i.e. an $r$-dimensional variety to an $s$-dimensional one), then for any $y \in Y^{s}$, and component $W \subset \varphi^{-1}(y)$, $\operatorname{dim} W \geq r-s$.

We reduced to proving this for affine varieties. Moreover, we can reduce to proving the following claim. (Assume $X, Y$ affine; replace $Y$ by an affine space by Noether normalization. A map $x \rightarrow Y^{s}$ is given by regular functions. Given one regular function, use the $d$-uple embedding to make it into a hyperplane.)

Claim 10.2. If $X \subset \mathbb{P}^{n}$ projective, $\operatorname{dim} X=r, H$ a hyperplane. If $X \not \subset H$ then every component of $X \cap H$ has dimension $r-1$.

Use induction. $n=r$ is OK, because $X$ is all of $\mathbb{P}^{n}$ and $X \cap H$ is a hyperplane. In the case $r=n-1, X=V(f)$ is a hypersurface. So $X \cap H$ is a hypersurface defined by $f\left(x_{0}, \cdots, x_{n-1}, 0\right)$ (this polynomial might not be irreducible). Each component has dimension $n-2=r-1$.

Now suppose $n-r \geq 2$. Let $O \in H-X \cap H$ and consider the projection $P_{0}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n=1}$. Then last time we said

$$
P_{0}(X \cap H)=P_{0}(X) \cap P_{0}(H)
$$

Then $P_{0}(H-0)$ is a hyperplane in $\mathbb{P}^{n-1}$. Let $W \subset X$ be a component. If $P_{0}(W)$ is a component, of $P_{0}(X) \cap P_{0}(H-0)$ then we are done by induction. (By induction, $\operatorname{dim} W=\operatorname{dim} P_{0}(W)=r-1$.) The claim is that if we choose the projection in a good way, we can always choose $P_{0}(W)$ to be a component.

Claim 10.3. Fix $W \subset X \cap H$ to be a component. We can find $O \in H \backslash X \cap H$ such that $P_{0}(W)$ is a component of $P_{0}(X) \cap P_{0}(H-0)$.

Say $X \cap H=W \cup W^{*}$ where $W^{*}=W_{1} \cup \cdots \cup W_{m}$ is the union of other irreducible components. Then it's enough to show that there is some point $O$ such that $P_{0}\left(W^{*}\right) \not \subset$ $P_{0}\left(W^{*}\right)$. (We already know that $P_{0}(X \cap H)=P_{0}(W) \cup P_{0}\left(W_{1}\right) \cup \cdots \cup P_{0}\left(W_{m}\right)$.) Pick
$x \in W \backslash W^{*}$. Consider $\overline{P_{x}^{-1} P_{x}\left(W^{*}\right)}=C\left(P_{x}\left(W^{*}\right)\right)$. What is the dimension of $W^{*} ?$

$$
\operatorname{dim} W_{i} \leq \operatorname{dim} X-1=r-1
$$

Therefore, $\operatorname{dim} C\left(P_{x}\left(W_{i}\right)\right) \leq r<n-1=\operatorname{dim} H$. The cone is inside $H$, because $x$ and $W^{*}$ are. So we can find a point

$$
O \in H-C\left(P_{x}\left(W^{*}\right)\right)-W
$$

It's not inside the cone, nor inside $W$. Now do the projection $P_{O}: \mathbb{P}^{n} \rightarrow P^{n-1}$ and we find that

$$
P_{0}(X) \notin P_{0}\left(W^{*}\right)
$$

otherwise $P_{0}(x) \in P_{0}\left(W^{*}\right)$ would imply that $O$ is in the line joining $x$ and a point in $W^{*}$, which would imply that $O$ is in the cone $C\left(P_{x}\left(W^{*}\right)\right)$. This is a contradiction, so we are done.

What if $X$ and $Y$ have the same dimension?
Proposition 10.4. Let $\varphi: X^{r} \rightarrow Y^{r}$ be separable. Then there is some Zariski open $Y_{0} \subset Y$ such that $\# \varphi^{-1}(y)=\left[k\left(X^{r}\right): k\left(Y^{r}\right)\right]$ for all $y \in Y_{0}$.
REMARK 10.5. This is not true if the separability assumption is removed. For example, the Frobenius morphism from last time. Actually, the cardinality of the preimage is always equal to the separable degree, and if the field extension is separable, then separable degree $=$ degree.

ThEOREM 10.6 (Primitive element theorem). Let $L / K$ be a finite separable extension. Then $L$ is generated over $K$ by one element. In addition, if $\beta_{1} \cdots \beta_{r}$ form a set of generators, then the generator can be taken to be

$$
\alpha=\sum \lambda_{i} \beta_{i} \quad \lambda_{i} \in K
$$

Proof. First we can assume $X, Y$ affine. Now, we can assume

$$
k(X)=k(Y) p\left[f_{1}, f \in \mathcal{O}(X)\right.
$$

$\varphi^{*}: k(Y) \hookrightarrow k(X)$. Consider

$$
X \xrightarrow{\varphi} Y \times \mathbb{A}^{1} \xrightarrow{p^{1}} Y
$$

where $x \mapsto(\psi(x), f(x)) \mapsto \varphi(x)$ and $Z=\overline{\psi(X)}$. Then $k(Y) \subset k(Z) \xrightarrow{\sim} k(X)$, where the second map is an isomorphism because $k(Z)$ contains the preimage of the generator $f$ of $k(X)$. Apply the case from earlier: there is some $Z_{0} \subset Z$ open such that $\# \psi^{-1}(z)=1$ for $z \in Z_{0}$. Therefore, we can replace $X$ by $Z$ and assume $X \subset Y \times \mathbb{A}^{1}$. Let $P(t)$ be the minimal polynomial of $f$.

$$
P(t)=t^{n}+a_{1} t^{n-1}+\cdots+a_{n}
$$

for $a_{i} \in k(Y)$. The $a_{i}$ are rational functions, but if we replace $Y$ by the open subset $Y_{0}$, we can assume that they are regular functions. $P(f)=0$; because it is separable (?) $P(t)$ and $P^{\prime}(t)$ do not have common zeroes. Let $W \subset Y \times \mathbb{A}^{1}$ be defined by

$$
W=\left\{(y, t): \sum a_{i}(y) t^{n-i}=0\right\}
$$

$X \subset W$. But what if there are other things in $W$ ? Call these $X^{*}$, so $W=X \cup X^{*}$.

We claim that $\overline{\varphi\left(X^{*}\right)} \subsetneq Y$. (So the image of the other components $X^{*}$ doesn't take over the image.) That is, there is some $Y_{1} \subset Y$ open such that $W \cap \varphi^{-1}(Y)=X \cap \varphi^{-1}\left(Y_{1}\right)$. The picture is


In fact, let $f_{i} \in k[y, t]$ be the generators of $I(X)$


There is some $b_{0} i(y) \in \mathcal{O}(y)$ such that $b_{i}(y) f_{i}(y, t) \subset \sum c_{i}(y, t) p(t)+I(Y)$.

$$
Y_{1}=Y-\left\{\prod b_{i}(y)=0\right\}
$$

If $(y, t) \in W \Longleftrightarrow \sum a_{i}(y, t) t^{n-i}=0$, then $b_{i}(y) f_{i}(y, t)=0 \Rightarrow(y, t) \in X$, because $b_{i} \neq 0$ (so $f$ has to be zero there). Therefore, the image must land inside the closed subset defined by $\prod b_{i}(y)$.

Note that we can replace $X$ and $Y$ by open subsets, because the complement would have lower dimension.

Summary: We know that $k(X)=k(Y)[t] / p(t)$. This is basically saying that there is some open subset $Y_{1} \subset Y$ such that this works on the level of coordinate rings:

$$
\mathcal{O}\left(\varphi^{-1}\left(Y_{1}\right) \cap X\right)=\mathcal{O}\left(Y_{1}\right)[t] / p(t)
$$

Something (?) on the right is the same as $\mathbb{P}\left(W \cap \varphi^{-1}\left(Y_{1}\right)\right)$.

Now replace $Y$ by $Y_{1}$. We can assume

$$
\mathcal{O}(X)=\mathcal{O}(Y)[t] / p(t)
$$

In other words,

$$
X=\left\{(y, t): Y \times \mathbb{A}^{1}: \sum a_{i}(y) t^{n-i}=0\right\}
$$

For fixed $y$, this is a degree $n$ polynomial; it has $n$ solutions. But all the roots might not be distinct. $\# \varphi^{-1}(y)$ is just the number of roots of the polynomial $\sum a_{i}(y) t^{n-1}=0 . p(t)$ and $p^{\prime}(t)$ do not have common zeroes in $k(y)[t]$. This implies that there exist $a(t), b(t)$ in $k(y)[t]$ such that $a(t) p(t)+b(t) p^{\prime}(t)=1$. Eliminate the denominators, so we can assume

$$
\widetilde{a}(t) p(t)+\widetilde{b}(t) p^{\prime}(t)=c(y)
$$

where $\widetilde{a}$ and $\widetilde{b}$ are in $\mathcal{O}(y)[t]$ and $0 \neq c \in \mathcal{O}(y)$. Over

$$
Y_{0}=\{y \in Y: c(y) \neq 0\}
$$

$p(t)$ and $p^{\prime}(t)$ do not have common zeroes. So for $y \in Y_{0}$, the roots of $\sum a_{i} t^{n-i}$ are distinct. This implies $\# \varphi^{-1}(y)=n$, where $n=[k(X): k(Y)]$.
10.1. Separable morphisms. Let $\varphi: X \rightarrow Y$ be a morphism, $\varphi(X)=Y$. This induces a map of local rings

$$
\varphi^{*}: \mathcal{O}_{Y, y} \rightarrow \mathcal{O}_{X, x}
$$

This pulls back a function vanishing on $\mathfrak{m}_{Y, y}$ to one vanishing at $\mathfrak{m}_{X, x}$. In particular, $\varphi$ induces a map $d \varphi_{x}$ of tangent spaces:


Definition 10.7. The morphism $\varphi$ is smooth at $x$ if
(1) $x$ (respectively $\varphi(x)$ ) is smooth in $X$ (respectively in $Y$ )
(2) $d \varphi_{x}: T_{x} X \rightarrow T_{y} Y$ is surjective

Proposition 10.8. Let $\varphi: X^{r} \rightarrow Y^{s}$ be a dominant morphism. Then the following are equivalent:
(1) $\varphi$ is separable
(2) there is some $X_{0} \subset X$ open such that $\varphi$ is smooth at $x \in X_{0}$
(3) there is some point $x \in X$ such that $\varphi$ is smooth at $x$

If $\varphi$ is the Frobenius morphism, then there is no point at which this is smooth.

Proof. We can assume that $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ are affine.

so we can just assume


Let $g_{1} \cdots g_{p} \in I(Y)$ be generators. $\varphi^{*}\left(g_{1}\right) \cdots \varphi^{*}\left(g_{p}\right), f_{1}, \cdots, f_{q}$ are generators of $I(X)$. For $x \in X$ and $y \in Y$

$$
T_{x} X=\left\{\left(\xi_{1} \cdots \xi_{n+m}\right) \in k^{n+m}: \sum \frac{\partial g_{i}}{\partial y_{j}} \xi_{j+n}=0, \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} \xi_{j}+\sum_{j=1}^{m} \frac{\partial f_{i}}{\partial y_{j}} \xi_{j+n}=0\right\}
$$

This is the definition we gave at the beginning of this course. There is a projection of this to

$$
T_{y} Y=\left\{\left(0, \cdots, 0, \xi_{n+1} \cdots \xi_{n+m}\right): \sum \frac{\partial g_{i}}{\partial y_{j}} \xi_{j+n}=0\right\}
$$

The kernel of this projection $d \varphi_{x}$ is

$$
\left\{\left(\xi_{1} \cdots \xi_{n}\right): \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} \xi_{j}=0\right\}
$$

This is just the kernel of the matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}\right)$. Now $\varphi$ is smooth at $x$ iff $\operatorname{dim} \operatorname{ker} d \varphi_{x}=r-s$. Assume $X$ and $Y$ are smooth to prove the proposition. The dimension of the kernel is always $\geq r-s$. (A linear map from $r$-dimensional space to $s$-dimensional space has kernel with dimension $\geq r-s$.) This is equivalent to having $r k \frac{\partial f_{j}}{\partial x_{i}} \geq n-(r-s)$. This determines an open subset of $X$. If this is nonempty then the second condition is satisfied. This shows $(2) \Longleftrightarrow(3)$. Next time: $(1) \Longleftrightarrow(2)$.

## 11. October 13

From last time, we were trying to prove the following proposition:
Proposition 11.1. Let $\varphi: X \rightarrow Y$ be a dominant morphism. Then TFAE:
(1) $\varphi$ is separable
(2) there exists $X_{0} \subset X$ open such that $\varphi$ is smooth for every point $x \in X_{0}$
(3) there is some $x \in X$ such that $\varphi$ is smooth at $x$

Assume $X, Y$ affine. We have already shown $(2) \Longleftrightarrow$ (3). By replacing $X$ by its graph, we can assume $X \subset \mathbb{A}^{n} \times \mathbb{A}^{m}$. Also assume that $X$ and $Y$ are smooth. Then the map $\varphi$ is just

$\left(g_{1} \cdots g_{p}\right)=I(Y)$. We can choose $f_{i}$ such that $\left(f_{1} \cdots f_{q}, \varphi^{*} g_{1} \cdots \varphi^{*} g_{p}\right)=I(X)$. Then the tangent space is

$$
T_{x} X=\left\{\left(\xi_{1} \cdots \xi_{n}, \eta_{1} \cdots \eta_{m}\right):\left(\begin{array}{cc}
0 & g_{y} \\
f_{x} & f_{y}
\end{array}\right)\binom{\xi}{\eta}=0\right\}
$$

Via $d \varphi_{x}$ this maps to $T_{y} Y=\left\{\left(\eta_{1} \cdots \eta_{m}\right):\left(\frac{\partial g}{\partial y}\right) \eta=0\right\}$ So the kernel of $d \varphi_{x}$ is $\left\{\left(\xi_{1} \cdots \xi_{n}\right)\right.$ : $\left.\left(\frac{\delta f}{\delta x}\right) \xi=0\right\} \varphi$ is smooth at $x$ iff dim $\operatorname{ker}\left(d \varphi_{x}\right) \leq r-s$. Equivalently, $r k\left(\frac{\partial f}{\partial x}\right) \geq n-r+s$.

$$
\begin{gathered}
\left\{p \in X: r k\left(\frac{\partial f}{\partial x}\right)(x) \geq n-r+s\right\} \subset X \\
46
\end{gathered}
$$

is open. (We know that the set of smooth points is open.) It is nonempty, so there is an open subset where this is true. This shows $(2) \Longleftrightarrow(3)$.

By the same trick used to get $\operatorname{Der}_{k}(k(X), k(X))$ :

$$
\begin{aligned}
\operatorname{Der}_{k(Y)}(k(X), k(X)) & \sim \operatorname{Der}_{k(Y)}\left(k(X) \otimes_{\mathcal{O}(X)} \mathcal{O}(Y), k(X)\right) \\
& \cong\left\{D \in \operatorname{Der}_{k(Y)}\left(k(Y)\left[x_{1} \cdots x_{n}\right], k(X)\right): D f_{i}=0\right\} \\
& =\left\{\left(\xi_{1} \cdots \xi_{n}\right) \in k(X)^{n}: \sum \xi_{i} \frac{\delta f_{i}}{\partial x_{j}}\right\}
\end{aligned}
$$

We used:

$$
k(Y) \otimes \mathcal{O}(X) \cong k(Y)\left[x_{1} \cdots x_{n}\right] /\left(f_{1} \cdots f_{q}\right)
$$

where $I(Y)$ is generated by the $f_{i}$. So

$$
\operatorname{dim} D e r_{k(Y)}(k(X), k(X))=n-r k_{k(X)}\left(\frac{\partial f}{\partial x}\right)
$$

By the same argument as used in the smoothness proof, there is some $X_{0} \subset X$ open such that

$$
r k_{k(X)} \frac{\partial f}{\partial x}=r k_{k}\left(\frac{\partial f}{\partial x}(x)\right)
$$

for all $x \in X_{0}$. We can multiply this by a matrix to eliminate denominators.

We want to show $(1) \Longrightarrow(2)$. Assume $k(X) / k(Y)$ is separable. By a fact of commutative algebra, this is equivalent to

$$
\operatorname{dim}_{k(X)} \operatorname{Der}_{k(Y)}(k(X), k(X))=r-s
$$

where $r=\operatorname{dim} X$ and $s=\operatorname{dim} Y$. If $L / K$ is a finitely generated field extension, then $L / K$ is separably generated $\operatorname{iff} \operatorname{dim}_{L} \operatorname{Der}_{k}(L, L)=t r . d \cdot L / K$. We used this earlier with $K=k$ and $L=k(X)$. Now we use $K=k(Y)$ and $L=k(X)$. So there's an open subset where the rank of the matrix is $n-r+s$. So the points here are smooth.

REMARK 11.2. If $\varphi: X \rightarrow Y$ is smooth over $X_{0} \subset X$, then $\varphi$ is dominant. (So the assumption of dominant-ness in the proposition is not necessary.)

$$
\begin{gathered}
\varphi: X \xrightarrow{\psi} \overline{\varphi(X)} \stackrel{i}{\hookrightarrow} Y \\
d \varphi_{x}-d i_{\psi(X)} \circ d \psi_{x}
\end{gathered}
$$

$\psi(X)$ contains an open smooth subset $Z$ of $\varphi(X)$. This is possible because the smooth points are an open sets, and the image contains a smooth subset. (Open sets are dense.) $Z=\varphi(X)$. I think we're using the homework: the image of a constructible set contains an open set. We get a factorization

$$
d \varphi_{x}: T_{x} X \rightarrow T_{z} Z \hookrightarrow T_{z} Y
$$

The second map can't be an isomorphism, because the dimension is greater on the right. $d \varphi_{x}$ is not surjective; contradiction.

Corollary 11.3 (Sard's lemma for varieties / Generic smoothness). Let $\operatorname{char}(k)=0$, $\varphi: X \rightarrow Y$ dominant. Then there is some nonempty Zariski-open subset $Y_{0} \subset Y$ such
that

$$
\left.\varphi\right|_{\varphi^{-1}\left(Y_{0}\right)} \varphi^{-1}\left(Y_{0}\right)-\operatorname{Sing}(X) \rightarrow Y
$$

is smooth. (We have to exclude the singular points of $X$.) (This is wrong for the Frobenius morphism in characteristic p; it is dominant but nowhere smooth.)

Proof. Assume $X$ and $Y$ are smooth. (We have already excluded the singular points explicitly, so assume it was this way to start with.) Let $X_{0} \subset X$ be the open subset such that $\varphi$ is smooth at $x \in X_{0} . X_{0}$ is always nonempty, because we are in characteristic zero: any dominant map is separable, since any field extension is separable. Let $Z=X \backslash X_{0}$. We just need to show that $\psi=\left.\varphi\right|_{Z}: Z \rightarrow Y$ is not dominant. The image of $Z$ lies in a proper closed subset; the complement of this subset is going to be $Y_{0}$. If not, $\psi: Z \rightarrow Y$ is dominant, and there exists some $Z_{0} \subset Z$ open such that $\left.\psi\right|_{Z_{0}}: Z_{0} \rightarrow Y$ is smooth. (Again, dominant morphisms are separable.)

$$
Z \xrightarrow{i} X \xrightarrow{\varphi} Y
$$

where the composition is $\psi$. Choose $z \in Z$;

$$
d \psi_{z}: T_{z} Z \rightarrow T_{\psi(Z)}(Y)
$$

is surjective. This factors through $T_{z} X$ via $d \psi_{z}: T_{z} X \rightarrow T_{\psi(Z)} Y$; but $d \psi$ should not be surjective. By definition, this is the point where the morphism is not smooth.
Proposition 11.4. Let $\varphi: X \rightarrow Y$ be smooth at $x \in X$. Then there exists a unique component $Z$ of $\varphi^{-1}(\varphi(X))$ passing through $x$. In addition, $Z$ is smooth at $x$ and $\operatorname{dim} Z=$ $\operatorname{dim} X-\operatorname{dim} Y$.

For example, consider $X=(x y=t) \subset \mathbb{A}^{3} ;$ this maps to $\mathbb{A}^{1}$ by sending $(x, y, t) \mapsto x$. Away from the axis, the fibers are hyperbolas; at the origin, the image is the union of two coordinate axes, and is not smooth.

Proof. Again, assume $X$ and $Y$ are two smooth varieties that are affine. Assume $X \subset \mathbb{A}^{n} \times \mathbb{A}^{m}$ and $Y \subset \mathbb{A}^{m}$. (This is a statement about local things.) Choose $g_{1} \cdots g_{m-s} \in$ $I(Y)$ with independent linear terms. ( $X$ and $Y$ have dimensions $r$ and $s$, respectively.) Let $f_{1}, \cdots, f_{n-r+s} \in I(X)$ such that $f_{1} \cdots f_{n-r+s}, g_{1}, \cdots, g_{m-s}$ have independent linear terms. Because it's smooth at the point, $\operatorname{dim} \operatorname{ker} d \varphi_{0}=r-s$ so

$$
r k \frac{\partial f}{\partial x}(0,0)=n-r+s
$$

and so $f_{1}(x, 0), \cdots, f_{n-r+s}(x-0)$ have independent linear terms. Consider the algebraic set $V\left(f_{1} \cdots f_{n-r+s}, g_{1}, \cdots, g_{m-s}\right)=X \cup X^{\prime}$ where $0 \notin X^{\prime}$ (this was from. . . lecture 3-ish. . .) Also consider

$$
V\left(f_{1} \cdots f_{n 0 r_{s}} g_{1} \cdots g_{m-s}, y_{1} \cdots y_{m}\right)-p_{2}^{-1}(0) \cap\left(X \cup X^{\prime}\right)=\varphi^{-1}(0) \cup\left(p_{2}^{-1}(0) \cap X^{\prime}\right) \not \supset 0
$$

But the set on the left is

$$
\mathbb{A}^{n} \supset V\left(f_{1}(x, 0) \cdots, f_{n-r+s}(x, 0)\right)
$$

Think of this $\mathbb{A}^{n}$ as $\mathbb{A}^{n} \times\{0\}$; this set is exactly $Z \cup Z^{\prime}$ and $0 \notin Z^{\prime}$. Comparing the two sides, $Z \subset \varphi^{-1}(0)$ is the unique component passing through zero. $Z$ is smooth at
zero, and so the dimension is the number of equations necessary to define it, which is $n-(n-r+s)=r-s$.

Theorem 11.5 (Zariski's main theorem, smooth case). Let $\varphi: X \rightarrow Y$ be a birational morphism of quasi-projective varieties. Assume $Y$ is smooth. Let $Y_{0}=\left\{y \in Y: \# \varphi^{-1}(y)=\right.$ 1\} (We know that there is an open subset of $Y$ inside $Y_{0}$.)
(1) $\left.\varphi\right|_{\varphi^{-1}\left(y_{0}\right)}: \varphi^{-1}\left(y_{0}\right) \rightarrow Y_{0}$ is an isomorphism
(2) For any $y \in Y \backslash Y_{0}$ and a point $x \in \varphi^{-1}(Y)$ there exists a subvariety $E \subset X$ of dimension $r-1$ passing through $x$, and $\operatorname{dim} \overline{\varphi(E)} \leq r-2$. In particular, for any $y \in Y \backslash Y_{0}$, there exists a component in $\varphi^{-1}(Y)$ of positive dimension.

Such $E$ is called the exceptional divisor. (This is a generalization of the exceptional divisor associated with the blowup.)
(AKA: If the preimage is not one point, then the preimage is a component of positive dimension.) The assumption that $Y$ is smooth is necessary: consider the map of $\mathbb{A}^{1}$ to the cuspidal curve $y^{2}-x_{3}$. Every point has a unique preimage, but it is not an isomorphism.

Proof. Let $x \in X$ and $y \in Y$. $\varphi$ induces a morphism of local rings

$$
\varphi^{*}: \mathcal{O}_{Y, y} \hookrightarrow \mathcal{O}_{X, x}
$$

that reduces to a morphism $k(Y) \rightarrow k(X)$. There are two cases. Let

$$
\begin{gathered}
Y_{1}=\left\{y \in Y: \exists x \in \varphi^{-1}(y), \varphi^{*}: \mathcal{O}_{Y, y} \xrightarrow{\sim} \mathcal{O}_{X, x}\right\} \\
Y_{2}=\left\{y \in Y: \exists x \in \varphi^{-1}(y), \varphi^{*}: \mathcal{O}_{Y, y} \subsetneq \mathcal{O}_{X, x} \forall x \in \varphi^{-1}(Y)\right\}
\end{gathered}
$$

Claim 11.6. $Y_{1} \subset Y_{0}$ and $Y_{2} \subset Y \backslash Y_{0}$. (All of this implies $Y_{1}=Y_{0}, Y_{2}=Y \backslash Y_{0}$.)

Let $y \in Y_{1}$. We have $\mathcal{O}_{Y, y} \cong \mathcal{O}_{X, x}$ for some point $x \in X$. If $x^{\prime} \in \varphi^{-1}(Y)$ is another point, then

$$
\mathcal{O}_{x, x} \cong \mathcal{O}_{Y, y} \subset \mathcal{O}_{X, x^{\prime}}
$$

The claim follows from the following lemma:
Lemma 11.7. Let $X$ be quasi-projective, $x$ and $x^{\prime}$ two points such that $\mathcal{O}_{X, x} \subset \mathcal{O}_{X, x^{\prime}} \subset$ $k(X)$. Then $x=x^{\prime}$.

By some old homework, if there is an isomorphism between local rings, then there is an isomorphism on open subsets.

Proof of lemma. Assume $X \subset \mathbb{P}^{n}$ is projective: take its closure. Choose some appropriate hyperplane that does not pass through $x$ and $x^{\prime}$; we can assume that $X$ is affine. (For quasi-projective varieties, every two points are contained in one affine subvariety.) Now there is a 1-1 correspondence between points of $X$ and maximal ideals
of $\mathcal{O}(X)$. If one is contained in the other, then there is an inclusion of maximal ideals; but since they're maximal ideals, then they are the same. That is,

$$
\mathcal{O}_{X, x} \subset \mathcal{O}_{X,{ }^{\prime} x} \Longrightarrow \mathfrak{m}_{x} \supset \mathfrak{m}_{x^{\prime}}
$$

$A_{\mathfrak{m}_{x}} \subset k(A) \supset A_{m_{x}^{\prime}}$.

We want to show that $Y_{2} \subset Y \backslash Y_{0}$. Take $y \in Y_{2}$, and consider the preimage. Let $f \in \mathcal{O}_{X, x}$ be such that $f$ is in $\mathcal{O}_{Y, y}$ : that is, $f=\varphi^{*}\left(\frac{a}{b}\right)$ for $a, b \in \mathcal{O}_{Y, y}$. (We're using the fact it's birational.) $b(y)=0$. We need the following theorem:

Theorem 11.8. If $y \in Y$ is smooth, $\mathcal{O}_{Y, y}$ is a unique factorization domain. (Using smoothness!)

Proof: commutative algebra.
Now, because $\mathcal{O}_{Y, y}$ is a UFD, we can assume that $a, b$ are coprime in $\mathcal{O}_{Y, y}$. Let $b=\beta b^{\prime}$ where $\beta$ is prime. Now $\mathbb{P}=\mathcal{O}(Y) \cap \beta \mathcal{O}_{Y, y}$ is a prime ideal. Let $E$ be a component of $V\left(\varphi^{*} \beta\right) \cap X$. The set of zeroes of this contain the point $x$. $\beta$ is prime, so it will vanish at $y$. So $\varphi^{*} \beta$ will vanish at $x$.
$\operatorname{dim} E=r-1$ (we proved before that a component is cut out by one equation, as it has dimension $r-1)$. $\varphi^{*}(a)=f \varphi^{( }(b)=f \varphi^{*}(\beta) \varphi^{*}\left(b_{1}\right)$ which implies that $\varphi^{*}(a)$ vanishes on $E$. This implies $a, \beta$ vanish on $\overline{\varphi(E)}$. But $a, b$ coprime implies $a \notin \mathfrak{P}$. Therefore, $\overline{\varphi(E)} \subsetneq V(\mathfrak{P}) \subsetneq Y$ and so $\operatorname{dim} \overline{\varphi(E)} \leq r-2$.
$y \in Y_{2}$ imlies $\operatorname{dim} \varphi^{-1}(y) \geq 0$ implies $y \in Y \backslash Y_{0}$.

## 12. October 18

Theorem 12.1 (Zariski main theorem, smooth case). Let $\varphi: X \rightarrow Y$ be birational, with $Y$ smooth. There is some $Y_{0} \subset Y$ open and $\varphi: \varphi^{-1}\left(Y_{0}\right) \xrightarrow{\sim} Y_{0}$ and for every $y \in Y \backslash Y_{0}$, there exists a subvariety $E$ of dimension $r-1$ through $x \in \varphi^{-1}(y)$ such that $\operatorname{dim} \varphi(E) \leq r-2$

$$
\varphi: E \rightarrow \overline{\varphi(E)} \Longrightarrow \operatorname{dim} \varphi^{-1}(y) \geq 1
$$

Recall the blowup of the point in the plane: $V(x u-y v)=Z \subset \mathbb{A}^{2} \times \mathbb{P}^{1} . E$ is the exceptional divisor. Choose $O=(0,0)$ and $P=(0,0,0,1) \in E$. (There is a map of local rings $\mathcal{O}_{Z, p} \hookleftarrow \mathcal{O}_{\mathbb{A}^{1}, O}: \varphi^{*}$ that is not an isomorphism.) Setting $v=0$, we get the subset $V(x u-y) . u \in \mathcal{O}_{Z, p}$ and you can write $u=\varphi^{*}\left(\frac{y}{x}\right)$ so in the proof $x$ is an irreducible element in the local ring. Choose $E=V\left(\varphi^{*} x\right) \subset Z-\{v=0\}$ defined by $x=0$. $E$ is defined by the pair $x u-y=0$ and $x=0$ so $x=y=0$; this is exactly the exceptional divisor. $x$ determines a variety of codimension 1 on the base copy of $\mathbb{A}^{2}$ : this is what we
denoted $V(\mathfrak{P})$. Since $y$ does not vanish, the image of $E$ is not the whole $y$ axis: it is just one point. The image of $Z-\{v=0\}$ is $\mathbb{A}^{2}-\{x=0\} \cup\{(0,0)\}$ (this is constructible: not open or closed, or locally closed).

In the proof, we used the result that the local ring at a smooth point is a UFD. (Not proven here; final project?)
12.1. Divisors. Let $X$ be a smooth algebraic variety.

Lemma 12.2. Let $X$ be affine, and $x \in X$. Let $f \in \mathcal{O}_{X, x}$ be an irreducible element ( $a$ prime element, and in particular $f \mathcal{O}_{X, x}$ is a prime ideal). $f \mathcal{O}_{X, x} \cap \mathcal{O}(X)=\mathfrak{P}$ is prime, and $X^{\prime}=V(\mathfrak{P})$ is a subvariety of dimension $r-1$ containing $x$.

Conversely, if $X^{\prime} \subset X$ is a subvariety of dimension $r-1$ and $x \in X^{\prime}$ then there is some irreducible element $f \in \mathcal{O}_{X, x}$ such that $X^{\prime}=V(\mathfrak{P})$ and $\mathfrak{P}=f \mathcal{O}_{X, x} \cap \mathcal{O}(X)$. In other words, $I\left(X^{\prime}\right) \cdot \mathcal{O}(X, x)=f \cdot \mathcal{O}(X, x)$.

Proof. By shrinking the affine variety a little bit, I can assume that $f \in \mathcal{O}(X)$. There exists some open $U \subset X$ such that $V(f) \cap U=V(\mathfrak{P}) \cap U$. (Like in lecture $3, f$ generates this locally (but maybe not globally).) Each irreducible component of this has dimension $r-1$ (it's given by one function).

Conversely, choose $f \in I\left(X^{\prime}\right)$. Then $f$ is not a unit in $\mathcal{O}_{X, x}$ (because it vanishes at a point). Because it is a UFD, you can factor $f$ into prime divisors, and then assume that $f$ is really a prime element. $X^{\prime} \subset V(f)$ but they have the same dimension, so it is exactly one component of $V(f)$. So $X^{\prime}=V(\mathfrak{P})$.

Definition 12.3. Let $X^{\prime} \subset X^{r}$ of dimension $r-1$. Let $x \in X$;. An element $f \in \mathcal{O}_{X, x}$ is called a local equation of $X^{\prime}$ at $x$ if $f \cdot \mathcal{O}_{X, x}=I\left(X^{\prime}\right) \cdot \mathcal{O}_{X, x}$.

We showed that every smooth variety of dimension $r-1$ has a local equation. Let $X$ be a smooth algebraic variety. The divisor group $\operatorname{Div}(X)$ is the free abelian group generated by the codimension 1 subvarieties. (The codimension 1 subvarieties form a set; consider the free abelian group over this set.) For example, elements in $\operatorname{Div}(X)$ can be written as a formal sum

$$
\sum_{\substack{Z_{i} \subset X \\ Z_{i} \text { codim. } 1}} n_{i} Z_{i}
$$

where all but finitely many of the $n_{i}$ are zero.
Definition-lemma 12.4. There exists a natural group homomorphism $k(X)^{x} \rightarrow \operatorname{Div}(X)$ taking $f \mapsto(f)$.

Construction. Write $(f)=\sum n_{Z} Z$ and we need to define $n_{Z} \in \mathbb{Z}$. Choose any point $x \in Z$. In $\mathcal{O}_{X, x}$ choose a local equation $f_{Z}$. Then we can write

$$
f=\frac{g}{h} f_{Z}^{r} \quad g, h \in \mathcal{O}_{X, x} \text { and } g h, f_{Z} \text { are coprime }
$$

Define $\operatorname{ord}_{Z, x}(f)=r$ for $r \in \mathbb{Z}$. (This is independent of the choice of local equation, because these differ by a unit. Why? If $f_{1}$ and $f_{2}$ are two, then they divide each other, because look at where they vanish. Up to multiplication by a constant, primes are in 1-1 correspondence with codimension-1 subvarieties.) Therefore, this is well-defined. We claim that this does not depend on the choice of $x$ : more precisely, $x \mapsto \operatorname{ord}_{Z, x}(f)$ is locally constant on $Z$ and is therefore independent of the choice of $x$. ( $Z$ is irreducible, hence connected, so we can drop the "locally" in the "locally constant.")

In a neighborhood of $x$ in $X, U \cap Z=V\left(f_{Z}\right) \cap U$ so $f_{Z}$ is a local equation for every point $y \in Z$. Because $f=\frac{g}{h} f_{Z}^{r}$ (assume both $g$ and $h$ are regular functions on some open set $U)$, assume we have moved $x$ to any point $y \in U$. Also $\left(g h, f_{Z}\right)=1$ because if $f_{Z} \mid g h$ then this would vanish on $Z . \operatorname{ord}_{Z, y}(f)=r=\operatorname{ord}_{Z, x}(f)$ for all $y \in U \cap Z$.

## Claim 12.5.

- $\operatorname{ord}_{Z}(f g)=\operatorname{ord}_{Z}(f)+\operatorname{ord}_{Z}(g)$
- $\operatorname{ord}_{Z}(f+g) \geq \min \left\{\operatorname{ord}_{Z}(f), \operatorname{ord}_{Z}(g)\right\}$ if $f+g \neq 0$

Proof. Exercise.
Claim 12.6. Fix $f \in k(X)^{x}$ (nonzero rational function); then for all but finitely many $Z$, $\operatorname{ord}_{Z}(f)=0$.

Proof. We can assume that $X$ is affine: there are only finitely many closed subvarieties of codimension 1 in the complement; so we can ignore them. Almost all varieties of codimension 1 intersect this open affine. $f=\frac{g}{h}$ for $g, h \in \mathcal{O}(X) . \operatorname{ord}_{Z}(f) \neq 0 \Longrightarrow Z \subset$ $V(g h)$ but the latter has only finitely many irreducible components.
$\operatorname{ord}_{Z}(f)$ measures the vanishing order of $f$ on this variety. If it's a rational function, it measures the order of the pole on the variety.

Finally, we can define $n_{Z}=\operatorname{ord}_{Z}(f)$. So define

$$
(f)=\sum \operatorname{ord}_{Z}(f) \cdot Z
$$

If it's a function over $\mathbb{C}$ there is a similar situation. Around the origin, you can always write $g=z^{r}$; this is the same $r$ as defined above.

DEFINITION 12.7.

$$
\operatorname{Div}^{0}(X)=\operatorname{Im}\left(k(X)^{\times} \rightarrow \operatorname{Div}(X)\right)
$$

is called the group of principal divisors.

$$
\operatorname{Pic}(X)=\operatorname{Cl}(X):=\operatorname{Div}(X) / \operatorname{Div}^{0}(X)
$$

is called the Picard group, or divisor class group, of $X$.

Example 12.8. If $X=\mathbb{A}^{n}$, then $\operatorname{Pic}(X)=0$. This is implied by the following fact: every subvariety of codimension 1 is a hypersurface (we proved this a while ago). So each $Z$ is a principal divisor, and every divisor is in the image of this map.

If $X$ is affine, then $\mathcal{O}(X)$ is a UFD iff $\operatorname{Pic}(X)=0$. Equivalently, a ring of integers is a UFD iff its class group is zero. Assume that $\mathcal{O}(X)$ is a UFD. We need to show that every subvariety of codimension 1 is defined by one equation. Use the trick from before: let $Z \subset X$ be codimension 1. $f \in I(Z)$ is not a unit, because it vanishes somewhere. Factor $f$ into prime divisors; we can assume that $f$ is irreducible. We know $Z \subset V(f)$ but because $f$ is irreducible, $f$ is prime and $(f)$ is a prime ideal. $V(f)$ is an irreducible subset, and it has the same dimension of $Z$; therefore, $Z=V(f)$ (it's a component, and $V(f)$ is connected since it's irreducible).

Conversely, assume that $\operatorname{Pic}(X)=0$; we want to show that $\mathcal{O}(X)$ is a UFD. So every subvariety is a principal divisor: $Z=(f) . f \in k(X)$. This implies that $\operatorname{ord}_{Z^{\prime}} f=0$ if $Z^{\prime} \neq Z$ and 1 if $Z^{\prime}=Z$. But in fact, $f \in \mathcal{O}(X)$ : it is enough to show that $f \in$ $\bigcap_{x \in X} \mathcal{O}_{X, x}=\mathcal{O}(X)$. Every $f$ can be written $\frac{g}{h}$; factor $g$ and $h$ into primes. The order of $f$ is $\geq 0$ for any $Z$, the denominator does not contain a prime factor. This shows that $h$ will not contain a prime element.

We are trying to show that $\mathcal{O}(X)$ is a UFD. If another function $g \in \mathcal{O}(X)$ is irreducible, then $V(g)$ is irreducible. So $V(g)$ is irreducible. Why? If $Z \subset V(g)$ then we know that $Z=V(f)$ for some $f$, which implies that $f \mid g$. But $g$ is irreducible, so $f$ and $g$ differ by a unit. Therefore, this is a UFD. If $g \mid f h$ then $V(g) \subset V(f h)=V(f) \cap V(h)$. Because $V(g)$ is irreducible, it is contained in one of the components. This implies that $g \mid f$ or $g \mid h$.

Example 12.9. Say $Z=\mathbb{P}^{n}$. We have the degree map $\operatorname{deg}: \operatorname{Div}(X) \rightarrow \mathbb{Z}$, where $Z=V(f) \mapsto \operatorname{deg}(f):=\operatorname{deg}(Z)$. The map is surjective, because you can take a hyperplane, that maps to 1. The group $\operatorname{Div}^{0}(X)$ of principal divisors is in the kernel of the degree map: these contain ratios $\frac{f}{g}$ where $f, g$ have the same degree (these are homogeneous polynomials). If $\frac{f_{1}^{n_{1} \ldots f_{r}^{n_{r}}}}{g_{1}^{n_{1}} \ldots g_{s}^{m_{s}}}$ where $f_{i}$ and $g_{i}$ are irreducible. The divisor associated to this rational function is exactly $\sum n_{i} V\left(f_{i}\right)-\sum m_{i} V\left(g_{i}\right)$. These define a subvariety of codimension 1 . This goes to zero, because the degrees of the numerator and denominator are the same. We know that

$$
k(X)^{\times} \rightarrow \operatorname{Div}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z} \rightarrow 0
$$

is exact. The kernel is exactly the image of the principal divisors. If we have a constant function, the associated divisor is zero. Let's complete the exact sequence:

$$
1 \rightarrow k^{\times} \rightarrow k(X)^{\times} \rightarrow \underset{53}{\operatorname{Div}(X)} \xrightarrow{\operatorname{deg}} \mathbb{Z} \rightarrow 0
$$

If I have a divisor that maps to zero in $\mathbb{Z}$ I want to show that it is principal. Let $D=\sum n_{i} Z_{i}$ such that $\operatorname{deg} D=0$. Each $Z_{i}$ can be written as some $V\left(f_{i}\right)$. We can rewrite

$$
\prod f_{i}^{n_{i}}=\frac{\prod_{n_{i}>0} f_{i}^{n_{i}}}{\prod_{n_{j}<0} f_{j}^{-n_{j}}}=\frac{f}{g}
$$

where $D=\left(\frac{f}{g}\right)$. All the things that were not really explained are an exercise.
Proposition 12.10.

$$
\operatorname{deg}: \operatorname{Pic}\left(\mathbb{P}^{n}\right) \xrightarrow{\sim} \mathbb{Z}
$$

and $H \mapsto 1$ where $H$ is the hyperplane.

## 13. October 20

Definition 13.1. A prime divisor is $D=Z$ where $Z$ is a subvariety of codimension one. (i.e. a generator.)

An effective divisor has the form $D=\sum n_{i} Z_{i}$ with all coefficients positive.
Proposition 13.2. Let $f \in k(X)^{\times}$. Then $(f)$ is effective iff $f \in \mathcal{O}(X)$.

We proved this last time. Assume $X$ is affine. It's in the local ring if it's in every coordinate ting. Then $\operatorname{ord}_{Z} f \geq 0$ implies $f \in \mathcal{O}_{x, Y}$ for all $x \in X$.
Corollary 13.3. Let $X$ be smooth (actually, you can just assume normal), $F \subset X$ closed of codimension $\geq 2$. Then $\mathcal{O}(X)=\mathcal{O}(X-F)$.

If I remove a subvariety of codimension 2, the divisor group will not change. Any function $f \in \mathcal{O}(X-F)$ defines a rational function on $X$, but the associated divisor is still effective, so $f \in \mathcal{O}(X)$.
Remark 13.4. If $U \subset X$ is open, then there is a natural restriction $\operatorname{Div}(X) \rightarrow \operatorname{Div}(U)$. If $X=U \cup V$, then

$$
0 \rightarrow \operatorname{Div}(X) \rightarrow \operatorname{Div}(U) \oplus \operatorname{Div}(V) \rightarrow \operatorname{Div}(U \cap V)
$$

is exact. In order to define the divisor on $X$, you just have to specify the divisors on $U$ and $V$ that coincide on their intersection.
Notation 13.5. If a divisor $D$ is effective we write $D \geq 0$.
Definition 13.6. Assume $X$ is projective. Let $D \in \operatorname{Div}(X)$. Define

$$
\mathcal{L}(D)=\{f \in k(X): f=0 \text { or }(f)+D \text { is effective }\}
$$

$\mathcal{L}(D)$ is a $k$-vector space. Last time we said that

$$
\operatorname{ord}_{Z}(f+g) \geq \min \left\{\operatorname{ord}_{Z}(f), \operatorname{ord}_{Z}(g)\right\}
$$

Also define

$$
|D|=\{\text { effective divisors of the form }(f)+D\}
$$

This gives a natural identification $|D| \cong \mathbb{P}(\mathcal{L}(D))$. (By definition, this is the set of 1dimensional subspaces of $\mathcal{L}(D)$.) If $(f)+D=(g)+D$ then $(f)=(g)$, or equivalently $\left(\frac{f}{g}\right)=0$. By the remark, this means $\frac{f}{g} \in \mathcal{O}(X)^{\times}$. But this is a projective variety, so $\mathcal{O}(X)^{\times}=k^{\times}$. We will see that $\mathcal{L}(D)$ is finite-dimensional. So $\mathfrak{P}(\mathcal{L}(D))$ has a natural structure as an algebraic variety.

Definitions 13.7. A linear subvariety of $|D|$ is called a linear system. A linear system is called complete if it is of the form $|D|$, for some $D$.

If $D=\sum n_{i} Z_{i}$ then $\operatorname{Supp}(D)=\bigcap_{n_{i} \neq 0} Z_{i}$.
Let $L$ be a linear system on $X$. The base points of $L$ are defined to be

$$
\bigcap_{D \in L} S u p p(D)
$$

REMARK 13.8. One of the most important questions in additive function theory is to calculate the dimension of a complete linear system.

EXAMPLE 13.9 (Some linear systems on a projective variety). Let $X \subset \mathbb{P}^{n}$ and $S(X)$ be the homogeneous coordinate ring. Define a linear system on $X$ as follows. Write $S(X)=\oplus S(X)_{d}$. Let $f \in S(X)_{d}$. The elements here are not really functions (they're only defined up to constant multiples because we are in projective space), but they do make well-defined divisors. We want a divisor on $X \cap\left(\mathbb{P}^{n}-H_{i}\right)$ where $H_{i}=V\left(x_{i}\right)$. The associated divisor $\left(\frac{f}{x_{i}^{d}}\right)$ is an effective divisor on $X \cap\left(\mathbb{P}^{n}-H_{i}\right)$. When you restrict to an intersection $X \cap\left(\mathbb{P}^{n}-H_{i}-H_{j}\right)$ of open subsets, the difference is given by the principal divisor $\frac{x_{i}^{d}}{x_{j}^{d}}$ but this is invertible on the intersection, and its divisor is zero. Therefore, there exists an effective divisor $(f)=: X \cdot V(f)$ on $X$ whose restriction to $X \cap\left(\mathbb{P}^{n}-H_{i}\right)$ is $\left(\frac{f}{x_{i}^{d}}\right)$.

Another definition of $(f)$ : consider $X \cap V(f)=Z_{i}$. (The intersection doesn't depend on the lifting.) Each of its irreducible components has codimension 1 , so $Z_{i}$ has codimension 1 , and $X \cdot V(f)=\sum n_{i} Z_{i}$. Let $x_{k(i)}$ be coordinates such that $Z_{i} \not \subset H_{k(i)}$. Then $n_{i}=$ $\operatorname{ord}_{Z_{i}} \frac{f}{x_{k(i)}^{d}}$. Top and bottom are homogeneous functions of degree $d$. You can check that $n_{i}$ has nothing to do with the choice of $k(i)$, and that the two definitions are the same.

In this way, we defined a map from $S(X)_{d} \rightarrow \operatorname{Div}(X)$. The claim is that the image is a linear system. Why? It is easy to check: $(f)=(g)+\left(\frac{f}{g}\right)$; this is well-defined because $f$ and $g$ have the same degree. So $(f)$ and $(g)$ are in a linear system.

If you fix $g$, then every other element $(f)$ is of the form $(f)=(g)+\left(\frac{f}{g}\right)$. You can add the rational functions: if

$$
\begin{gathered}
\left(f_{1}\right)=(g)+\left(\frac{f_{1}}{g}\right) \\
\left(f_{2}\right)=(g)+\left(\frac{f_{2}}{g}\right) \\
55
\end{gathered}
$$

then $\left(\frac{f_{1}+f_{2}}{g}\right)+(g)=\left(f_{1}+f_{2}\right)$. So the image has a linear structure.
To summarize, this linear system, which Mumford denotes by $L_{X}(d)$, is isomorphic to $\mathbb{P}\left(S(X)_{d}\right)$.

Remark 13.10. If two divisors are linearly equivalent - that is, if $D_{1}-D_{2}=(f)$ - then they define the same linear systems: $\left|D_{1}\right|=\left|D_{2}\right|$. If $\left|D_{1}\right|=(g)+D_{1}$ then this can also be written $(g f)+D_{2}$.

Theorem 13.11. For $d \gg 0, L_{x}(d)$ is complete.
Corollary 13.12. Every complete linear system is finite dimensional. That is, $\ell(D)<$ $\infty$.

Proof. If $|D| \neq \emptyset$ then we can assume that $D$ is effective. Therefore we can write $D=\sum n_{i} Z_{i}$ with $n_{i} \geq 0$. Choose a homogeneous polynomial $F_{i} \in S(X)_{d_{i}}$ of degree $d_{i}$ such that $Z_{i} \subset X \cap V\left(F_{i}\right)$, but $X \not \subset V\left(F_{i}\right)$. ( $Z_{i}$ is cut out by homogeneous polynomials; choose one that does not vanish on all of $X$.) Let $F=\prod F_{i}^{n_{i}}$ of degree $e=\sum n_{i} d_{i}$. $F$ does not vanish identically on $X$, because each $F_{i}$ does not. $(F)=G \in L_{x}(e)$ can be written as $D+D^{\prime}$ where $D^{\prime}$ is effective. (Each $F_{i}$ is $Z_{i}+$ some effective divisor.) $(F)=\sum n_{i}\left(F_{i}\right)=D+$ effective thing.

Therefore, from the definition, if an effective divisor is the sum of two effective divisors, then $\mathcal{L}(D) \subset \mathcal{L}(G)$ which implies $\ell(D) \leq \ell(G)$. Replacing $G$ by some multiple $m G$ if necessary, we can assume that $e$ is very large, so that $L_{X}(e)$ is complete. Therefore, $\ell(G)=\operatorname{dim} L_{X}(e)$. But the latter thing is finite-dimensional, as it is the projectivization of a homogeneous complement.

Let $\varphi: X \rightarrow \mathbb{P}^{n}$ be a rational map such that $\varphi(X)$ is not contained in any hyperplane. We will construct a linear system $L \varphi$ on $X$ as follows. First, the rational map is given by some correspondence $Z=\overline{Z \varphi}$ with projections $p_{1}$ to $X$ and $p_{2}$ to $\mathbb{P}^{n} . Z \rightarrow X$ is birational. According to the Zariski main theorem, let $F \subset X$ so that $p_{1}$ is not an isomorphism; then $\operatorname{codim} F \geq 2$. If $p_{1}$ is not an isomorphism, then the fiber is positive-dimensional (always assume $X$ is smooth). Therefore, $\operatorname{dim} p_{1}^{-1}(F) \leq r-1$ if $X$ has dimension $r$. (On a birational map, there is an isomorphism on an open set, and the fiber has positive dimension.)
$\operatorname{dim} p_{1}^{-1}(F) \leq r-1$ but because the fiber has positive dimension, by the Zariski main theorem we have $\operatorname{dim} F \leq r-2$.

Let $H \subset \mathbb{P}^{n}$ be a hyperplane. We define a divisor $\varphi^{*} H$ on $X$ is follows. (The divisors on $X$ are the same as the divisors on $X-F$. But on $X-F$ the rational map is really a morphism.) So $\varphi^{*} H$ on $X-F-\varphi^{-1}\left(H_{i}\right)$ is $\left(\varphi^{*}\left(\frac{\ell}{x_{i}}\right)\right)$. Pull back on

$$
\begin{gathered}
X-F-\varphi^{-1}\left(H_{i}\right) \xrightarrow{\varphi} \mathbb{P}^{n}-H_{i} \\
\hline
\end{gathered}
$$

to get an effective divisor on $X-F-\varphi^{-1}\left(H_{i}\right)$. But

$$
\left.\varphi^{*}\left(\frac{\ell}{x_{0}}\right)\right|_{X-F-\varphi^{-1}}\left(H_{i} \cup H_{j}\right)=\left.\left(\varphi^{*}\left(\frac{\ell}{x_{j}}\right)\right)\right|_{X-F-\varphi^{-1}}\left(H_{i} \cup H_{j}\right)
$$

Therefore there exists $\varphi^{*} H$ on $X-F($ and hence on $X)$.
It is easy to see that if $H=V(\ell)$ and $H^{\prime}=V\left(\ell^{\prime}\right)$ then $\varphi^{*} H=\varphi^{*} H^{\prime}+\left(\varphi^{*}\left(\frac{\ell}{\ell_{n}^{\prime}}\right)\right)$. This implies that the $\varphi^{*} H$ form a linear system denoted by $L \varphi \stackrel{\cong}{\rightrightarrows} G\left(n-1, \mathbb{P}^{n}\right)=: \breve{\mathbb{P}}^{n}$.

Proposition 13.13. The base points of $L \varphi$ are just $F$.

Proof. If $x \notin F$ then $\varphi(x) \in \mathbb{P}^{n}$ there is some hyperplane $H$ such that $\varphi(x) \notin H$. Therefore, $x \notin \varphi^{-1}(H)=\left.\operatorname{Supp} \varphi^{*} H\right|_{X-F}$. SO any base point of the linear system is contained in $F$. Now we want to show that, in fact, every point in $F$ is in the support of this linear system. Let $H \subset \mathbb{P}^{n}$ be a hyperplane. We need to show that $F \subset \operatorname{Supp}^{*} H$. Without loss of generality, if I take a linear change of coordinates I can assume that $H=H_{0}$ (the hyperplane given by the first coordinate plane). Then observe that $\frac{x_{i}}{x_{0}}$ is a rational function whose pullback is a rational function on $X$, and the associated divisor is exactly $\varphi^{*} H_{i}-\varphi^{*} H_{0}$ (as before). Therefore, on $X-\operatorname{Supp} \varphi^{*} H$, the principal divisor $\left(\varphi^{*} \frac{x_{i}}{x_{0}}\right)$ is effective. This means that $\varphi^{*} \frac{x_{i}}{x_{0}}$ is a regular function on $X-S u p p \varphi^{*} H_{0}$. Therefore, $\left.\varphi\right|_{X-\operatorname{Supp} \varphi^{*} H_{0}}$ is a morphism given by

$$
p \mapsto\left(\varphi^{*}\left(\frac{x_{i}}{x_{0}}\right)(p), \cdots, \varphi^{*}\left(\frac{x_{1}}{x_{0}}\right)(p)\right)
$$

The rational map is not single-valued in $F$. So $F \subset \operatorname{Supp}^{*} H_{0}$.

Theorem 13.14. There is a 1-1 correspondence between:
(1) a linear system on $X$, with base point of codimension $\geq 2$, and an isomorphism $\psi: L \xrightarrow{\sim} \widehat{P}^{n}$;
(2) a rational map $\varphi: X \rightarrow \mathbb{P}^{n}$, such that the image $\varphi(X)$ is not contained in any hyperplane.

In addition, this correspondence is $P G L_{n+1}$-equivariant: namely, on the projective space there is a natural action of $P G L_{n+1}$ by linear change of coordinates. If there is an action of $P G L_{n+1}$ on the projective space, it also acts on the dual projective space. So there is an action on the data (a).

In other words, given a linear system $L$ on $X$ with base points of codimension $\geq 2$, there exists a rational map $\varphi: X \rightarrow \widehat{L}=\mathbb{G}(n-1, L)$ not contained in any hyperplane.

## 14. October 25

Recall that there is a natural isomorphism from $V \rightarrow V^{\vee \vee}$. But there is a canonical isomorphism $\mathbb{P}\left(V^{\vee}\right)=(\mathbb{P}(V))^{\vee}$, and there is a canonical isomorphism $\mathbb{P}(V) \cong(\mathbb{P}(V))^{\vee \vee}$ Let $X$ be smooth and projective, and $L$ a linear system on $X$, with base points of codimension at least 2 . We want to construct a rational $\operatorname{map} \varphi: X \rightarrow \breve{L}$.

SkETCH OF PROOF. Fix $\psi: L \xrightarrow{\sim}\left(\mathbb{P}^{m}\right)^{\vee}$. Let $D_{i}=\psi^{-1}\left(H_{i}\right)$, where $H_{i}=V\left(x_{i}\right)$. We want to use this divisor as coordinates of our variety. (Rational functions are principal divisors; you can regard divisors as functions, up to constant. So you can think of $D_{i}$ as a function.) Write $D_{i}-D_{0}=\left(f_{i}\right)$ where $f_{i} \in k(X)$. $f_{i} \in \mathcal{O}\left(X-S u p p\left(D_{0}\right)\right)$ : on $X-\operatorname{Supp}\left(D_{0}\right)$ it is effective, and is hence given by a regular function. There is a map

$$
X-S u p p\left(D_{0}\right) \rightarrow \mathbb{P}^{m} \quad x \mapsto\left(1, f_{1}(x), \cdots, f_{m}(x)\right)
$$

... but this doesn't appear to be well-defined, since $f_{i}$ are only defined up to constant. Oops?
Example 14.1. Consider $X=\mathbb{P}^{n}$, and consider $L \subset L_{X}(1)$, which is the linear system of hyperplanes $\left(\mathbb{P}^{n}\right)^{\vee}$. Given a linear system, the rational map $\varphi_{L}: X \rightarrow L^{\vee}$, which we claim is just the projection $P_{M} \rightarrow L^{\vee}$, where $M=\bigcap_{H \in L} H$. If $\operatorname{dim} L=r$ then $\operatorname{dim} M=n-r-1$.

Conversely, given any linear subvariety $M \subset \mathbb{P}^{n}$ of dimension $n-r-1$, you can construct

$$
L=\left\{H \in\left(\mathbb{P}^{n}\right)^{\vee}: H \supset M\right\}
$$

This is a linear subvariety, hence gives a linear system. So $\varphi_{L}=P_{M}$. More generally, if $L_{1} \subset L_{2} \subset\left(\mathbb{P}^{n}\right)^{\vee}$, then there are maps


Example 14.2. If $X=\mathbb{P}^{n}$ and $L=L_{X}(d)$ then the rational map $\varphi_{L}: X \rightarrow L^{\vee}$ is just the $d$-uple embedding. This linear system has no base point, so the rational map is a regular map.
ThEOREM 14.3. For large enough $d$, the linear system $L_{X}(d)$ is complete.

Proof. Wrong in Mumford! Let $D-d H_{i} \in L_{X}(d)$. There are elements $\left(X_{i}^{d}\right)$, where the corresponding divisor is $d \cdot H_{i}$. Then $D-d H_{i}$ is a principal divisor. So $f_{i} \in k(X)$. You can consider the divisor

$$
\left(\frac{f_{i}}{f_{j}}\right)=\left(D=d H_{i}\right)-\left(D-d H_{j}\right)=d H_{j}-d H_{i}=\left(\frac{x_{j}^{d}}{x_{i}^{d}}\right)
$$

Therefore, in the fractional field $L$ of $S(X), x_{i}^{d} f_{i}=x_{j}^{d} f_{j}$ (up to constant). Because the choice of $f_{i}$ is determined up to constant, you can choose the constant to make $x_{i}^{d} f_{i}=x_{j}^{d} f_{j}$ an actual equality, for all $i$ and $j$. So we obtain a well-defined element $F \in L$, given by $F=x_{i}^{d} f_{i}$ for any $i$. The divisor $\left.\left(f_{i}\right)\right|_{\mathbb{P}^{n}-H_{i}}$ is effective: away from $H_{i}$ this is the same as $D$ which is effective. This $f_{i} \in \mathcal{O}\left(X-H_{i} \cap X\right)$. For each $i$, you can find some $N$ large enough such that $x_{i}^{N} f_{i} \in S(X)$. Therefore, $x_{i}^{N-d} F=x_{i}^{N-d} x_{i}^{d} f_{i} \in S(X)_{N}$.

Define $S_{d}^{\prime} \subset L$ by $S_{d}^{\prime}=\left\{\left\{x \in L: \exists N, x_{i}^{N} s \in S(X)_{N+d} \forall i\right\}\right\}$ Let $S^{\prime}=\bigoplus_{d \geq 0} S_{d}^{\prime}$. Then this is a graded ring containing $S(X)$. Now $F \in S^{\prime}$. Saying $D \in L_{X}(d)$ is equivalent to saying $F \in S(X)$. (Remember $F=x_{i}^{d} f_{i}$ and $D=\left(f_{i}\right)+d H_{i}$.) To show that the linear system is complete for $d$ large enough, it suffices to show that $S_{d}^{\prime}=S(X)_{d}$ for $d$ large enough.

To do this, fix $s \in S_{d}^{\prime}$ with $d \geq 0$. Because $x_{i}^{N} s \in S(X)_{N+d}$, if we take $\ell_{0}=N(n+1)$ then $S(X)_{\ell} s \subset S(X)_{\ell+d}$ for $\ell \geq \ell_{0}$ (since $\ell \geq N(n+1)$, at least one power in the monomial goes to $N)$. Likewise, $S(X)_{\ell} \cdot s^{q} \subset S(X)$ for all $q \geq 0$. For example, consider $x_{0}^{\ell_{0}} \in S(X)$ for $q \geq 0$. $s^{q} \in \frac{1}{x_{0}^{\ell_{0}}} S(X)$ for all $q \geq 0$. (This is like proving all the regular functions on a projective variety are constant.)

Consider $M=\frac{1}{x_{0} 0} S(X) \subset L$, where $M$ is a finitely generated $S(X)$-module. By some commutative algebra fact, this implies that there exists some polynomial relations

$$
s^{q}+a_{1} s^{q+1}+\cdots+a_{q}=0
$$

where $a_{i} \in S(X)$. We say that $s$ is integral over $S(X)$. So $S^{\prime}$ is integral over $S(X)$.
Theorem 14.4. Let $A$ be a finitely-generated integral $k$-algebra, and $K=F r a c(A)$. Let $L / K$ be a finite field extension. Then the integral closure $A^{\prime}$ of $A$ in $L$ is finite over $A$ and $A^{\prime}$ is also a finitely generated $k$-algebra.

Proof. Commutative algebra.

So $S^{\prime}$ is finite over $S(X)$. We can choose a set of homogeneous generators. Let $s_{1}, \cdots, s_{m}$ be a set of homogeneous generators of degree $d_{i}$. There exists $\ell_{0}$ such that $S(X)_{\ell} s_{j} \in$ $S(X)_{\ell+d_{i}}$ for any $\ell \geq \ell_{0}$. Therefore, $S_{d}^{\prime}=S(X)_{d}$ if $d \geq \max \left\{d_{i}\right\}+\ell_{0}$. Elements in $S_{d}^{\prime}$ can be written as combinations $\sum S(X)_{d-d_{0}} s_{i}$.
$\left(F=x_{i}^{d} f_{i}\right.$. If $F \in S(X)_{d}$ then $\left.L_{X}(d) \ni(F)=\left(x_{i}^{d}\right)+\left(f_{i}\right)=d H_{i}+\left(f_{i}\right)=D.\right)$
14.1. Canonic divisors. Right now, it's hard to construct linear systems on a variety. Of course, there's $0 \in \operatorname{Div}(X)$. If we know there's a map $X \rightarrow \mathbb{P}^{n}$, then we can make a linear system. But we would like to do the reverse: start with a linear system, and try to get an embedding of $X$ into projective space.
Definition 14.5. Let $A \rightarrow B$ be a (commutative) ring homomorphism. The Kähler differential $\left(\Omega_{B / A}, d\right)$ is a pair, where $\Omega_{B / A}$ is a $B$-module, and $d$ is a derivation in
$\operatorname{Der}_{A}\left(B, \Omega_{B / A}\right)$, that satisfies the following universal property: for any $B$-module $M$, the natural map $\operatorname{Hom}_{B}\left(\Omega_{B / A}, M\right) \mapsto \operatorname{Der}_{A}(B, M)$ given by $\varphi \mapsto \varphi \circ d$ is an isomorphism. (Recall from before $\operatorname{Der}_{A}(B, M)$ is really a $B$-module.)

LEMMA 14.6. $\left(\Omega_{B / A}, d\right)$ exits and is unique up to a unique isomorphism.

Proof. Uniqueness is clear from the universal property. We need to show existence. Define $\Omega_{B / A}$ be the free $B$-module $\{d b: b \in B\} / \sim$ where the relations $\sim$ are $d a=0$, $d\left(b_{1}+b_{2}\right)-d b_{1}-d b_{2}=0, d\left(b_{1} b_{2}\right)-b_{1} d b_{2}-b_{2} d b_{1}$ and $d: B \rightarrow \Omega_{B / A}$ by $b \mapsto d b$. These relations are created by making it a derivation. It is easy to check that this satisfies the universal property. Starting with $D: B \rightarrow M$, then $\varphi: \Omega_{B / A} \rightarrow M$ by $\varphi(d b)=D(b)$. Therefore, $\operatorname{Hom}\left(\Omega_{B / A}, M\right)=\operatorname{Der}_{A}(B, M)$.

Example 14.7. Let $A=k, B=k\left[x_{1}, \cdots, x_{n}\right]$. Then $\Omega_{B / A}=B d x_{1} \oplus \cdots \oplus B d x_{n}$.
Corollary 14.8. If $B / A$ is finitely generated as an $A$-algebra, with generators $b_{1}, \cdots, b_{r}$. Then $\Omega_{B / A}$ is finitely generated over $B$ with generators $d b_{1} \cdots d b_{r}$.

Remark 14.9. " $A$ is finite over $B$ " means $A$ is a finite module over $B$; "finitely generated" refers to algebras.

Lemma 14.10. Let $S \subset B$ be a multiplicative set. Then $S^{-1} \Omega_{B / A} \cong \Omega_{S^{-1} B / A}$.

Proof. There is a natural map by restriction. $\operatorname{Der}\left(S^{-1} B, M\right)=\operatorname{Der}_{A}(B . M)$ for any $S^{-1} B$-module of $M$.

Corollary 14.11. Let $X / k$ be an algebraic variety. Then $\Omega_{\mathcal{O}_{X, x} / k}$ is a finitely generated $\mathcal{O}_{X, x}$-module.

Notation 14.12. If $X / k$ is affine, denote

$$
\Omega_{\mathcal{O}(X) / k}=\Omega_{X} \text { and } \Omega_{\mathcal{O}_{X, x} / k}=\Omega_{X, x}
$$

REmark 14.13. If $X$ is not affine, then we denote $\Omega_{X}$ by the functor

$$
\{\text { Affine opens on } x\} \rightarrow\left\{A b: U \rightarrow \Omega_{U}\right\}
$$

Proposition 14.14. Let $X / k$ be an algebraic variety. Then $X$ is smooth at $x$ iff $\Omega_{X, x}$ is a free module over $\mathcal{O}_{X, x}$ of $r k=\operatorname{dim} X=r$.

Proof. $\Omega_{X, x} \otimes_{\mathcal{O}_{X}} k$ is a $k$-vector space: the cotangent space $T_{x}^{*} X=\left(T_{x} X\right)^{\vee}$. Why? We want $\operatorname{Hom}_{k}\left(\Omega_{X, x} \otimes \mathcal{O}_{X, x} k, k\right)$ to be the tangent space. This is Hom $\mathcal{O}_{X, x}\left(\Omega_{X, x}, k\right) ;$ by the universal property, this is just $\operatorname{Der}_{k}\left(\mathcal{O}_{X, x}, k\right)=T_{x} X$.

Now, if $\Omega_{X, x}$ is free of rank $r$ then $\operatorname{dim}_{k} \Omega_{X, x} \otimes k=r$. This is the same as $\operatorname{dim} T_{x} X=$ $r=\operatorname{dim} X$, which implies that $X$ is smooth at $x$. Conversely, suppose $X$ is smooth at $x$. Then $\operatorname{dim}_{k} \Omega_{X, x} \otimes k=r$. On the other hand, $\operatorname{dim}_{K} \Omega_{X, x} \otimes K=r($ where $K=k(X))$. This is because

$$
\begin{equation*}
\operatorname{Hom}\left(\Omega_{X, x} \otimes K, K\right)=\operatorname{Hom}\left(\Omega_{K / k}, K\right)=\operatorname{Der}_{k}(K, K) \tag{60}
\end{equation*}
$$

(Taking the differential commutes with localization. But we know the dimension of $\operatorname{Der}_{k}(K, K)$ is $r$, because this is how we defined dimension.)

Now we are in the following situation: we want to show the following lemma.
Lemma 14.15. Let $(A, \mathfrak{m}, k=A / \mathfrak{m})$ be a Noetherian local domain with fractional field $K$, and $M$ be a finite $A$-module. If $\operatorname{dim}_{k} M \otimes k=r=\operatorname{dim}_{K} M$ then $M$ is a free $A$-module of rank $r$.

Lemma 14.16 (Nakayama lemma). Let $(A, \mathfrak{m}, k)$ be a Noetherian local ring, and $M$ be a finite $A$-module. If $M \otimes k=0$, then $M=0$.

Proof. Commutative algebra.

Proof of 14.15. Let $m_{1}, \cdots, m_{r} \in M$ s.t. $m_{1} \cdots m_{r} \bmod \mathfrak{m}$ form a basis of $M \otimes k$. Then consider the map of $A$-modules

$$
A^{r} \rightarrow M \text { where } e_{i} \rightarrow m_{i}
$$

We claim that this is an isomorphism. If not, then it has a cokernel, $N$

$$
A^{r} \rightarrow M \rightarrow N \rightarrow 0
$$

Tensor with $k$ :

$$
A^{r} \otimes k \rightarrow M \otimes k \rightarrow N \otimes k \rightarrow 0
$$

But $M \otimes k$ is generated by $m_{i}$, so $N \otimes k=0$, which implies $N=0$ by Nakayama's lemma. Therefore, $A^{r} \rightarrow M \rightarrow 0$ is surjective. Consider the kernel

$$
0 \rightarrow N \rightarrow A^{r} \rightarrow M \rightarrow 0
$$

If we tensor with the fractional field we get

$$
0 \rightarrow N \otimes K \rightarrow A^{r} \otimes K \rightarrow M \otimes K \rightarrow 0
$$

But this is surjective, and $N \otimes K=0$. This is a contradiction, because $N$ is a submodule of a free module. $N \otimes K=0$ means: for all $n \in N$ there exists some $a \in A$ such that $a n=0 .(N \otimes K$ is basically the localization.) This is impossible, because $n$ is in a free module $A^{r}$, in which no element is torsion.
(We're using the fact that localization preserves short exact sequences.)

## 15. October 27

Proposition 15.1. Let $V$ and $W$ be two (finite-dimensional) vector spaces. Suppose there is an isomorphism

$$
\psi: \mathbb{P}(V) \rightarrow \mathbb{P}(W)
$$

Then there is a lifting

$$
\widetilde{\psi}: V \stackrel{\cong}{\rightrightarrows} W
$$

of vector spaces. In addition, $\widetilde{\psi}$ is unique up to a non-zero multiple.

Let $L$ be a linear system on $X$. Suppose we choose an isomorphism $\psi: L \xrightarrow{\sim}\left(\mathbb{P}^{m}\right)^{\vee}$. $L=\mathbb{P}(V) ; V$ is a subspace of a complete linear system $\mathcal{L}(D)$ for $D \in L$. Then

$$
\widetilde{\varphi}: V \rightarrow k\left\{x_{0}, \cdots, x_{m}\right\}
$$

$\left(\right.$ Recall $\left(\mathbb{P}^{m}\right)^{\vee}$ is the space of all hyperplanes in $\mathbb{P}$, and hence the projectivization $\mathbb{P}\left(k\left\{x_{0}, \cdots, x_{m}\right\}\right)=$ $\mathbb{P}\left(S_{1}\right)$.) We can define $f_{i}=\widetilde{\psi}^{-1}\left(x_{i}\right) \in V \subset \mathcal{L}(D) \subset k(X)^{\times}$. So we get a map

$$
X \rightarrow \mathbb{P}^{m} \text { where } x \mapsto\left(f_{0}(x), \cdots, f_{m}(x)\right)
$$

that is well-defined because $\widetilde{\psi}$ is unique up to constant multiple. The codimension 2 base points are not used.

Proposition 15.2. $x \in X$ is smooth iff $\Omega_{X, x}$ is free of rank r over $\mathcal{O}_{X, x}$.

In the proof, we showed that $\Omega_{X, x} \otimes k \xrightarrow{\sim} T_{x}^{*} X=\mathfrak{m} / \mathfrak{m}^{2}$. More explicitly, we have


In particular, if $\left\{x_{1}, \cdots, x_{r}\right\} \subset \mathfrak{m}$ such that $x_{1}, \cdots, x_{r} \bmod \mathfrak{m}^{2}$ form a basis of $\mathfrak{m} / \mathfrak{m}^{2}$, then $d x_{1}, \cdots, d x_{r}$ form a basis of $\Omega_{X, x}$ over $\mathcal{O}_{X, x}$. (If they form a basis mod $\mathfrak{m}^{2}$, then the $d x_{i} \otimes k$ form a basis of $\Omega_{X, x} \otimes k$. Using Nakayama's lemma, if there are elements $d x_{1}, \cdots, d x_{r}$ that form a basis mod $k$, then they form a basis of $\Omega_{X, x}$. . Such $x_{1}, \cdots, x_{r}$ are called local parameters of $X$ at $x$.

Then for every $f \in \mathcal{O}_{X, x}$,

$$
\begin{gathered}
d f=\sum \frac{\partial f}{\partial x_{i}} d x_{i} \\
\frac{\partial}{\partial x_{i}} \in \operatorname{Hom}_{\mathcal{O}_{X, x}}\left(\Omega_{X, x}, \mathcal{O}_{X, x}\right)=\operatorname{Der}_{\mathcal{O}_{x, x}}\left(\mathcal{O}_{X, x}, \mathcal{O}_{X, x}\right)
\end{gathered}
$$

Observation: For $X$ affine, every element in $\Omega_{X}$ can be regarded as a map from $X \rightarrow$ $\sqcup T_{x}^{*} X$. Namely, let $\omega \in \Omega_{X}$. Since the map commutes with localization:

$$
\begin{gathered}
\Omega_{x} \rightarrow \Omega_{X, x} \rightarrow \Omega_{X, x} \otimes k \cong T_{x}^{*} X \\
\omega \mapsto \omega_{x} \mapsto \omega(x)
\end{gathered}
$$

There are many such maps; we claim that this one is algebraic. If $f \in \mathcal{O}(X)$ then $d f \in \Omega_{X}$. Regard $d f$ as a map like above:

$$
d f: X \rightarrow \sqcup T_{x}^{*} X \text { where } x \mapsto f-f(x) \bmod \mathfrak{m}^{2}
$$

$\mathfrak{m} / \mathfrak{m}^{2}$ is the cotangent space; $f-f(x)$ is map that vanishes at $x$. This does not require the definition of $\Omega_{X}$. In the spirit of defining regular functions on $X$,
$\Omega_{\mathcal{O}(X) / k}=\Omega_{X}=\left\{\omega: X \rightarrow \sqcup_{x \in X} T_{x}^{*} X: \quad \forall p \in X \exists V \in p\right.$ open, $f_{i}, g_{i} \in \mathcal{O}(V)$ s.t. $\left.\omega=\sum f_{i} d g_{i}\right\}$
We know that $\Omega_{X}$ is generated over $\mathcal{O}$ by those relations; this automatically gets an inclusion $\subset$. It is an exercise to show that this is actually an equality. Unlike our other definition, this makes sense for all varieties, not just affine ones.

Definition 15.3. Let $X$ be a smooth variety of dimension $r$.

$$
\omega_{X, x}=\wedge_{\mathcal{O}_{X, x}}^{r} \Omega_{X, x}
$$

is a free $\mathcal{O}_{X, x}$-module of rank one, with a basis given by

$$
d x_{1} \wedge \cdots \wedge d x_{r}
$$

If $\left\{x_{1}^{\prime}, . ., x_{r}^{\prime}\right\}$ is another set of local parameters then $d x_{1}^{\prime}, \cdots, d x_{r}^{\prime}$ is another basis, and the difference is given by the determinant $\operatorname{det}\left(\frac{\delta x_{i}^{\prime}}{\delta x_{j}}\right) d x_{1} \wedge \cdots \wedge d x_{r}$. Remember $\operatorname{det}\left(\frac{\delta x_{i}^{\prime}}{\delta x_{j}}\right) \in \mathcal{O}_{X, x}$ that is invertible, because both the $x_{i}$ 's and $x_{i}^{\prime}$ 's are bases.

## DEFINITION 15.4.

$$
\omega_{K / k}=\wedge^{r} \Omega_{K / k}
$$

is a 1-dimensional $K$-vector space. Elements in $\omega_{K / k}$ are called rational $r$-forms.

Definition-Construction 15.5. Let $\omega \in \omega_{K / k}-0$.

$$
\omega_{K / k} \cong \omega_{X, x} \otimes_{\mathcal{O}_{X, x}} K \Longrightarrow \omega=f\left(d x_{1} \wedge \cdots \wedge d x_{r}\right)
$$

Define $(\omega)=\sum n_{i} Z_{i}$ where $n_{i}=\operatorname{ord}_{Z_{i}} f$. For each $i$, the definition depends on $x \in$ $Z_{i}$. You can show that, in fact, everything is well-defined: the $d x_{i}$ are defined on open neighborhoods.

ExERCISE 15.6. $n_{i}$ does not depend on the choice of $x \in Z_{i}$ and local parameters $\left\{x_{1}, \cdots, x_{r}\right\} \in$ $\mathcal{O}_{X, x}$. (This is similar to the proof of the definition of principal divisors.)

If $f \in K$ then $(f \omega)=(f)+(\omega)$, by definition. This implies that

$$
\left\{(\omega): \omega \in \omega_{K / k}-0\right\}
$$

is a well-defined divisor class called the canonical divisor [class]; this is usually denoted by $K_{X}$.

Likewise, we define the $n$-fold canonical class as follows. Let $\omega \in \omega_{K / k} \otimes n$ (recall $\omega_{K / k}$ is a one-dimensional vector space over $K$, but is infinite-dimensional over $k$ ). Locally, $\omega=f\left(d x_{1} \wedge \cdots \wedge d x_{r}\right)^{n}$, where $(\omega)=\sum n_{i} Z_{i}$ and $n_{i}=\operatorname{ord}_{Z_{i}}(f)$ for $x \in Z_{i}$.

Obvious fact: If $\omega_{1} \in \omega_{K / k}^{n_{1}}$ and $\omega_{2} \in \omega_{K / k}^{n_{2}}$ then $\left(\omega_{1} \otimes \omega_{2}\right)=\left(\omega_{1}\right)+\left(\omega_{2}\right)$. This immediately implies that if $\omega \in \omega_{K / k}^{n}$ then $(\omega) \sim n K_{X}$.

Now assume $X$ is projective. If $\omega \in \omega_{K / k}^{\otimes n}$ then consider the complete linear system

$$
\begin{aligned}
\mathcal{L}((\omega)) & =\{f \in K: f=0 \text { or }(f)+(\omega) \geq 0\} \\
& =\left\{\omega \in \omega_{K / k}^{n}:(\omega) \geq 0\right\} \\
& =: \mathcal{L}\left(n K_{X}\right)
\end{aligned}
$$

Definition 15.7.

$$
P_{n}(X)=\ell\left(n K_{X}\right)
$$

is called the $n^{\text {th }}$ plurigenera of $X$. In particular, $P_{1}(X)=P_{g}(X)$ is called the geometric genus of $X$.
$\bigoplus_{n>0} \mathcal{L}\left(n K_{X}\right)$ has a $k$-algebra structure, where multiplication is given by the tensor product, which preserves effectiveness. If $\omega_{1} \in \mathcal{L}\left(n_{1} K_{X}\right)$ and $\omega_{2} \in \mathcal{L}\left(n_{2} K_{X}\right)$ then $\omega_{1} \otimes \omega_{2} \in$ $\mathcal{L}\left(\left(n_{1}+n_{2}\right) K_{X}\right)$. This is called the canonical ring of $X$. Here is a quite recent theorem:

Theorem 15.8 (Siu, Hacon-McKernan,...). The canonical ring is a finitely generated $k$-algebra.

Example 15.9. $X=\mathbb{P}^{n}$. (The divisor class group is isomorphic to $\mathbb{Z}$; the divisors are multiples of hyperplanes.)

Claim 15.10. $K_{X}=-(n+1) H$ where $H$ is a hyperplane. This is not effective; $P_{g}\left(\mathbb{P}^{n}\right)=0$.

Let $x_{0}, \cdots, x_{n}$ be homogeneous coordinates $y_{i}=\frac{x_{i}}{x_{0}}$, and $y_{1}, \cdots, y_{n}$ are coordinates of $\mathbb{P}^{n}-H_{0} \cong \mathbb{A}^{n}$.

$$
\omega=d y_{1} \wedge \cdots \wedge d y_{n}
$$

These form a basis at every point. $\left.(\omega)\right|_{\mathbb{P}^{n}-H_{0}}=0$. Therefore, there is some multiple $m$ such that $(\omega)=m H_{0}$. We need to show that $m=-(n+1)$. To do this, represent $\omega$ in a different coordinate system. Define $z_{i}=\frac{x_{i}}{x_{n}}$ for $i=0, \cdots, n-1 . y_{0}=\frac{1}{z_{0}}$ and $y_{i}=\frac{z_{i}}{z_{0}}$ for $1 \leq i \leq n-1$.

$$
\begin{aligned}
\omega & =d\left(\frac{z_{1}}{z_{0}}\right) \wedge \cdots \wedge d\left(\frac{z_{n-1}}{z_{0}} \wedge d\left(\frac{1}{z_{0}}\right)\right) \\
& = \pm \frac{1}{z_{0}^{n+1}} d z_{0} \wedge \cdots \wedge d z_{n-1}
\end{aligned}
$$

The $d x_{i}$ are independent; this is determined by the coefficients $\frac{1}{z_{0}^{n+1}}$. So $(\omega)=-(n+1) H_{0}$.
ExAmple 15.11. $X=V\left(y^{2} z=x^{3}+x z^{2}\right) \subset \mathbb{P}^{2}$ where $\operatorname{char}(k) \neq 2$. I claim that $K_{X}=0$, and so the genus is $P_{g}(X)=1$.

$$
\begin{aligned}
\left(\mathbb{P}^{2}-H_{Z}\right) \cap X=\stackrel{o}{X}= & V\left(y^{2}=x^{3}+x\right) \\
& \Omega_{K / k}=K d x+K d y /\left(2 y d y-\left(3 x^{2}+1\right) d x\right)
\end{aligned}
$$

For $(a, b) \in \stackrel{o}{X}, \Omega_{X,(a, b)} \otimes k=k d x+k d y /\left(2 b d y-\left(3 a^{2}+1\right) d x\right)$. (The tangent space is given by the thing you're modding out by; this is how you get the cotangent space.) Homework. . .
$d x \neq 0$ in $\Omega_{X,(a, b)} \otimes k$ if $b \neq 0$ implies that $x$ is a local parameter at $(a, b)$ is $b \neq 0$.
Let $\omega=\frac{d x}{y}=\frac{d x}{\sqrt{x^{2}+x}}$. This is a rational differential. The restriction $\left.(\omega)\right|_{X-(y=0)}$ is zero, because it is invertible away from $y=0$. This is almost the whole curve, just missing the points where $y=0$, and the point at infinity. In $\Omega_{K / k}, 2 y d y=\left(3 x^{2}+1\right) d x$ so $\frac{d x}{y}=\frac{2 d y}{3 x^{2}+1}$. At $(a, b)$ if $3 a^{2}+1 \neq 0$ then $d y \neq 0$ in $\Omega_{X,(a, b)} \otimes k$ and this implies that $y$ is a local parameter at $(a, b)$ if $3 a^{2}+1 \neq 0$, i.e.

$$
\left.(\omega)\right|_{X-\left(3 x^{2}+1=0\right)}
$$

Two closed subsets do not have an intersection on the curve; that is, these two open affines cover the curve:

$$
\stackrel{o}{X}=(X-\{y=0\}) \cup\left(X-\left\{3 x^{2}+1=0\right\}\right)
$$

so $(\omega)=0$ on $X$. Now $X-\stackrel{o}{X}=X \cap H_{Z}=p(0,1,0)$. So there is one more point to deal with.

First get local parameters at $p$. Using the affine coordinates $\tilde{X}=X-\left(X \cap H_{y}\right)=$ $V\left(z=x^{3}+x z^{2}\right)$. Now $\Omega_{X, p} \otimes k=k d x+k d z /\left(d z=3 x^{2} d x+z^{2} d x+2 x z d z\right)$. At this point, $x=0$ and $z=0$, so you only have to mod out by $d z$ (but the relation $d z=0$ only holds at the point $p$, and not necessarily in a neighborhood; below, you will need to make the whole expression well-defined there before plugging in the relation). Therefore, $x$ is a local parameter at $p$. Write $\omega=f d x$ around $p . \omega=\frac{d x}{y}$; changing coordinates $(x, y, 1) \mapsto(x, 1, z)$ means you're doing $x \mapsto \frac{x}{z}$ and $y \mapsto \frac{y}{z}$. So this differential is

$$
\omega=\frac{d\left(\frac{x}{z}\right)}{\frac{y}{z}}=\frac{z d x-x d z}{z} \in \Omega_{K / k}
$$

In $\Omega_{K / k}$ we have $d z=3 x^{2} d x+z^{d} x+2 x z d z$. So we can solve for $d z$ :

$$
d z=\frac{3 x^{2}+z^{2}}{1-2 x z} d x
$$

We get

$$
\omega=d x-\frac{x}{z} \cdot \frac{3 x^{2}+z^{2}}{1-2 x z} d x
$$

Remember $z=x^{3}+x z^{2} \cdot \frac{x^{3}}{z}=1-x z$ so we can rewrite

$$
\begin{aligned}
\omega & =d x-\frac{\frac{3 x^{3}}{z}+x z}{1-2 x z} d x \\
& =d x-\frac{3-3 x z+x z}{1-2 x z} d x \\
& =d x-\frac{3-2 x z}{1-2 x z} d x \\
& =\frac{-2}{1-2 x z} d x
\end{aligned}
$$

But this is invertible in the local ring (it takes the value 1 at the point), so the order is zero. That is, $(\omega)=0$ on $X$.

Proposition 15.12. If $X, Y$ are birational then $P_{n}(X)=P_{n}(Y)$.

Proof. If $X$ and $Y$ are birational, then there are neighborhoods such that $X \supset U \cong$ $V \subset Y$. By Zariski's main theorem, $X \backslash U$ and $Y \backslash V$ have codimensions $\geq 2$. Removing a codimension 2 variety doesn't affect divisors. Birationality means $k(X) \cong k(Y) . \omega_{k(X) / k} \cong$ $\omega_{k(Y) / k}$. All of this implies that there is a canonical isomorphism

$$
\mathcal{L}\left(n K_{X}\right) \cong \mathcal{L}\left(n K_{Y}\right)
$$

Corollary 15.13. $X=V\left(y^{2}=x^{3}+x\right)$ is not birational to $\mathbb{P}^{1}$.
(This was proved differently in the homework.)

## 16. November 1

If $\varphi: X \rightarrow Y$ is a morphism, define the pullback $\varphi^{*}: \Omega_{Y} \rightarrow \Omega_{X}$. If $X, Y$ are affine, we get a pullback $\varphi^{*}: \mathcal{O}(Y) \rightarrow \mathcal{O}(X)$. Suppose $A \rightarrow B \xrightarrow{\varphi^{*}} C$ is a chain of maps of commutative rings. ( $B$ represents $\mathcal{O}(Y)$, and $C$ represents $\mathcal{O}(X)$.) We claim that there is a natural map $\varphi^{*}: \Omega_{B / A} \otimes_{B} C \rightarrow \Omega_{C / A}$. For any $C$-module $M$ (which is necessarily also a $B$-module), $\operatorname{Hom}_{B}\left(\Omega_{B / A}, M\right)=\operatorname{Der}_{A}(B, M) \stackrel{\text { restriction }}{\leftarrow} \operatorname{Der}_{A}(C, M)=\operatorname{Hom}_{C}\left(\Omega_{C / A}, M\right)$. Take $M=\Omega_{C / A}$ and take the identity map in $\operatorname{Hom}_{C}\left(\Omega_{C / A}, M\right)$. Then we get

$$
\varphi^{*}=\operatorname{restr}(I d): \Omega_{B / A} \otimes_{B} C \rightarrow \Omega_{C / A}
$$

REMARK 16.1.
(1) This map commutes with the derivation $d$ associated with $\Omega: \varphi^{*}(d f)=d\left(\varphi^{*} f\right)$.
(2) The kernel is $\operatorname{Der}_{B}(C, M)$ so there is an exact sequence

$$
0 \rightarrow \operatorname{Der}_{B}(C, M) \rightarrow \operatorname{Der}_{A}(C, M) \rightarrow \operatorname{Der}_{A}(B, M)
$$

which gives

$$
\Omega_{B / A} \otimes_{B} C \rightarrow \Omega_{C / A} \rightarrow \Omega_{C / B} \rightarrow 0
$$

Geometrically, if $\omega \in \Omega_{Y}$ then $\omega$ is a map $Y \rightarrow \sqcup_{y \in Y} T_{y}^{*} Y$ and $\varphi^{*} \omega$ is a map $X \rightarrow \sqcup_{x \in X} T_{x}^{*} X$ which takes $x \mapsto(d \varphi)^{\vee}(\omega(\varphi(x))) \in T_{x}^{*} X$ where

$$
x \stackrel{\varphi}{\mapsto} \varphi(x) \xrightarrow{\omega} T^{*} Y \xrightarrow{(d \varphi)^{\vee}} T_{x}^{*} X
$$

It's easy to see that if $\omega=d f$ then $\varphi^{*}(d f)=d\left(\varphi^{*} f\right)=d(f \circ \varphi)$ Therefore if locally on $Y$ $\omega=\sum f_{i} d g_{i}$ then locally on $X$

$$
\varphi^{*} \omega=\sum \underset{66}{\left(f_{i} \circ \varphi\right) d\left(g_{i} \circ \varphi\right)}
$$

Now consider the case $A=k, B=k(Y), C=k(X)$. Then $\varphi^{*}: k(Y) \rightarrow k(X)$ is induced by a dominant morphism $\varphi: X \rightarrow Y$.

$$
\Omega_{k(Y) / k} \otimes k(X) \rightarrow \Omega_{k(X) / k} \rightarrow \Omega_{k(X) / k(Y)} \rightarrow 0
$$

If $\varphi: X \rightarrow Y$ is separable (the dimension is the same as the degree of the transcendental field extension, and $\operatorname{Der}_{k}(K, k)=\operatorname{Hom}_{K}\left(\Omega_{K / k}, K\right)$ is the dual space $)$

$$
\operatorname{dim}_{k(X)} \Omega_{k(X) / k(Y)}=\operatorname{dim}(X)-\operatorname{dim}(Y)
$$

So the right exact sequence is also left exact, by dimension reasons. In particular, if $\operatorname{dim}(X)=\operatorname{dim}(Y)$, then $\Omega_{k(Y) / k} \otimes_{k(Y)} k(X) \cong \Omega_{k(X) / k}$.

Last time we had define $\omega_{k(Y) / k}=\wedge^{\operatorname{dim}(Y)} \Omega_{k(Y) / k}$ then

$$
\varphi^{*}: \omega_{k(Y) / k} \otimes_{k(Y)} k(X) \cong \omega_{k(X) / k}
$$

Let $\omega \in \omega_{k(Y) / k}$ (a rational top form on $Y$ ). We could associate two divisors on $X$. We could consider $\varphi^{*}(\omega \otimes 1)$ (which we will write $\varphi^{*}(\omega)$ ). On the other hand, we get a divisor $\omega$ on $Y$, and we can get a divisor on $X \varphi^{-1}(\omega)$. These are not the same, but it turns out that the difference is an effective divisor.

LEMMA 16.2. Let $\varphi: X^{r} \rightarrow Y^{r}$ be separable. $B:=\left(\varphi^{*}(\omega \otimes 1)\right)-\varphi^{-1}(\omega)$ is an effective divisor, called the branched divisor.

Recall $\varphi^{-1}: \operatorname{Div}(Y) \rightarrow \operatorname{Div}(X)$ which takes a divisor $D=\sum n_{i} Y_{i} \mapsto \varphi^{-1} D=\sum n_{i} \varphi^{-1}\left(Y_{i}\right)$. Write $\varphi^{-1}\left(Y_{i}\right)=\sum m_{j} Z_{j}$. Let $x \in X_{j}$ and a local equation for $Y_{i}$ at $\varphi(x)$. Locally, $Y_{i}$ is just $(f)$ around $\varphi(x) . m_{j}=\operatorname{ord}_{x_{j}} \varphi^{*}(f)$ is shown to be well-defined in the homework.

Proof. Write $\omega=f d y_{1} \wedge \cdots \wedge d y_{r}$ where $\left(y_{1}, \cdots, y_{r}\right)$ are local parameters at $y=\varphi(x)$ (we can always represent a rational differential this way). Then $\varphi^{*} \omega=(f \circ \varphi) d\left(y_{1} \circ \varphi\right) \wedge$ $\cdots \wedge d\left(y_{r} \circ \varphi\right)$. If $x_{1}, \cdots, x_{r}$ are local parameters at $x$, then this is

$$
(f \circ \varphi) \operatorname{det}\left(\frac{\partial\left(y_{i} \circ \varphi\right)}{\partial x_{j}}\right) d x_{1} \wedge \cdots \wedge d x_{r}
$$

This determinant is in $\mathcal{O}_{X, x}$.

$$
\begin{aligned}
\left(\varphi^{*} \omega\right)-\varphi^{-1}(\omega) & =(f \circ \varphi) \operatorname{det}\left(\frac{\partial\left(y_{i} \circ \varphi\right)}{\partial x_{j}}\right)-(f \circ \varphi) \\
& =\left(\operatorname{det} \frac{\partial\left(y_{i} \circ \varphi\right)}{\partial x_{j}}\right)
\end{aligned}
$$

In other words,

$$
S u p p(B)=\left\{x \in X:\left(\operatorname{det} \frac{\partial\left(y_{i} \circ \varphi\right)}{\partial x_{j}}\right) \notin \mathcal{O}_{X, x}^{*}\right\}
$$

If this element is a unit, then the associated divisor is zero. The condition that the determinant is not in $\mathcal{O}_{X, x}^{*}$ is the same as it being in $\mathfrak{m}_{x}$. So

$$
\operatorname{Supp}(B)=\left\{x \in X:\left(d \varphi_{x}\right)^{\vee}: T_{\varphi_{(x)}}^{*} Y \rightarrow T_{x}^{*} X \text { not an isomorphism }\right\}
$$

If these are two vector spaces of the same dimension, this is equivalent to requiring that $d \varphi_{x}: T_{x} X \rightarrow T \varphi_{(x) Y}$ is not surjective. (It has to be injective, maybe because the variety
is smooth(?)) $S u p p(B)$ is sometimes called the branched locus of $\varphi$. (Geometrically, think about the places where the tangent is vertical: the size of the fiber is anomalous).

ExAMPLE 16.3. Let $X=\left(y^{2} z=x^{3}+x^{2}\right)$ in characteristic $\neq 2$. There is a projection $P_{(0,1,0)}:(x, y, z) \mapsto(x, z)$. There is a rational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$; but since this is a smooth curve, it extends to a morphism.

Let $(x, y, z)$ be homogeneous coordinates on $\mathbb{P}^{2}$ and $(u, v)$ be homogeneous coordinates on $\mathbb{P}^{1}$. Then $\varphi:(x, y, z) \mapsto(x, z)$ is a map $\varphi: \stackrel{o}{X} \rightarrow \mathbb{A}^{1}=\{v \neq 0\}$ (where $\stackrel{o}{X}$ is the affine piece). Then $\varphi^{*}: k[u] \rightarrow k[x, y] / y^{2}-x^{3}-x$ is $u \mapsto x$ the projection to the first coordinate. Let $d u \in \Omega_{k\left(\mathbb{P}^{1}\right) / k}$. By last time, $u$ is a local parameter on the entire affine line, so $\varphi^{-1}(d u)=0$ but $\varphi^{*} d u=d x . x$ is a local parameter on $\stackrel{o}{X}-\{y=0\}$ is a local parameter. Around $\{y=0\}=\{(1,0),(0,0),(-1,0)\}, d x$ is a local parameter (no zeroes or three anomalous points. But at all of these three points, $3 x^{2}+1 \neq 0$; and $y$ is a local parameter so the vanishing order is 1 . Therefore, $(d x)$ on $\stackrel{o}{X}=[1]+[0]+[-1]$.

There is a point at infinity. Consider the blowup $\widetilde{X} \subset \mathbb{P}^{1} \times \mathbb{P}^{2}$. There is an isomorphism $\widetilde{X} \rightarrow X$, and a projection to $\mathbb{P}^{1}$.

$$
\left\{\begin{array}{l}
y^{2} z=x^{3}+x z^{2} \\
x v=z u
\end{array}\right.
$$

These two equations cut out an algebraic set with two components, one of which is the blowup $\widetilde{X}$, and the other is the exceptional divisor. In the case $y \neq 0$ and $v \neq 0$ (we're in $\mathbb{A}^{2} \times \mathbb{A}^{1}$ ) this turns into

$$
\left\{\begin{array}{l}
z=x^{3}+x z^{2} \\
x v=z
\end{array}\right.
$$

$\widetilde{X} \cap\left(\mathbb{A}^{2} \times \mathbb{A}^{1}\right)$ is given by $k[x, z, v] / x v=z$. Combine the equations above as $x v=x^{3}+x z^{2}$. The exceptional. divisor corresponds to $x=0$ in the first of the equations above. Outside of the exceptional divisor, we can divide this by $x$.

Remember that the rational differential $\omega$ is $d u$. This is given by $\omega=-\frac{d v}{v^{2}}$. If $p \in X \cap\{y \neq$ $0\}$, then there is a $\widetilde{p} \in \widetilde{X} \cap\left(\mathbb{A}^{2} \times \mathbb{A}^{1}\right) . x$ is a local parameter around $\widetilde{p}$. Therefore, $B$ around $p$ or $(\widetilde{p})$ is given by the local parameter $\frac{\partial(v \circ \varphi)}{\partial x_{j}}$. Last time, we showed that $x$ is a local parameter around $p . X \cap \mathbb{P}^{2}$ is given by $z=x^{3}+x z^{2} ; x$ is a local parameter because the $x$-derivative is nonzero. So $B$ around $p$ or $\widetilde{p}$ is given by $3 d(v \circ \varphi) / d x=\operatorname{det}\left(d y \circ \varphi / \partial x_{j}\right)$.
$v=x^{2}+y^{2} v^{2}$ and $d v=2 x d x+2 x v^{2} d x+2 x^{2} v d v$ which gives $\frac{d v}{d x}=\frac{2 x+2 x v^{2}}{1-2 x^{2} r}=x \cdot \frac{2+2 v^{2}}{1-2 x^{2} v}$. So this function has vanishing order exactly one at $p$. So $B=[1]+[0]+[-1]+[\infty]$.

Alternatively, write $z=\frac{x^{3}}{y^{2}=x z}$ and $\operatorname{map}(x, y, z) \mapsto\left(1, \frac{x^{2}}{y^{2}-x z}\right)$, and do some calculations.

The point is that an elliptic (cubic) curve can be written as a double cover of $\mathbb{P}^{1}$ with branching at four points.

### 16.1. Hilbert polynomial.

ThEOREM 16.4 (Hilbert). Let $M$ be a finitely generated graded module over the graded polynomial ring $S=k\left[x_{0}, \cdots, x_{n}\right]$. Then there exists a polynomial $p_{M}(t) \in \mathbb{Q}[t]$ of degree at most $n$ such that $p_{M}(d)=\operatorname{dim}_{k} M_{d}$ for $d$ sufficiently large.

Proof. By induction. If $n=-1$ this is trivial, because $S=k$ and the module $M$ is a finite-dimensional $k$-vector space. So $M_{d}=0$ for $d$ sufficiently large; this implies $p_{M}=0$.

Now, suppose the theorem holds for $<n$. Let

$$
\begin{gathered}
N^{\prime}=\left\{m \in M: x_{n} m=0\right\} \\
N^{\prime \prime}=M / x_{n} M
\end{gathered}
$$

Then $N^{\prime}$ and $N^{\prime \prime}$ are finitely generated graded $k\left[x_{0}, \cdots, x_{n-1}\right]$-modules. By induction, there is a $P_{N^{\prime}}(t) \in \mathbb{Q}[t]$ and $P_{N^{\prime \prime}}(t) \in \mathbb{Q}[t]$ such that $P_{N^{\prime}}(d) \operatorname{dim}_{k} N_{d}^{\prime}$ and $P_{N^{\prime \prime}}(d)=$ $\operatorname{dim}_{k} N_{d}^{\prime \prime}$. We have the following short exact sequence:

$$
0 \rightarrow N_{d}^{\prime} \rightarrow M_{d} \xrightarrow{x_{n}} M_{d+1} \rightarrow N_{d+1}^{\prime \prime} \rightarrow 0
$$

This implies that

$$
\operatorname{dim} M_{d+1}-\operatorname{dim} M_{d}=\operatorname{dim} N_{d+1}^{\prime \prime}-\operatorname{dim} N_{d}^{\prime}=P_{N^{\prime \prime}}(d+1)-P_{N^{\prime}}(d)
$$

Observe that $R(t):=P_{N^{\prime \prime}}(t+1)-P_{N^{\prime}}(t) \in \mathbb{Q}[t]$ is of degree $\leq n-1$ by induction.
Lemma 16.5. Let $f(t) \in \mathbb{Q}[t]$ be of degree $m$. There exists $g(t) \in \mathbb{Q}[t]$ of degree 1 such that $g(t+1)-g(t)=f(t)$. Therefore, there exists $p(t) \in \mathbb{Q}[t]]$ such that $p(t+1)-p(t)=$ $p_{N^{\prime \prime}}(t+1)-p_{N^{\prime}}(t)=\operatorname{dim} M_{d+1}-\operatorname{im} M_{d}$ for $d$ large enough. This implies that $\operatorname{dim} M_{d+1}-$ $p(d+1)=\operatorname{dim} M_{d}-p(d)$. Then $\operatorname{dim} M_{d}-p(d)=$ constant and $\operatorname{dim} M_{d}=\underbrace{p(d)+\text { constant }}_{p_{M}(d)}$ for d large enough.

## 17. November 3

THEOREM 17.1. If $M$ is a finitely generated graded $S=k\left[x_{0}, \cdots, x_{n}\right]$-module, then there exists a polynomial $P_{M} \in \mathbb{Q}[t]$ of degree $\leq n$ such that $P_{M}(d)=\operatorname{dim}_{k} M_{d}$ for d large enough. In particular, let $M=S / I(X)$ where $X$ is an algebraic set in $\mathbb{P}^{n}$. Then $P_{X}=$ $P_{S / I(X)}$ is the Hilbert polynomial of $X$.

EXAMPLE 17.2.
(1) Let $X=\mathbb{P}^{n}$. Then $M=S, S_{d}$ is the set of homogeneous polynomials of degree $d$, and the dimension $\operatorname{dim}_{k} S_{d}=\binom{n+d}{n}$. Therefore, the Hilbert polynomial for $\mathbb{P}^{n}$ is

$$
P_{\mathbb{P}^{n}}(t)=\binom{t+n}{n}=\frac{(t+n)(t+n-1) \cdots(t+1)}{n!}
$$

This is $\frac{1}{n!} t^{n}+$ lower terms.
(2) Now suppose $X=V(f) \subset \mathbb{P}^{n}$ is a hypersurface. $\quad S(X)=S /(f)$. Suppose $\operatorname{deg} f=d$. Then there is a short exact sequence

$$
S_{m} \xrightarrow{f} S_{m+d} \rightarrow S(X)_{m+1} \rightarrow 0
$$

So $\operatorname{dim}_{k} S(X)_{m+d}=\operatorname{dim}_{k} S_{m+d}-\operatorname{dim}_{k} S_{m}=\binom{m+d+n}{n}-\binom{m+n}{n}$ for $m \geq d$. So the Hilbert polynomial is

$$
P_{X}(t)=\binom{t+n}{n}-\binom{t-d+n}{n}
$$

This is $\frac{d}{(n-1)!} t^{n-1}+$ lower terms.
(3) $X=\left\{p_{1}, \cdots, p_{m}\right\}$. We can assume that $p_{i} \notin H_{0}=V\left(X_{0}\right)$ (there is a hyperplane that does not intersect any of the finite set of points). We get a short exact sequence

$$
0 \rightarrow I(X)_{d} \rightarrow S_{d} \xrightarrow{\Phi} k^{m}
$$

where

$$
f \mapsto\left(\frac{f}{x_{0}^{d}}\left(p_{1}\right) \cdots \frac{f}{x_{0}^{d}}\left(p_{m}\right)\right)
$$

A priori this is just left exact (the RHS might not be surjective). But for $d$ large enough, there exist $f_{i}$ where $\operatorname{deg} f_{i}=d$, and $f_{i}\left(p_{j}\right) \neq 0$ iff $i=j$. Specifically, $f_{i}=\prod_{j \neq i}\left(a_{j} x_{0}-x_{1}\right)$. So for $d$ large enough, $\Phi$ is surjective. So for large enough $d, S(X) \cong k^{m}$ and $P_{X}(t)=m$.

Remark 17.3.
(1) If $X$ is smooth an projective, $L_{X}(d)=\mathbb{P}(S(X))$ and $\operatorname{dim} L_{X}(d)=P_{X}(d)-1$ for $d$ large enough. But we also showed that this is complete, for $d$ large enough. So we can write this as $\operatorname{dim}|d H|=P_{X}(d)-1$, and $P_{X}(d)=\ell(d H)$.
(2) Let $X$ be smooth and projective. Then consider the graded ring $\bigoplus_{d \geq 0} \mathcal{L}\left(d K_{X}\right)$. You can show that there exists some polynomial $P(t)$ such that $P_{t}(d)=\ell\left(d K_{X}\right)$ for $d$ large enough. (This does not follow from our theorem.) The degree of this polynomial is called the Kodaira dimension of $X$, and is in the range $[-1, \operatorname{dim} X]$. ( -1 is for the zero polynomial.)

Definition 17.4. Let $X^{r} \subset \mathbb{P}^{n}$ be projective. The arithmetic genus of $X$ is

$$
P_{a}(X)=(-1)^{r}\left(P_{X}(0)-1\right)
$$

Theorem 17.5.
(1) If $X \cong Y$ as varieties, then $P_{a}(X)=P_{a}(Y)$.
(2) If $X, Y$ are smooth and birational, then $P_{a}(X)=P_{a}(Y)$.

This is hard; no proof.
EXAMPLE 17.6. (1) $P_{a}\left(\mathbb{P}^{n}\right)=0$, because $P_{\mathbb{P}^{n}}(0)=1$
(2) $P_{a}(V(f))$.

$$
\begin{gathered}
P_{X}(t)=\binom{t+n}{n}-P\binom{t+n-d}{n} \\
P_{X}(0)=1-\binom{n-d}{n} \\
P_{a}(X)=(-1)^{n}\binom{n-d}{n}=\left\{\begin{array}{cc}
0 & d \ll n \\
\binom{d-1}{n} & d>n
\end{array}\right.
\end{gathered}
$$

(3) $P_{a}\left(y^{2} z=x^{3}\right)=P_{a}\left(y^{2} z=x^{3}+z x^{2}\right)=P_{a}\left(y^{2} z=x^{3}+z^{2} x\right)=1$ because these are all smooth projective rational curves, and hence isomorphic to $\mathbb{P}^{1}$

THEOREM 17.7 (Serre duality). If $X$ is a smooth projective curve, then $P_{a}(X)=P_{g}(X)$.

Note that geometric genus was only defined for smooth varieties, but algebraic genus is defined for any variety.

Proposition 17.8. Let $X^{r} \subset \mathbb{P}^{n}$ be projective. Then the Hilbert polynomial $P_{X}(t)=\frac{d}{r!} t^{r}+$ lower terms, where $d \in \mathbb{Z}_{>0}$.

Definition 17.9. $d$ as used in the previous proposition is called the degree of $X$. (This coincides with the degree of a hypersurface.)

Proof. We know that this is true if $X$ is a hypersurface. Now let $(n-r-2)$-plane. Then

$$
P_{M}: X \rightarrow X^{\prime}:=P_{M}(X) \subset \mathbb{P}^{r+1}
$$

is birational (homework). We know that
(1) $S(X)$ is a finite $S\left(X^{\prime}\right)$ module (proven before)
(2) $k(X) \stackrel{( }{\cong} k\left(X^{\prime}\right)$ because they're birational. But this implies $\operatorname{Frac}(S(X)) \cong$ $\operatorname{Frac}\left(S\left(X^{\prime}\right)\right)$, because $\operatorname{Frac}(S(X))=k(X)\left(x_{0}\right)$, and $\operatorname{Frac}\left(S\left(X^{\prime}\right)\right)=k\left(X^{\prime}\right)\left(x_{0}\right)$ can be written as transcendental extensions. Why? Elements are the ratio of homogeneous polynomials of the same degree. But $\frac{f}{g} \in \operatorname{Frac}(S(X))$ can be written as

$$
\sum \frac{\lambda_{\alpha} x^{\alpha}}{g}=\sum \frac{\lambda_{\alpha}}{\frac{g}{x^{\alpha}}}=\sum \lambda_{\alpha} / x_{0}^{\alpha \cdot \beta} \sum \lambda_{\beta} \frac{x^{\beta}}{\beta x^{\alpha}} x_{0}^{\alpha \cdot \beta}
$$

Let $f_{1}, \cdots, f_{s}$ be the generators of $S(X)$ over $S\left(X^{\prime}\right)$. Because they have the same fractional field we can write $f_{i}=\frac{g_{i}}{h_{i}}$ for $g_{i}, h_{i} \in S\left(X^{\prime}\right)$. If $h=\prod h_{i}$ then $S(X) \subset \frac{1}{h} S\left(X^{\prime}\right)$. This is equivalent to saying that $h S(X) \subset S\left(X^{\prime}\right)$. Decompose $h$ into homogeneous components: $h=\sum_{d}$. Each component is in $S\left(X^{\prime}\right)$. So we can assume that there is some $h \in S\left(X^{\prime}\right)$ homogeneous such that $h \cdot S(X) \subset S\left(X^{\prime}\right)$ homogeneous of degree $d_{0}$. Therefore,

$$
\operatorname{dim} S(X)_{d} \leq \operatorname{dim} S(X)_{d} \leq \operatorname{dim} S(X)_{d+d_{0}}
$$

Therefore,

$$
P_{X^{\prime}}(d) \leq P_{X}(d) \leq P_{X^{\prime}}\left(d+d_{0}\right)
$$

for $d$ large enough. So $P_{X}-P_{X^{\prime}}$ is a polynomial of degree $<\operatorname{deg} P_{X^{\prime}}$. But we know that $P_{X^{\prime}}(t)=\frac{D}{r^{\prime}} t^{r}+\cdots$. So $P_{X}=\frac{D}{r!} t^{r}+$ lower terms.

### 17.1. Introduction to intersection theory.

Proposition 17.10. Let $Z^{n}$ be an affine variety and $X^{r}, Y^{s}$ be closed subvarieties. Let $x \in X^{r} \cap Y^{s}$. Assume that $X$ is smooth in $Z^{n}$ and write $X^{r} \cap Y^{s}=W_{1} \cup \cdots \cup W_{m} \cup W^{*}$ where $W_{i}$ are irreducible components and $W^{*}$ is some algebraic set that does not contain $x$. Then $\operatorname{dim} W_{i} \geq r+s-n$.

Corollary 17.11. Let $X^{r}, Y^{s} \subset \mathbb{P}^{n}$ be projective and $r+s \geq n$. Then $X^{r} \cap Y^{s} \neq \emptyset$.

Proof of corollary. Take the affine cone $C\left(X^{r}\right), C\left(Y^{s}\right) \subset \mathbb{A}^{n+1}$.

$$
C\left(X^{r}\right) \cap C\left(Y^{s}\right) \ni 0
$$

where $\operatorname{dim} C\left(X^{r}\right)=r+1$ and $\operatorname{dim} C\left(Y^{s}\right)=s+1$. The proposition implies that $\operatorname{dim} C\left(X^{r}\right) \cap$ $C\left(Y^{s}\right) \geq(r+1)+(s+1)-(n+1) \geq 1$. So $X^{r} \cap Y^{s} \neq \emptyset$.

Proof of proposition. $X \cap Y=(X \times Y) \cap \Delta$ where $\Delta: Z \rightarrow Z \times Z$ is the diagonal embedding. $X \times Y$ has dimension $r+s$. Once the intersection is cut out by $n$ equations, each component has dimension $\geq r+s-n$. It is enough to show that around $(x, x), \Delta$ is cut out by $f_{1}, \cdots, f_{n} \in \mathcal{O}(Z \times Z)$. Each time you cut out a variety by one equation, the dimension drops by at most one.

Let $x_{1}, \cdots, x_{n}$ be local parameters at $x$ (we're assuming that $x$ is a smooth point). By shrinking $Z$, we can assume that $x_{i}$ is actually in $\mathcal{O}(Z)$. Consider $f_{i}=x_{i} \otimes 1-1 \otimes x_{i} \in$ $\mathcal{O}(Z \times Z) . f_{i}\left(p, p^{\prime}\right)=x_{i}(p)-x_{i}\left(p^{\prime}\right)$ for $\left(p, p^{\prime}\right) \in Z \times Z$. Clearly, $\left.f_{i}\right|_{\Delta}=0$. But I claim that $d f_{1}, \cdots, d f_{n}$ are linearly independent in the cotangent space $T_{(x, x)}^{*}(Z \times Z)=T_{x}^{*} Z \oplus T_{x}^{*} Z$. This is because

$$
\mathfrak{m}_{(x, x)}=\mathfrak{m}_{x} \otimes \mathcal{O}(Z)+\mathcal{O}(Z) \otimes \mathfrak{m}_{x}
$$

implies that $x_{1} \otimes 1, \cdots, x_{n} \otimes 1,1 \otimes x_{1}, \cdots, 1 \otimes x_{n}$ form local parameters at $(x, x) . d f_{i}=$ $d\left(x_{i} \otimes 1\right)-d\left(1 \otimes x_{i}\right)$ are linearly independent. Consider the regular map

$$
\varphi=\left(f_{1}, \cdots, f_{n}\right): Z \times Z \rightarrow \mathbb{A}^{n}\left(y_{1}, \cdots, y_{n}\right)
$$

which is smooth at $(x, x)$. $\varphi^{*}\left(d y_{i}\right)=d f_{i}$. We can write $f^{-1}(0)=Z^{*} \cup Z^{* *}$, where $Z^{*} \ni(x, x)$ and $Z^{* *} \not \supset(x, x) . \operatorname{dim} Z^{*}=n, \mathbb{Z}^{*}$ is smooth at $(x, x) . \Delta \subset f^{-1}(0)$ implies $Z^{*}=\Delta$ i.e. $\Delta=V\left(f_{1}, \cdots, f_{n}\right)$ around $(x, x)$.

Theorem 17.12. Let $X^{r} \subset \mathbb{P}^{n}$ be of degreed (i.e. degree defined by the Hilbert polynomial). Then there is an open subset $U \subset \mathbb{G}\left(n-r, \mathbb{P}^{n}\right)$ such that for any $L \in U, \# L \cap X^{r}=d$.

Proof. Recall the incidence correspondence

$C \xrightarrow{\pi_{2}} \mathbb{P}^{n}$ is smooth with fibers isomorphic to $\mathbb{G}(n-r-1, n-1)$. Why? We proved that $\pi_{1}$ is a fiber bundle with fiber $=$ projective space. In this case, if we consider $\pi_{2}: \pi_{2}^{-1}\left(U_{i}\right) \rightarrow$ $U_{i}=\mathbb{P}^{n}-H_{i}$ then

$$
\pi_{2}^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbb{G}(n-r-1, n-1)
$$

in which $(x, L) \in \pi_{2}^{-1}\left(U_{i}\right)$ maps to $\left(x, L \cap H_{i}\right)$. You can check that this map induces an isomorphism. Therefore,

where $\pi_{2}^{-1}(X)$ is irreducible of dimension $r+r(n-r)=r(n-r+1)$, since the Grassmannian has dimension $r(n-r+1)$. The claim is that $\pi_{1}$ is separable. If this is separable, then there is an open subset of the Grassmannian such that the fiber is the transcendental degree; identify this with $d$.

## 18. November 8

Theorem 18.1. Let $X^{r} \subset \mathbb{P}^{n}$ be projective of degree $d$. Then there exists an open $U \subset$ $\mathbb{G}\left(n-r, \mathbb{P}^{n}\right)$ nonempty such that for any $L \in U$

- $X^{r} \cap L=\left\{p_{1}, \cdots, p_{k}\right\}$
- For any $p_{i} \in X^{r} \cap L, X^{r}, L$ are smooth at $p_{i}$ and $T_{p_{i}} X^{r}+T_{p_{1}} L=T_{p_{i}} \mathbb{P}^{n}$. Equivalently (by dimension reasons) $T_{p_{i}} X^{r} \cap T_{p_{i}} L=0$

In this case, $k=d$.
(So degree is the number of intersection points of a "generic" hyperplane.)

Proof.

$p_{1}$ is smooth with fibers isomorphic to $\mathbb{P}^{n-r}$, and $p_{2}$ is smooth with fibers isomorphic to $\mathbb{G}(n-r-1, n-r)$. Consider the preimage $p_{2}^{-1}(X) \subset C$ where $X \subset \mathbb{P}^{n}$. Then $p_{2}^{-1}(X)$
is irreducible of dimension $(n-r+1) r$. For any $L, p_{1}^{-1}(L) \cap p_{2}^{-1}(X) \cong X \cap L$ which is nonempty, so $p_{1}$ is surjective, and in particular it is dominant.

Smooth at a point $\Longleftrightarrow$ separable. We claim that $p_{1}: p_{2}^{-1}(X) \rightarrow \mathbb{G}(n-r, n)$ is separable. Equivalently, there exists $(x, L) \in p_{2}^{-1}(X)$ such that $p_{1}: p_{2}^{-1}(X) \rightarrow \mathbb{G}(r, n)$ is smooth at $(x, L)$. Equivalently there exists $(x, L) \in p_{2}^{-1}(X)$ such that $p_{2}^{-1}(X)$ is smooth at $(x, L)$ and $d p_{1}: T_{(x, L)} p_{2}^{-1}(X) \rightarrow T_{L} \mathbb{G}(n-r, n)$ is surjective. Locally on $\mathbb{P}^{n} C \rightarrow \mathbb{P}^{n}$ is a fibration, with fiber $\mathbb{G}(n-r-1, H)$. If $x \in X \cap\left(\mathbb{P}^{n}-H\right)$ has preimage $(x, L)$ then

$$
T_{(x, L)} p_{2}^{-1}(X) \cong T_{x} X \oplus T_{L} \mathbb{G}(n-1-r, H)=d p_{2}^{-1}\left(T_{x} X\right)
$$

So $p_{2}^{-1}(X)$ is smooth at $(x, L)$ iff $X$ is smooth at $x$.
$\left(\right.$ Note: $\left.\operatorname{ker} d p_{1(x, L)}=T_{(x, L)} p_{1}^{-1}\right)$
What is the kernel of $d p_{1}: T_{(x, L)} C \rightarrow T_{L} \mathbb{G}(r, n)$ ?

$$
d p_{2}\left(\operatorname{ker}\left(d p_{1}\right)\right)=T_{x} L
$$

(The kernel are the vectors tangent to $L$.) $d p_{2}: \operatorname{ker}\left(d\left[_{1}\right) \cap T_{(x, L)} p_{2}^{-1}(X) \xlongequal{\cong} T_{x} L \cap T_{x} X\right.$ Injectivity means this kernel is zero: i.e. $T_{x} L \cap T_{x} X=0$ is equivalent to $d p_{1}: T_{(x, L)} p_{2}^{-1}(X) \rightarrow$ $T_{L} \mathbb{G}(n-r, n)$. Now choose $x \in X$ such that $X$ is smooth at $x$. Choose $x \in L^{n-r} \subset \mathbb{P}^{n}$ such that $T_{x} X \cap T_{x} L=0$. Then $d p_{1}: p_{2}^{-1}(X) \rightarrow \mathbb{G}(n-r, n)$ is smooth at $(x, L)$. But we proved that once there is one point where the map is smooth, there is an open set where it's smooth. But these spaces have the same dimension, and we don't need char $=0$ to say: there exists $U \subset \mathbb{G}(n-r, n)$ non-empty and open such that $p_{1}: p_{1}^{-1}(U) \cap p_{2}^{-1}(X) \rightarrow U$ is smooth.

For all $L \in U, L \cap X=\left\{p_{1}, \cdots, p_{k}\right\}$ (it's smooth, and the relative dimension is zero).

$$
T_{x} L \cap T_{x} X=0 \Longleftrightarrow T_{x} L+T_{x} X=T_{x} \mathbb{P}^{n}
$$

We need to show that $k=d$. Reduce to the case where $X$ is a hypersurface. Let $L \in U$. Let $L \in U$. Let $x \in L$ such that $x \notin \bigcup \overline{p_{i} p_{j}}$ (the union of the lines through the $p_{i}$ ). $p_{x}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n-1}$ induces a birational morphism $X \rightarrow p_{2}(X) . \operatorname{deg} X=\operatorname{deg} P_{x}(X)$ (last time we proved that birational projection does not change the leading term of the Hilbert polynomial.) Also, $X \cap L \stackrel{\cong}{\rightrightarrows} p_{x}(X) \cap p_{x}(L)$

Therefore, we reduce to the case $X$ is a hypersurface in $\mathbb{P}^{n}$ of degree $d$. Set $X=V(f)$. $L$ is a line $\overline{p q} ; X \cap L$ contains the zeroes of $f(\lambda p+\mu q)=0$, and this is homogeneous of degree $d$. The condition $T_{x} X \cap T_{x} L=0$ is equivalent to $f$ and $f^{\prime}$ not having common zeroes; i.e. $f$ has distinct roots. Since this is an equation of degree $d$ there are exactly $d$ solutions.

Definition 18.2. Let $X^{r}, Y^{s} \subset Z^{n}$ where $Z$ is smooth. Let $X^{r} \cap Y^{s}=\bigcup W_{i}$ where $W_{i}$ are irreducible components. We say that $X$ and $Y$ intersect at $W_{i}$ properly if $\operatorname{dim} W_{i}=r+s-n$ (the minimum). We say that $X, Y$ intersect transversely if there exists $x \in W_{i}$ such that
$X, Y$ are smooth at $x$ and $T_{x} X+T_{x} Y=T_{x} Z$ (so the intersection of these vector spaces has dimension $r+s-n)$.

Lemma 18.3. If $X, Y$ intersect transversely at $W$ and $x \in W$ is a point as in the definition then $W$ is smooth at $x$.

Proof. $X \cap Y=X \times Y \cap \Delta$; since $Z$ is smooth, the diagonal is locally cut out by $n$ equations. So $X \cap Y=\varphi^{-1}(0)$ where $\varphi: X \times Y \rightarrow \mathbb{A}^{n}$ is smooth at $(x, x)$.

Theorem 18.4 (Bézout's Theorem). Let $X^{r}, Y^{s} \subset \mathbb{P}^{n}$ are projective varieties. Assume that $X \cap Y$ transversely. Then

$$
\operatorname{deg} X \cdot \operatorname{deg} Y=\sum \operatorname{deg} \underset{\substack{\text { irred. components }}}{W_{i} \in X \cap Y} W_{i}
$$

## Proof.

Notation 18.5. For $W_{i}$ let $W_{i}^{\prime} \subset W_{i}$ be the open subset consisting of $x$ such that $X, Y$ are smooth at $x$ and $T_{x} X+T_{x} Y=T_{x} \mathbb{P}^{n}$.

Case 1: $Y^{s}=L^{s}$ is an s-plane. $X^{r} \cap L^{s}=\bigcup W_{i}$ where $\operatorname{dim} W_{i}=r+s-n$. Choose a plane $M^{2 n-r-s}$ such that $M \cap W_{i}$ transversely for any $i$.

$$
\# X \cap(L \cap M)=\#(X \cap L) \cap M=\sum \# W_{i} \cap M=\sum \operatorname{deg} W_{i}
$$

Since $L \cap M$ is an $(n-r)$-plane, the expression on the left is $\operatorname{deg} X$.
Case 2: $r+s=n$. Consider $X \subset \mathbb{P}^{n} \subset \mathbb{P}^{2 n+1}$ where the map $\mathbb{P}^{n} \rightarrow \mathbb{P}^{2 n+1}$ has coordinates $\left(a_{0}, \cdots, a_{n}\right) \mapsto\left(a_{0}, \cdots, a_{n}, 0, \cdots, 0\right) . Y \subset \mathbb{P}^{n} \subset \mathbb{P}^{2 n+1}$ with the embedding $\left(b_{0}, \cdots, b_{n}\right) \mapsto$ $\left(0, \cdots, 0, b_{0}, \cdots, b_{n}\right)$. The Hilbert polynomial does not change in this embedding.

Definition 18.6. $J(X, Y)=\bigcup_{x \in X, y \in Y} \overline{x y}$. In other words,

$$
J(X, Y)=\left\{\left(a_{0}, \cdots, a_{2 n+1}\right):\left(a_{0}, \cdots, a_{n}, 0, \cdots, 0\right) \in X,\left(0, \cdots, 0, a_{n+1}, \cdots, a_{2 n+1}\right) \in Y\right\}
$$

In terms of coordinate rings, $S(J(X, Y))=S(X) \otimes S(Y)$; the homogeneous ideal is $S \otimes$ $I(Y)+I(X) \otimes S . \operatorname{dim} S(J(X, Y))_{\ell}=\sum_{i=0}^{\ell} \operatorname{dim} S(X)_{i} \operatorname{dim} S(Y)_{\ell-1}$.

$$
\begin{gathered}
\operatorname{dim} S(X)_{i}=\frac{d_{x}}{r!} i^{r}+o\left(i^{r}\right)=\binom{i+r}{r}+o\left(i^{r}\right) \\
\operatorname{dim} S(Y)_{\ell-i}=\left(\begin{array}{c}
\ell-i+s \\
s \\
75
\end{array}\right)+o\left((\ell-i)^{s}\right)
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{dim} S(J(X, Y))_{\ell} & =\sum_{i=0}^{\ell}\left(\binom{i+r}{r}+o\left(i^{r}\right)\right)\left(\binom{\ell-i+s}{s}+o\left((\ell-i)^{s}\right)\right) \\
& =d_{x} d_{y} \sum_{i=0}^{\ell}\binom{i+r}{r}\binom{\ell-i+s}{s}+o\left(\ell^{r+s+1}\right) \\
& =d_{x} d_{y}\binom{i+r+s+1}{r+s+1}+o\left(\ell^{r+s+1}\right)
\end{aligned}
$$

Therefore,

$$
P_{J(X, Y)}(t)=\frac{d x d y}{(r+s+1)!} t^{r+s+1}+\text { lower terms }
$$

i.e. $J(X, Y)$ is of dimension $r+s+1$ and $\operatorname{deg}=d_{x} d_{y}$.

Take $L=\left(x_{0}-x_{n+1}, x_{1}-x_{n+2}, \cdots, x_{n}-x_{2 n+1}\right)$ (an $n$-plane). Then $L \cap J(X, Y)=X \cap Y$. $X \cap Y$ is transverse means that $L \cap J(X, Y)$ is transverse. Then $\# X \cap Y=\# L \cap J(X, Y)=$ $d_{x} d_{y}$.

General case. Choose a plane $M^{2 n-r-s}$ that intersects each $W_{i}$ transversely. Then $\# M \cap$ $(X \cap Y)=\# M \cap\left(\cup W_{i}\right)=\sum \operatorname{deg} W_{i}$. On the other hand, $M \cap(X \cap Y)=X \cap(Y \cap M)$. We want $Y \cap M$ to be transverse. Let $x \in Y \cap M$. Then $T_{x} W_{i}+T_{x} M=T_{x} \mathbb{P}^{n}$ and this implies that $T_{x} Y=T_{x} M=T_{x} \mathbb{P}^{n}$ which shows that $Y \cap M$ transversely. Therefore, $Y \cap M=\bigcup Y_{i}$. Finally, $\# X \cap(Y \cap M)=\# X \cap\left(\bigcup Y_{i}\right)=\sum \#\left(X \cap Y_{i}\right)$. But $Y_{i}$ has dimension $n-r$, by transversality. We reduce to case 2 , which gives $\cdots=\sum \operatorname{deg} X \operatorname{deg} Y_{i}=\operatorname{deg} X\left(\sum \operatorname{deg} Y_{i}\right)$ which is $\operatorname{deg} X \operatorname{deg} Y$ by case 1 .

## 19. November 10

Theorem 19.1 (Bézout's theorem). If $X^{r}, Y^{s} \subset \mathbb{P}^{n}$ intersect properly and transversely (i.e. $X$ and $Y$ are smooth at a point and their tangent spaces together span the tangent space of $\mathbb{P}^{n}$ ), and $X \cap Y=\bigcup W_{i}$ then

$$
\operatorname{deg} X \cdot \operatorname{deg} Y=\sum \operatorname{deg} W_{i}
$$

In particular, if $X$ and $Y$ are plane curves in $\mathbb{P}^{2}$ of degree $d$ and e respectively, then $\# X \cap Y=d e$.

We introduced a new variety $J(X, Y) \subset \mathbb{P}^{2 n+1}$, the union of all the lines joining a point of $X$ with a point on $Y$. By calculating the Hilbert polynomial we know that $\operatorname{deg} J(X, Y)=$ $\operatorname{deg} X \cdot \operatorname{deg} Y . \# X \cap Y=\# J(X, Y) \cap L$ for some plane $L$. This eventually reduces to the case where $Y$ is a plane. In the general case, we had $X \cap Y=\cup W_{i}$ where $W_{i}^{\prime} \subset W_{i}$ is open. Look at the points where $X$ and $Y$ intersect transversely. If $X$ ad $Y$ intersect transversely, then there is only one component through that point. We can always find
a plane $M^{2 n-r-s}$ such that $M \cap W_{i}=\left\{p_{1}, \ldots, p_{k_{1}}\right\}$. Then $\sum \operatorname{deg} W_{i}=\#(X \cap Y) \cap M=$ $\# X \cap(Y \cap M)=\operatorname{deg} X \cdot \operatorname{deg} Y$.

Now we want to drop the restriction that the varieties intersect transversely; what if they only intersect properly?
Clarification 19.2 . Two varieties intersecting transversely means that for every component there is a point at which they intersect transversely. (If the intersection has multiple components, usually the intersection will not be transverse in the intersection point of the intersection variety.) In this case, transverse intersection implies proper intersection.

Assume $X^{r}, Y^{s} \subset Z^{n}$ are smooth and intersect properly. So each irreducible component has dimension $r+s-n$. Let $X \cap Y=\bigcup W_{i}$. Then one can define the intersection number $i(X, Y, W)$ of $X, Y$ along $W_{i}$. The definition will not be given here. But here is a special case: if $X=V(f)$ and $Y=V(g)$ are plane curves in $\mathbb{A}^{2}$ or $\mathbb{P}^{2}$ and $p \in X \cap Y$ then $i\left(X, Y, W_{i}\right)$ is the length of $\mathcal{O}_{\mathbb{A}^{2}, p} /(f, g)$ as an $\mathcal{O}_{\mathbb{A}^{2}, p^{2}}$-module.
Theorem 19.3 (Bézout's theorem, general case). If $X, Y \subset \mathbb{P}^{n}$ intersect properly then

$$
\operatorname{deg} X \cdot \operatorname{deg} Y=\sum_{W_{i} \in X \cap Y} i\left(X, Y, W_{i}\right) \operatorname{deg} W_{i}
$$

### 19.1. Curve theory.

Definition 19.4. An algebraic curve is an algebraic variety of dimension one.
Lemma 19.5. Let $X$ be a smooth curve and $Y$ be a projective variety. Then every rational map $\varphi: X \rightarrow Y$ is a morphism.

This is basically Zariski's main theorem, but there we require $X$ to be at least quasiprojective. But here, look at the graph $\Gamma \varphi$ with projections to $X$ and $Y$. We need to show that $\Gamma \varphi \rightarrow X$ is an isomorphism. But $\Gamma \varphi_{\left.\right|_{U}}=p^{-1}(U)$, so we can reduce to the affine case. So $\Gamma \varphi_{\left.\right|_{U}}$ is quasiprojective and we can use Zariski's main theorem.
Corollary 19.6. Let $X, Y$ be two smooth projective curves. If $X, Y$ are birational, then they are isomorphic.

So classifying smooth projective curves up to birational isomorphism is the same as classifying them up to actual isomorphism. Note that this is not true for surfaces: take a surface and blow up at a point.

Now suppose we have $X \rightarrow k(X)$ where $\operatorname{tr} \cdot d . k(X) / k=1$. Can we find a smooth projective curve with function field $k(X)$ ? (If there is one it's unique by the corollary.(So classifying smooth projective curves up to birational isomorphism is the same as classifying them up to actual isomorphism.))

Definition 19.7. A function field $K / k$ is a finitely generated field over $k$ of transcendental degree 1.

Question 19.8. Given $K$ can we find a smooth projective curve with $k(X) \cong K$ ? (You can always find a curve with the right function field, but is it birational to something smooth and projective?) Equivalently, given any curve $Y$ can we find a smooth projective $X$ birational to it?

Theorem 19.9. Given $K$ there exists such $X$.
Definition 19.10. A variety $X$ is called normal if for every $x \in X, \mathcal{O}_{X, x}$ is integrally closed in $k(X)$.

FACT 19.11. If $X$ is affine, then $X$ is normal iff $\mathcal{O}(X)$ is integrally closed in $k(X)$.

Proof. Suppose $\mathcal{O}(X)$ is integrally closed; we want to show each local ring is integrally closed. let $u \in k(X)$ where

$$
u_{n}+a_{1} u^{n-1}+\ldots+a_{n}=0
$$

for $a_{i} \in \mathcal{O}_{X, x}$. Write $a_{i}=\frac{b_{i}}{c_{i}}$ where $b_{i}, c_{i} \in \mathcal{O}(X)$ and $c_{i} \notin \mathfrak{m}_{x}$. Multiplying out denominators,

$$
d_{0} u^{n}+d_{1} u^{n-1}+\ldots+d_{n}=0
$$

for $d_{i} \in \mathcal{O}(X)$ and if $v=d_{0} u, v^{n}+e_{1} v^{n-1}+\ldots+e_{n}=0$ for $e_{i} \in \mathcal{O}(X)$. So $v \in \mathcal{O}(X)$ and $u=\frac{v}{d_{0}} \in \mathcal{O}_{X, x}$.

Now suppose $X$ is normal. Let $u \in k(X)$.

$$
u^{n}+a_{1} u^{n-1}+\ldots+a_{n}=0
$$

for $a_{i} \in \mathcal{O}(X) \subset \mathcal{O}_{X, x}$. So $u \in \mathcal{O}_{X, x}$. etc.

Let $X$ be an algebraic variety. Then the normalization of $X$ is $\widetilde{X}$ normal, together with a morphism $\pi: \widetilde{X} \rightarrow X$ such that if $Y$ is normal and $f: Y \rightarrow X$ is dominant, then there exists a unique $\widetilde{f}: Y \rightarrow \widetilde{X}$ making the diagram commute:


FACT 19.12. The normalization exists and is unique.

Proof. If $X$ is affine, then let $A$ be the integral closure of $\mathcal{O}(X)$ in $k(X)$, and $\widetilde{X}=$ $\operatorname{Spec}(A)$. By the previous fact, $\widetilde{X}$ is normal, because $A$ is integrally closed.

Let $f: Y \rightarrow X$ be dominant. Because $X$ is affine, this corresponds to a map $f^{*}$ : $\mathcal{O}(X) \rightarrow \mathcal{O}(Y)$, which produces an injective (because the morphism is dominant) map $k(X) \hookrightarrow k(Y)$. Write $Y=\cup Y_{i}$ for $Y_{i}$ an affine open. SO $k(Y) \supset \mathcal{O}\left(Y_{i}\right)$ : But now the
composition map naturally factors through $A$ :


If $u \in k(X), u \in A$ then

$$
u^{n}+a_{1} u^{n-1}+\ldots+a_{n}=0
$$

for $a_{i} \in \mathcal{O}(X)$. So

$$
f^{*}(u)^{n}+\ldots+f^{*}\left(a_{n}\right)=0
$$

which implies $f^{*}(u) \in \mathcal{O}\left(Y_{i}\right)$. So $f$ factors through its normalization:


In the general case, $X=\bigcup X_{i}$ where $X_{i}$ are affine. You can make the maps factor through the intersection, and glue all the $\widetilde{X}_{i}$ 's to get a $\tilde{X}$ :


The intersection of two affine varieties is still affine, because it is $X \times Y \cap \Delta$, and the product of two affine varieties is affine and $\Delta$ is closed by assumption.

Theorem 19.13. If $X$ is smooth, then $X$ is normal.

But the converse is not true: $x y=z^{2}$ is normal but not smooth. (Exercise for you: $k[x, y, z] / z^{2}-x y$ is integrally closed.)

FACT 19.14. If $\mathcal{O}_{X, x}$ is a UFD then it is integrally closed.

Proof.

$$
u^{n}+a_{1} u^{n-1}+\ldots+a_{n}=0
$$

for $a_{i} \in \mathcal{O}_{X, x} . \quad u=\frac{f}{g}$ and $(f, g)=1$

$$
f^{n}+a_{1} g f^{n-1}+\ldots+a_{n} g^{n}=0
$$

Let $\mathfrak{P}$ be a prime divisor of $g$. Then $\mathfrak{P} \nmid f^{n}$, which is a contradiction.
Theorem 19.15. If $X$ is normal, then $X_{\text {sing }}$ has codimension $\geq 2$.
Proposition 19.16. Let $X$ be normal and $Y \subset X$ be a closed subvariety of codimension one. Then there exists some open subset $U \subset X$ with $U \cap Y \neq \emptyset$ and $Y=V(f)$ on $U$.

Proof of theorem, given proposition. Suppose $X_{\text {sing }}$ has codimension 1. That is, there exists a subvariety $Y \subset X_{\text {Sing }}$ of codimension one. By shrinking $X$ we can assume that $Y=V(f)$. Let $y \in Y$ be a smooth point (of $Y$, not $X$ of course!). Let $y_{1}, \ldots, y_{n-1}$ be local parameters of $Y$ at $y$. That is, $y_{1}, \ldots, y_{n-1}$ generates the maximal ideal $\mathfrak{m}_{Y, y}$. But the $y_{i}$ are regular functions on $Y$ that can be lifted to regular functions on $X$.

$$
0 \rightarrow(f)=I(Y) \rightarrow \mathcal{O}(X) \rightarrow \mathcal{O}(Y) \rightarrow 0
$$

so $y_{1}, \ldots, y_{n-1}, f$ generate $\mathfrak{m}_{X, y}$. So $d y_{1}, \ldots, d y_{n-1}$ generate $\mathfrak{m}_{X, y} / \mathfrak{m}_{X, y}^{2}$. This is a contradiction: this vector space has dimension $>n$ because $X$ is singular there.

Proof of proposition. We will prove the proposition for $\operatorname{dim} X=1$; the higher dimensional case just requires more definitions. $Y=\{y\} \in X$. If $X$ is normal, then we claim that this is defined by one equation on some open neighborhood of $X$. We can assume $X$ is affine. Let $f \in \mathcal{O}(X)$ such that $f(y)=0$. By shrinking $X$ we can assume that the zero locus of $f$ is just $\{y\}$ (if there are other zeroes can just throw them away). By Hilbert's Nullstellensatz, $\sqrt{(f)}=\mathfrak{m}_{y}$. Therefore, there exists some $r$ such that $\mathfrak{m}_{y}^{r} \subset(f) \subset \mathfrak{m}_{y}$ (the last inclusion is automatic because $f$ vanishes at $y$ ). Let $r$ be the smallest integer such that $\mathfrak{m}_{y}^{r}=(f)$.

To be continued...

## 20. November 15

Presentations: December 1-3, 20 minute presentations. Proofs only if there is time. Maybe examples. Written survey due later: 5-10 pages.

Proposition 20.1. Let $X$ be a normal variety, $Y \subset X$ of codimension 1. Then locally on $X, Y$ is defined by one equation. That is, there is some open $U \subset X$ such that $U \cap Y \neq \emptyset$ and $I(U \cap Y) \subset \mathcal{O}(U)$ is generated by one element.

Proof. First do the case where $\operatorname{dim} X=1$. Let $Y=\{x\}$. By shrinking $X$ we can find $f \in \mathcal{O}(X)$ such that $x$ is the only zero of $f$. In $\mathcal{O}_{X, x}, \mathfrak{m}_{x}^{r} \subset(f) \subset \mathfrak{m}_{x}$. Choose $r$ such that $\mathfrak{m}_{x}^{r-1} \not \subset(f)$ and $\mathfrak{m}_{x}^{r} \subset(f)$. Then there are some $a_{1}, \cdots, a_{r-1} \in \mathfrak{m}_{x}$ such that $g=a_{1}, \cdots, a_{r-1} \notin(f)$ and $g \mathfrak{m}_{x} \subset(f)$.

Let $u=\frac{g}{f} \notin \mathcal{O}_{X, x}$ but $u \mathfrak{m}_{x} \subset \mathcal{O}_{X, x}$. I claim that $u \mathfrak{m}_{x} \not \subset \mathfrak{m}_{x}$. Otherwise, $u: \mathfrak{m}_{x} \rightarrow \mathfrak{m}_{x}$ is an $\mathcal{O}_{X, x}$-module homomorphism. So there exists $F \in \mathcal{O}_{X, x}[t]$ monic such that $F(u)=0$, which means that $u$ is integral over $\mathcal{O}_{X, x}$. But $\mathcal{O}_{X, x}$ is integrally closed. So $u \in \mathcal{O}_{X, x}$, which is a contradiction. Therefore, $u \mathfrak{m}_{x}=\mathcal{O}_{X, x}$. This implies that $\mathfrak{m}_{x}=\left(\frac{1}{u}\right)$. We are done: we were trying to prove that the ideal is generated by one element.

REMARK 20.2. In fact, what we showed is that if $X$ is a normal curve, $\mathcal{O}_{X, x}$ is in fact a principal domain.

Now do the general case. Recall that if $x \in X$ is a point, then we have defined $\mathcal{O}_{X, x}=$ $\underset{U \ni x}{\lim } \mathcal{O}(U)$. Now if $U \subset X$ is a closed subvariety, we can define $\mathcal{O}_{X, Y}=\underset{U \xrightarrow{\longrightarrow}=\emptyset}{\lim _{\emptyset}}=\mathcal{O}(U)$. It is easy to see that $\mathcal{O}_{X, Y}$ is a local ring with residue field $k(Y)$ and maximal ideal $\mathfrak{m}_{X, Y}=\underset{U \cap Y \neq \emptyset}{\lim } I(U \cap Y)$.

Now the proof is the same if we replace $\mathcal{O}_{X, x}$ in the 1-dimensional case with $\mathcal{O}_{X, Y}$. Namely, (1) there exists some open set $U \subset X$ such that $U \cap Y \neq \emptyset$ and $U \cap Y$ is set-theoretically defined by one equation; and (2) $\mathcal{O}_{X, Y}$ is integrally closed (proof is the same as the fact that in the affine case $X$ normal $\Longleftrightarrow \mathcal{O}_{X, x}$ is integrally closed).

For normal varieties, the singular locus has codimension $\geq 2$. So normal curves are smooth.
Theorem 20.3. For any finitely-generated function field $K / k$, there is some smooth variety such that $k(X)=K$.

Proof. Let $K / k$ be a function field; i.e. $t r . d . K / k=1$. Choose any projective curve $X$ such that $k(X)=K$ : take any finitely generated $k$-algebra $B \subset K$ (whose fraction field is $K$ ), and take $U=\operatorname{Spec}(B)$ affine, embed this in $\mathbb{P}^{n}$ and take the closure. However, the point is that this might not be smooth.

Now let $\widetilde{X}$ be the normalization of $X$. Then $\widetilde{X}$ is smooth. Cover $X$ by affine opens $U_{i}$ such that any two points of $X$ are contained in some $U_{i}$. By construction, $\widetilde{X}=\bigcup \widetilde{U}_{i}$, where $\widetilde{U}_{i}$ is the normalization of $U_{i}$. The $\widetilde{U}_{i}$ are affine smooth. Let $\overline{U_{i}}$ be the closure of $\widetilde{U}_{i}$ in some projective space; each $\overline{U_{i}}$ is projective. There is a rational map $\widetilde{U}_{i} \rightarrow \overline{U_{i}}$, and $\widetilde{U}_{i} \subset \widetilde{X}$, so this extends to a rational map from $\widetilde{X} \xrightarrow{\varphi} \overline{U_{i}}$. Let $\varphi: \widetilde{X} \rightarrow \prod \overline{U_{i}}$, and $\bar{X}$ be the closure of the image of $\varphi$. So we have


Now I claim that $\varphi$ is an isomorphism (this implies the theorem). It is clear that $\varphi$ is injective. If $x, y \in \widetilde{X}$, there is some $\widetilde{U}_{i}$ such that $x, y \in \widetilde{U}_{i}$. If $\varphi(x)=\varphi(y)$ then $x=y$ by diagram chasing. (Same in $\overline{U_{i}}$ means same to begin with.)

To show that $\varphi$ is surjective, we need a lemma:

Lemma 20.4. Let $\pi: \widetilde{X} \rightarrow X$ be the normalization of a variety. Then $\pi$ is surjective.

Proof. By construction, it is enough to show that this is true if $X$ is affine. (The whole thing is made by gluing together affine pieces.)

$$
A=\mathcal{O}(X) \subset B=\mathcal{O}(\widetilde{X}) \subset k(X)
$$

Let $x \in X$; then $\mathfrak{m}_{x} \subset A$. It is enough to show $\mathfrak{m}_{x} B \neq B$. If $B$ is integral over $A$ then it is finite over $A$. By Nakayama's lemma, if $B$ is a finite $A$-module and $\mathfrak{m}_{x} B=B$ then $B=0$.
(If $\widetilde{X}$ is smooth, then the closure of its image is smooth and projective.)


Let $\overline{\bar{X}}$ be the normalization of $\bar{X}$. $\widetilde{X}$ is a smooth normal variety that maps to $\bar{X}$ via a dominant morphism. I claim that $\varphi$ is an open embedding; this will be proved at the end.
$\widetilde{X}$ can be regarded as an open subset of $\overline{\bar{X}}$. We can extend $\widetilde{X} \rightarrow X$ to get a morphism $\overline{\bar{X}} \rightarrow X$. This is dominant, and factors through a unique morphism $\overline{\bar{X}} \rightarrow \widetilde{X}$.


The morphism $\widetilde{X} \rightarrow X$ extends $\overline{\bar{X}} \rightarrow X$ because $X$ is projective and $\overline{\bar{X}}$ is smooth. Since $\widetilde{X}$ is the normalization of $X$, it factors as


Now let $x \in \bar{X}$, and choose $x^{\prime} \in b \bar{X}$ a lift of $x$. Then $x=\psi\left(x^{\prime}\right) \in \widetilde{X}$ so $\varphi: \widetilde{X} \rightarrow \bar{X}$ is surjective.

So it remains to show that $\varphi$ is an open embedding.


At the level of local rings we have


The isomorphisms and injections in this picture force $\mathcal{O}_{\tilde{X}, x} \stackrel{\varphi^{*}}{\leftarrow} \mathcal{O}_{\bar{X}, \varphi_{(x)}}$ to be injective.

Definition 20.5. Let $\varphi: X \rightarrow Y$ be a morphism of algebraic varieties. Then $\varphi$ is called finite if for any affine open $V \subset Y, \varphi^{-1}(V)=: U$ is affine and $\mathcal{O}(U)$ is a finite $\mathcal{O}(V)$-module.

Proposition 20.6. Let $\varphi: X \rightarrow Y$ be a non-constant morphism of smooth projective curves. Then $\varphi$ is finite.

Proof. $\varphi$ is surjective and therefore dominant: the image is closed, it is not a point, and is connected, so it must be all of $Y$. Let $V \subset Y$ affine. Consider $A=\mathcal{O}(V) \subset k(V)$

where $B$ is the integral closure of $A$ in $k(X)$. Let $U=\operatorname{Spec}(B) . U$ is integrally closed, hence normal, hence smooth. In terms of varieties, this is


Where $U \rightarrow X$ is the natural rational map that is induced. But this extends to a morphism because $U$ is smooth and projective.
$B$ is finite over $A$ by general commutative algebra, so we are done if we show $\varphi^{-1}(V)=U$. Suppose this is false. Then there is some $y_{0} \in V$ and $x_{0} \notin U$ such that $\varphi\left(x_{0}\right)=y_{0}$.

Sub-claim: there is some $f \in k(X)$ such that $f$ has poles at $x_{0}$, and $f \in \mathcal{O}(U)$. I first show that, if true, this leads to a contradiction. $f \in B=\mathcal{O}(U)$ so

$$
f^{n}+a_{1} f^{n-1}+\cdots+a_{n}=0
$$

for $a_{i} \in \mathcal{O}(V)=A$. So

$$
f=-a_{1}-\frac{a_{2}}{f}-\cdots-\frac{a_{n}}{f^{n-1}}
$$

But $f$ having poles at $x_{0}$ means $\frac{1}{f}=\mathcal{O}_{X, x_{0}}$ because $\mathcal{O}_{X, x_{0}}$. (If you choose a local parameter you can write $f=u x^{r}$ for $r<0$, so $\frac{1}{f}$ is a regular element.) This is a contradiction.

Now I prove the sub-claim. Let $\varphi^{-1}\left(y_{0}\right)=\left\{x_{0}, \cdots, x_{n}\right\}$. Let $\tilde{f}$ be any function regular on $\left\{x_{1}, \cdots, x_{n}\right\} \cap U$, but with poles at $x_{0}$. This is possible, because there's an affine open such that $x_{0}, \cdots, x_{n}$ are in the affine open. So choose some rational function on the affine open that is regular on the other $x_{i}$ but has a pole on $x_{0}$. If $\widetilde{f}$ has no poles in $U$, we are done (function is regular on $U$ and has a pole on $x_{0}$ ). Otherwise, let $x^{\prime} \in U . \widetilde{f}$ has a pole at $x^{\prime}$. $\widetilde{f}$ is regular on $x_{i}$ so $x^{\prime}$ is not one of these $x_{i}$. So $\varphi\left(x^{\prime}\right)=y^{\prime} \in V$ for $y^{\prime} \neq y_{0}$. Choose $h \in \mathcal{O}(V), h\left(y_{0}\right) \neq 0$, where $h$ vanishes at $y^{\prime}$ with sufficiently high order. (You can do whatever you want, over an open affine.) Take $f=\widetilde{f} \varphi^{*}(h)$. Then $f$ will have no pole at $x^{\prime}$. Continue: if $\widetilde{f}$ has more than one pole, then do this finitely many times.

## 21. November 17

If $\varphi: X \rightarrow Y$ is a nonconstant projective morphism, and $X$ and $Y$ are smooth, projective curves, then $\varphi$ is a finite morphism: i.e. for $V \subset Y$ affine open, $U=\varphi^{-1}(V)$ is affine open and $\mathcal{O}(U)$ is a finite $\mathcal{O}(V)$-module.

Definition 21.1. If $X$ is a smooth projective curve, recall the prime divisors are just points. Define the degree map

$$
\operatorname{deg}: X \rightarrow \mathbb{Z} \text { where } D=\sum n_{i} p_{i} \mapsto \operatorname{deg}(D)=\sum n_{i}
$$

Theorem 21.2. If $X$ is a smooth projective curve and $D=(f)$ is principal, then $\operatorname{deg} D=$ 0.

Corollary 21.3. The degree map descends to a map

$$
\operatorname{deg}: C l(X)=\operatorname{Pic}(X)=\operatorname{Div}(X) / \operatorname{Div}^{0}(X) \rightarrow \mathbb{Z}
$$

Definition 21.4.

$$
\operatorname{Pic}^{0}(X)=\operatorname{ker}(\operatorname{deg}: \operatorname{Pic}(X) \rightarrow \mathbb{Z})
$$

Proposition 21.5. Let $\varphi: X \rightarrow Y$ be a dominant (i.e. nonconstant) morphism of smooth projective curves. Let $D \in \operatorname{Div}(Y)$. (We defined the pullback $\varphi^{*} D \in \operatorname{Div}(X)$ : you just have to define it by prime divisors, which are locally given by one equation. Pull back this equation and take the degree; this defines a divisor.) Then $\operatorname{deg} \varphi^{*} D=\operatorname{deg} D \cdot \operatorname{deg} \varphi$ where $\operatorname{deg} \varphi=[k(X): k(Y)]$.

Proof of theorem. Let $f \in k(X)$; this can be regarded as a rational morphism $\varphi$ : $X \rightarrow \mathbb{P}^{1}$; but we can extend this to a morphism. This is nonconstant if $f$ is nonconstant. Exercise: $(f)=\varphi^{*}([0]-[\infty])$. Then $\operatorname{deg}(f)=\operatorname{deg} \varphi \cdot \operatorname{deg}([0]-[\infty])$.
Corollary 21.6. Let $X$ be a smooth projective curve. If there are $x, y \in X$ and $x-y$ is principal, then $X \cong \mathbb{P}^{1}$.

Proof. If $x-y=(f), \varphi: X \rightarrow \mathbb{P}^{1}$ then $x=\varphi^{*}([0]) . \operatorname{So} \operatorname{deg} \varphi=1$. So $\varphi$ is birational; if it's birational, we have proved before that it is an isomorphism.

Proof of proposition. (Use the natural embedding $k(Y) \subset k(X)$.) We can assume that $D=p$. Write $\varphi^{-1}(p)=\left\{p_{1}, \cdots, p_{\ell}\right\} \subset X$.Let $y$ be a local parameter at $p \in Y$. In $\mathcal{O}_{X, p_{i}}, y=u_{i} x_{i}^{r_{i}}$ where $u_{i}$ is a unit of $\mathcal{O}_{X, x_{i}}$. Then $\varphi^{*} D=\sum r_{i} p_{i}$. We want to show that $\sum r_{i}=\operatorname{deg} \varphi$. Let $V \ni p$ be an affine open. Define $A=\int(V), U=\varphi^{-1}(V)$ (affine), $B=\mathcal{O}(U)$. Then $B / A$ is a finite $A$-module. Let $\mathfrak{m}_{p} \subset A$ be the maximal ideal corresponding to $p$. By localization, there is a map $\mathcal{O}_{Y, p} \cong A_{\mathfrak{m}_{p}} \rightarrow B_{\mathfrak{m}_{p}}$, where $B_{\mathfrak{m}_{p}}$ is a finite $A_{\mathfrak{m}_{p}}$-module. But $B_{\mathfrak{m}_{p}}$ is a free. $A_{\mathfrak{m}_{p}}$ is a principal domain; any module over one of these is free, plus some torsion module. The torsion could only happen in $y$; but $y$ is not torsion on $B$. Alternatively, this is an integral domain so it has no torsion. So we can write $B_{\mathfrak{m}_{p}} \cong A_{\mathfrak{m}_{p}}^{\oplus n}$, where $n=\operatorname{deg} \varphi . B_{\mathfrak{m}_{p}} \otimes k(Y)=k(X)$. Therefore, $\operatorname{dim}_{k} B_{\mathfrak{m}_{p}} / y$ is an $n$-dimensional vector space. ( $y$ generates the maximal ideal $\mathfrak{m}_{p} B_{\mathfrak{m}_{p}}$, so we are here just modding out by the maximal ideal.)

Claim: $B_{\mathfrak{m}_{p}}=\bigcap \mathcal{O}_{X, p_{i}}$. The inclusion $\subset$ is obvious; we prove the other direction.

$$
B_{\mathfrak{m}_{p}}=\left\{\frac{f}{g}: g \in \mathcal{O}(V), g(p) \neq 0, f \in B=\mathcal{O}(U)\right\}
$$

Let $h \in \bigcap \mathcal{O}_{X, p_{i}} . h$ is regular away from $q_{2}, \cdots, q_{m}, q_{i} \neq p_{j} . p \in W:=V-\varphi\left(q_{1}, \cdots, q_{m}\right) \subset$ $V$ (the $q_{i}$ are the places where $h$ is not regular: these are not any $p_{i}$ ). [If the $q_{i}$ are defined by $f$, then $\mathcal{O}(W)=\int(V)_{f} . h \in \mathcal{O}\left(\varphi^{-1}(W)\right)=\mathcal{O}(W) \otimes_{\mathcal{O}(V)} \mathcal{O}(U)$.]

$$
h \in \mathcal{O}(U) \otimes_{\mathcal{O}(V)} \mathcal{O}(W) \subset B_{\mathfrak{m}_{p}}
$$

We can write $y-u\left(x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}\right)$. We have

$$
B_{\mathfrak{m}_{p}} / y \cong \prod \mathcal{O}_{X, p_{i}} / x_{i}^{r_{i}}
$$

This implies that $\operatorname{dim}_{k} B_{\mathfrak{m}_{p}} / y=\sum \operatorname{dim}_{k} \int_{X, p_{i}} / x_{i}^{r_{i}}=\sum r_{i}$.
Example 21.7 (Calculating $\left.\operatorname{Pic}^{0}(X)\right) . \quad \operatorname{Pic}^{0}\left(\mathbb{P}^{1}\right)=0$.
Let $X$ be the elliptic curve defined by $y^{2} z=x_{3}-x z^{2}$. Consider the divisor class given by a hyperplane section $L_{X}(1)$. We can consider the hyperplane $\{z=0\}=: H_{z}$. Take $p_{0}=(0,1,0)$ to be the origin, and note that $H_{Z} \cap X=p_{0}$; around this point, the local equation is $z=x^{3}-x z^{2}$. $x$ is a local parameter at $p_{0}$. By the non-Archimedean property of ord, $\operatorname{ord}_{p_{0}} z=\operatorname{ord}_{p_{0}} x^{3}-x z^{2} \geq \min \left\{\operatorname{ord}_{p_{0}} x^{3}, \operatorname{ord}_{p_{0}} x z^{2}\right\} \geq 3$. Since $\operatorname{ord}_{p_{0}}\left(x z^{2}\right) \geq 7$, $\operatorname{ord}_{p_{0}} z=\operatorname{ord}_{p_{0}}\left(x^{3}-x z^{2}\right)=3$. So $3 p_{0} \in L_{X}(1)$. Define a map $A J: X \rightarrow \operatorname{Pic}^{0}(X)$ sending $p \mapsto p-p_{0}$. I claim that $A J$ is injective: if $p-p_{0} \sim q-p_{0}$ then $p \sim q$. But by the corollary,
if two points are equivalent, then your curve is $\mathbb{P}^{1}$. But this curve is not $\mathbb{P}^{1}$ (for example, they have different genuses). So this is a contradiction.

Now I claim that $A J$ is surjective. Let $D \in \operatorname{Div}(X)$, where $\operatorname{deg} D=0$. Because $D$ has degree zero, it can be written $\sum n_{i} p_{i}$ with $\sum n_{i}=0$, we can write this as $D=\sum n_{i}\left(p-p_{0}\right)$. All the $n_{i}$ can be assumed to be positive: given $x \in X$, consider the line $\overline{x p_{0}}$ which intersect $X$ in $x, p_{0}$, and somewhere else, say $y$. Then $L_{X}(1) \ni x+p_{0}+y \sim 3 p_{0}$. Then $x-p_{0} \sim p_{0}-y$. So if one of the $n_{i}$ were negative, we could replace $x$ with $y$, which is linearly equivalent, and switch the sign.

If $\sum n_{i}=1$ we are done. Otherwise, write $D=\left(p_{1}-p_{0}\right)+\left(p_{2}-p_{0}\right)+\cdots . \overline{p_{1} p_{2}} \cap X=$ $\left\{p_{1}, p_{2}, q\right\}$.

$$
\begin{gathered}
L_{X}(1) \ni p_{1}+o_{2}=q \sim 3 p_{0} \\
p_{1}-p_{0}+p_{2}-p_{0} \sim p_{0}-q \sim q^{\prime}-p_{0}
\end{gathered}
$$

where $q^{\prime}$ is the other point on the line through $q, p_{0}$. We have reduced $\sum n_{i}$ by one; after continuing this procedure sufficiently many times, we will eventually get $D \sim p-p_{0}$.

So here is the Abel-Jacobi map:

$$
A J: X \stackrel{\cong}{\rightrightarrows} \operatorname{Pic}^{0}(X)
$$

Since the RHS is a group, this gives a group structure on $X$. More precisely, $p_{0}$ is the identity element. Addition is given as follows: $p_{1}+p_{2}:=A J^{-1}\left(A J\left(p_{1}\right)+A J\left(p_{2}\right)\right)=$ $A J^{-1}\left(p_{1}-p_{0}\right)+\left(p_{2}-p_{0}\right)$. This is just $q^{\prime}$. So in other words, take a line through $p_{1}$ and $p_{2}$, find where else $q$ it hits the curve. Now find the other point $q^{\prime}$ on the line through $q$ and $p_{0} . q^{\prime}$ is the desired sum. To get $-p_{1}$, take the line through $p_{1}$ and $p_{0}$, and find where else it intersects the curve.

Theorem 21.8. Let $X$ be an elliptic curve. The multiplication map $m: X \times X \rightarrow X$ and the inverse $s: X \rightarrow X$ are morphisms of algebraic varieties.

Proof. Push points around.

Let $x=(a, b, 1) \in X$. The line $\overline{x p_{0}}$ is given by $a z-x=0$. Therefore,

$$
\overline{x p_{0}} \cap X=\left\{\begin{array}{l}
a z-x=0 \\
y_{2} z=x^{3}+x z_{2}
\end{array}\right.
$$

There should be three solutions: $(0,1,0),(a, b, 1),(a,-b, 1)$. So $s:(a, b, 1) \mapsto(a,-b, 1)$. This shows that this is a morphism when you restrict to this affine open.

Definition 21.9. A group variety is an algebraic variety $G$ together with an element $e \in G$, and regular morphisms $m: G \times G \rightarrow G$ and $s: G \rightarrow G$, such that $(G, e, m, s)$ form a group in the usual sense.

A group variety is called an abelian variety if $G$ is projective. If $G$ is projective, then the group structure is necessarily abelian. Unfortunately, the converse is false.

Corollary 21.10. $X$ defined by $x y^{2}=x^{3}-x z^{2}$ is an abelian variety.
Remark 21.11. In fact, if $\operatorname{char}(k) \neq 2,3$ then every (geometric) genus one projective curve is isomorphic to a cubic curve in $\mathbb{P}^{2}$ of the form $y^{2} z=x_{3}+a x z^{2}+b z^{3}$, with $4 a^{3}+27 b^{2} \neq 0$. This is called the Weierstrass normal form. By the same argument, $X$ is an abelian variety, choosing $(0,1,0)$ as the "infinity point."

Suppose $k=\mathbb{C}$. Write $\omega=\frac{d x}{y}$; this is a regular differential. In the elliptic case, this is $\frac{d x}{\sqrt{x^{3}+a x+b}}$, and was called the elliptic integral. Let's construct a map $X \rightarrow \mathbb{C} / L$ where $L$ is a lattice, by taking $p \mapsto \int_{p_{0}}^{p} \omega$. This does not give a well-defined map $X \rightarrow \mathbb{C}$; it's possible to choose a path from $p_{0} \mapsto p_{1}$ (i.e. one containing a non-contractible loop) that makes a different integral. These are called periods. So to make this map well-defined, you have to mod out by the lattice generated by the periods (in this case, there are only two periods, which is good, since that way you get a two-dimensional $\mathbb{R}$-lattice inside of $\mathbb{C}$ ). This map ends up being an isomorphism, so $X$ turns out to be isomorphic to a torus.

Example 21.12 (Linear affine algebraic groups). $G L_{n}=\left\{A \in M_{n \times n}: \operatorname{det} A \neq 0\right\}$. Since the determinant is a polynomial, this cuts out a linear variety.
$P G L_{n}=\left\{G L_{n} / k^{\times} I_{n}\right\}$ has a group structure. You can also show that this is an affine variety.
$\mathbb{G}_{m}=G L_{1}=\mathbb{A}^{1}-\{0\}$ is a special case of $G L_{n}$. This is a commutative group... but we don't call it an abelian variety.
$\mathbb{G}_{a} \cong\left(\mathbb{A}^{1},+\right)$ is $\mathbb{A}^{1}$ with the natural addition structure.
Given a quadratic form on your space, you can construct $S O$, the subgroup of $G L_{n}$ preserving your form. Every linear affine algebraic group can be realized as a subgroup of $G L_{n}$.

But the situation is different for projective varieties:
Theorem 21.13. Every abelian variety is abelian.

Elliptic curves are examples here. In general, if $X$ is a smooth projective curves of genus $g, \operatorname{Pic}^{0}(X)$ is an abelian variety of dimension $g$. (This is just a group, but it has a natural algebraic variety structure.)

In fact, every algebraic group $G$ is an extension

$$
0 \rightarrow N \rightarrow G \rightarrow A \rightarrow 1
$$

where $A$ is an abelian variety and $N$ is a linear algebraic group (any closed subgroup of $\left.G L_{n}\right)$.

## 22. November 22

### 22.1. Riemann-Roch.

Theorem 22.1 (Riemann-Roch Theorem). Let $X$ be a smooth projective curve over $k$ of geometric genus $g^{1}$, and $D$ a divisor on $X$. Then

$$
\ell(D)-\ell\left(K_{x}-D\right)=1-g+\operatorname{deg} D
$$

Both sides depend only on the divisor class group of $D$. All the regular functions on $X$ are constant, so $\ell(0)=1$. Also, $\ell(D)=0$ if $\operatorname{deg} D<0$, because $(f)+D \geq 0 \Longrightarrow \operatorname{deg} D \geq 0$. Substituting $D=K_{x}$ in Riemann-Roch gives

Corollary 22.2.

$$
\operatorname{deg} K_{x}=2 g-2
$$

Corollary 22.3. If $\operatorname{deg} D \geq 2 g-1$ then $\ell(D)=1-g+\operatorname{deg} D$.

Proof. If $\operatorname{deg}\left(K_{x}-D\right)<0$ then $\ell\left(K_{x}-D\right)=0$.
Corollary 22.4. If $\operatorname{deg} D \geq 2 g$ then $\ell(D-p)=\ell(D)-1$.
Corollary 22.5. If $\operatorname{deg} D \geq 2 g$ then $|D|$ has no base point; in particular, the rational map $X \rightarrow|D|^{*}$ (the dual projective space $(|D|)^{\vee}$ ) is a morphism. (The base points are exactly where the rational map cannot be extended to a morphism.)

Proof. If $p$ were a base point, then $\ell(D-p)=\ell(D)$, contradicting the previous corollary.
Theorem 22.6. Let $D$ be a divisor on $X$. If $p, q \in X$ such that $\ell(D-p-q)=\ell(D)-2$ then $Z_{|D|}: X \rightarrow|D|^{*}$ is a closed embedding.

Corollary 22.7. If $\operatorname{deg} D \geq 2 g+1$ then $Z_{|D|}: X \rightarrow|D|^{*}$ is a closed embedding.
REMARK 22.8. $|D|^{*}$ is noncanonically isomorphic to $\mathbb{P}^{\operatorname{deg} ~} D-g$.
Corollary 22.9. Let $g \geq 2$. Then $Z_{\left|3 K_{x}\right|}: X \rightarrow \mathbb{P}^{5 g-6}$ is a closed embedding.

PROOF. $\operatorname{deg} 3 K_{x}=6 g-6 \geq 2 g+1$

If you fix the genus, then every curve of genus $g$ can be embedded into a projective space of dimension $5 g-6$. This is how you construct the moduli space of curves.

Proof of theorem 22.6. Easy fact: $\ell(D)-\ell(D-p) \leq 1$, which implies $\ell(D-p)=$ $\ell(D)-1$. So $|D|$ has no base points. Consider $\varphi=Z_{|D|}: X \rightarrow|D|^{*}$. Then $\varphi$ is injective: if $\varphi(p)=\varphi(q)=x \in|D|^{*}$. Let $H$ be a hyperplane of $|D|^{*}$ then $\varphi^{*} H \in|D|$, and all elements

[^0]in the linear system $|D|$ are obtained in this way. If $x \in H$ then $\operatorname{supp}\left(\varphi^{*}(H)\right) \supset\{p, q\}$; otherwise, $\operatorname{supp}\left(\varphi^{*} H\right) \not \supset p, \nexists q$. But $\mathcal{L}(D-p-q) \subsetneq \mathcal{L}(D-p) \subsetneq \mathcal{L}(D)$. So there is $f \in \mathcal{L}(D-p) \backslash \mathcal{L}(D-p-q)$ and $(f)+D \in|D|$ where $p \in \operatorname{supp}((f)+D)$ (because $(f)+D \geq p)$ but $q \notin \operatorname{supp}((f)+D)$. Contradiction.

Let $X^{\prime}=\varphi(X) \subset|D|^{*}$. We need to show that $\varphi: X \rightarrow X^{\prime}$ is an isomorphism. (The image is closed because we are mapping from projective varieties.) We know it's injective; so it suffices to show that it induces an isomorphism on the local rings. We have

$$
X \xrightarrow{f} X^{\prime} \hookrightarrow|D|^{*}
$$

The second map is a closed embedding, hence a finite morphism. The first map is also finite, because it is a nonconstant map of curves. Suppose $V \subset|D|^{*}$ is affine. Then $A=\mathcal{O}(V)$ comes from $B=\mathcal{O}(U)$ where $U=\varphi^{-1}(V)$. Recall $x \in V$ is in $\varphi(X)$ if for any $f \in \mathcal{O}(U) . X^{\prime}$ is defined by

$$
V \cap X^{\prime}=\left\{x: \varphi^{*} f=0 \Longrightarrow f(x)=0\right\}
$$

So $\mathcal{O}\left(V \cap X^{\prime}\right)=\operatorname{Im}(A \rightarrow B)$ and $I\left(V \cap X^{\prime}\right)=\operatorname{ker}(A \rightarrow B)$. (We can always factor a map as a surjection followed by an injection; in this case, we have produced $A \rightarrow \mathcal{O}\left(V \cap X^{\prime}\right) \hookrightarrow B$.)

Let $p \in X$. Then $\mathcal{O}_{X, p}$ is finite over $\mathcal{O}_{X^{\prime}, \varphi_{(p)}}$ (it was finite to begin with, and then we localized).

Claim: $\varphi$ is injective on tangent spaces. On the level of local rings, this says $\mathfrak{m}_{X^{\prime}, \varphi_{(p)}} \rightarrow$ $\mathfrak{m}_{X, p} / \mathfrak{m}_{X, p}^{2}$ is surjective.

If the claim is true then we're done. This condition means it's surjective on the cotangent space; dually, it's injective on the tangent space. Let $\mathscr{A}=\mathfrak{m}_{X^{\prime}, \varphi_{(p)}} \mathcal{O}_{X, p}$ so $\mathscr{A} \subset \mathfrak{m}_{X, p}$. From the claim, $\mathscr{A}$ contains a local parameter of $X$ at $p$. So $\mathscr{A}$ is exactly the maximal ideal $\mathfrak{m}_{X, p}$ (it's a principal ideal generated by any local parameter).

Now consider the maps of $\mathcal{O}_{X^{\prime}, \varphi_{(p)}}$-modules $\mathcal{O}_{X^{\prime}, \varphi_{(p)}} \rightarrow \mathcal{O}_{X, p}$. So the map


By Nakayama's lemma, $\mathcal{O}_{X^{\prime}, \varphi_{(p)}} \rightarrow \mathcal{O}_{X, p}$ is a surjection of $\mathcal{O}_{X^{\prime}, \varphi_{(p)}}$-modules.

$$
T_{\varphi(p)}^{*}|D|^{*} \rightarrow T_{\varphi(p)}^{*} X^{\prime} \rightarrow T_{p}^{*} X
$$

so it is enough to show that

$$
T_{\varphi(p)}^{*}|D|^{*} \rightarrow T_{p}(X)
$$

is surjective. Let $x_{0}, \cdots, x_{n}$ be coordinates on $|D|^{*}$, where $\varphi(p)=(1,0, \cdots, 0)$. Let's recall what rational functions look like. Let $\left(f_{0}, \cdots, f_{n}\right)$ be a basis of $\mathcal{L}(D)$. Then $\varphi(p)=$
$\left(f_{0}(p), \cdots, f_{n}(p)\right)$. Then $\varphi^{*} \frac{x_{i}}{x_{0}}=\frac{f_{i}}{f_{0}} \in \mathcal{O}_{X, p}$; this is actually in $\mathfrak{m}_{X, p}$ because $f_{i}$ vanishes at $p$, since each $\frac{x_{i}}{x_{0}}$ vanishes at $\varphi(p)$. But the $x_{i}$ span the cotangent space $T_{\varphi(p)|D|^{*}}^{*}$. If we define $x_{0}=0$ then the rest are local parameters at that point.

To show $T_{\varphi(p)}^{*}|D|^{*} \rightarrow T_{p}^{*}(X)=\mathfrak{m}_{X, p} / \mathfrak{m}_{X, p}^{2}$ is surjective, it suffices to show that there is some $i$ for which $\frac{f_{i}}{f_{0}} \notin \mathfrak{m}_{X, p}^{2}$.

$$
\mathcal{L}(D-2 p) \subsetneq \mathcal{L}(D-p) \subsetneq \mathcal{L}(D)
$$

Let $f \in \mathcal{L}(D-p) \backslash \mathcal{L}(D-2 p)$. Choose $p \notin \operatorname{Supp}(D)$ such that $(f)+D=p+D$. Then $\frac{f}{f_{0}}=\lambda_{0}+\lambda_{1} \frac{f_{1}}{f_{0}}+\cdots+\lambda_{n} \frac{f_{n}}{f_{0}}$ implies that $\frac{f}{f_{0}}$ has a zero of order 2 at $p$, which is a contradiction.

Summary: use $p=q$ case to show that $\varphi$ is injective on tangent spaces; then use commutative algebra to show it is a closed embedding.

What is $Z_{\left|K_{x}\right|}: X \rightarrow \mathbb{P}^{g-1}$ ? Let's consider $g=2$. We get $\varphi: X \rightarrow \mathbb{P}^{1}:$ a map between two curves. Assume characteristic zero. Exercise: show that $\varphi$ is separable (this is equivalent to it being nonconstant). If $\varphi$ is a separable map, then $K_{x}-\varphi^{*} K_{\mathbb{P}^{1}}$ is the branched divisor. Also, $\varphi^{*}([0])=K_{X}$. By taking degrees, we get $\operatorname{deg} \varphi=2 g-2=2$; taking degrees in the previous equation gives $\operatorname{deg} B-6$ where $B$ is the branched divisor. So the morphism is generically a double cover, which means $\left[k(X): k\left(\mathbb{P}^{1}\right)\right]=2$. So you can write this as a quadratic extension

$$
k(X)=k(X)[y] / y^{2}-f(x)
$$

Exercise: The support of the branched divisor $B$ consists of the points over the zeroes of $f(x)$ of odd order, and the points over $\infty$ if $\operatorname{deg} f$ is odd. For example, if $f$ has simple zeroes at six points, then these points are all the branched points.

Definition 22.10. A curve $X$ is called hyperelliptic if there exists $\varphi: X \rightarrow \mathbb{P}^{1}$ of degree 2.

Corollary 22.11. Every genus 2 curve is hyperelliptic. If $g \geq 3$, most curves are not hyperelliptic.

Example 22.12. Let $g \geq 3$. If $X$ is not hyperelliptic then the morphism

$$
Z_{\left|K_{X}\right|}: X \rightarrow \mathbb{P}^{g-1}
$$

is a closed embedding. (You have to check that this linear system satisfies the conditions of the theorem.)
Theorem 22.13 (Riemann-Hurwitz formula). Let $\varphi: X \rightarrow Y$ be separable of degree $n$. Let $K_{X}-\varphi^{*} K_{Y}=B$ be the branched divisor. Then

$$
2 g_{X}-2=n\left(2 g_{Y}-2\right)+\operatorname{deg} B
$$

Let $x \in X, y=\varphi(x) \in Y$. Let $t_{x}, t_{y}$ be local parameters. Then $\varphi^{*}\left(t_{y}\right)=t_{x}^{e_{x}} u$ where $e_{x}$ is some power called the ramification index of $\varphi$ at $x$, and $y \in \mathcal{O}_{X, x}^{*}$ is some invertible
element. In general, the branched divisor is a determinant of the Jacobian matrix. But here, we can just take

$$
\frac{d \varphi^{*} t_{y}}{d t_{x}}=e t_{x}^{e-2} u+t_{x}^{e_{x}} \frac{d u}{d t_{x}}
$$

DEFINITION 22.14. $\varphi$ is said to be tame at $x$ if $\operatorname{char}(k) \nmid e$.
Corollary 22.15. If $\varphi$ is tame at $x$ then $\operatorname{ord}_{x}\left(\frac{d \varphi^{*} t_{y}}{d t_{x}}\right)=e-1$. This gives the coefficients of the branched divisor. So if $\varphi$ is tame everywhere, then $B=\sum_{x \in X}\left(e_{x}-1\right)$ and

$$
\operatorname{deg} B=\sum_{x \in X}\left(e_{x}-1\right)
$$

## 23. November 29

Presentations Thursday 2:30-4, Friday 2-4, SC 530, papers due December 10
23.1. Sketch of the proof of Riemann-Roch. Let $X$ be a smooth projective curve over $k$. If $x \in X$ then consider $\widehat{\mathcal{O}}_{X, x} \cong k[[t]]$, where we can choose $t$ to be a local parameter. Then the maximal ideal $\widehat{\mathfrak{m}}_{x, x}$ corresponds to $t k[[t]]$. Let $K_{x}$ be the fractional field of $\widehat{\mathcal{O}}_{X, x}$. (Write $\mathcal{O}_{X, x}=: \mathcal{O}_{x}$ because the curve will be fixed here.) $\widehat{K}_{x} \cong k\left(\left(t_{x}\right)\right)$ is the set of Laurent series $\sum_{i \geq-N}^{\infty} a_{i} t^{i}$.


These morphisms are given by taking the Taylor expansion of a function in $\mathcal{O}_{x}$.
Definition 23.1. The adèles of $X$ is

$$
\mathbb{A}_{X}=\prod_{x \in X}^{\prime} \widehat{K}_{x}
$$

where $\prod^{\prime}$ is the restricted product: more precisely, elements in $\mathbb{A}_{X}$ are $\left(f_{x}\right)_{x \in X}$, where $f_{x} \in \widehat{K}_{x}$ and all but finitely many $f_{x}$ are in $\widehat{\mathcal{O}}_{x}$.

First observe that there is a natural $k$-algebra homomorphism $K \hookrightarrow \mathbb{A}_{X}$ given by using the inclusion of $f$ in each $\widehat{K}_{x}$, and then taking $f \mapsto\left(f_{x}\right)_{x \in X}$. Let $D=\sum n_{p} \cdot p$ be a divisor on $X$. We defined

$$
\mathbb{A}_{X}(D)=\left\{\left(f_{x}\right)_{x \in X} \in \prod \widehat{K}_{x}: f_{x} \in \widehat{\mathfrak{m}}_{x}^{-n_{x}} \widehat{\mathcal{O}}_{x}\right\} \subset \mathbb{A}_{x}
$$

(There are only finitely many $x$ such that $n_{x} \neq 0$.) If $\widehat{\mathfrak{m}_{x}}=t_{x} \cdot k\left[\left[t_{x}\right]\right]=\subset \widehat{\mathcal{O}}_{x}$ then we can find $\widehat{\mathfrak{m}}_{x}^{-1}=t_{x}^{-1} \cdot k\left[\left[t_{x}\right]\right] \subset \widehat{K}_{x}$ such that $\widehat{\mathfrak{m}}_{x}^{-1} \cdot \widehat{\mathfrak{m}}_{x}=\widehat{\mathcal{O}}_{x}$. If $D \leq D^{\prime}$ then $\mathbb{A}_{X}(D) \hookrightarrow \mathbb{A}_{X}\left(D^{\prime}\right)$ and $\mathbb{A}_{X}=\underset{\leq}{\lim } \mathbb{A}_{X}(D)$

Given $D$ consider $K \oplus \mathbb{A}_{X}(D) \xrightarrow{d_{D}} \mathbb{A}_{X}$ where $(f, 0) \mapsto\left(f_{x}\right)_{x \in X}$ and $\left(0,\left(f_{x}\right)_{x \in X}\right) \mapsto\left(-f_{x}\right)_{x \in X}$ (aside from the minus sign, we're just using the natural embeddings here). The kernel is

$$
\operatorname{ker} d_{D}=\mathcal{L}(D)=\left\{f \in K^{\times}:(f)+D \geq 0\right\} \cup\{0\}
$$

The cokernel is a vector space which we call $H^{1}(X, D)$.
If $D \leq D^{\prime}$ then we have a natural commutative diagram

where $V$ is the cokernel of the first vertical chain of maps, and $\operatorname{dim}_{k} V=\operatorname{deg} D^{\prime}-\operatorname{deg} D$. Now use the snake lemma to get a sequence

$$
0 \longrightarrow \operatorname{ker} d_{D} \longrightarrow \operatorname{ker} d_{D^{\prime}} \longrightarrow V \longrightarrow H^{1}(X, D) \longrightarrow H^{1}\left(X, D^{\prime}\right) \longrightarrow 0
$$

The key point is to prove that $H^{1}(X, D)$ is a finite-dimensional vector space. We know that ker $d_{D}$ is finite, because it is just $\mathcal{L}(D)$. Let $D_{m} \in \mathcal{L}_{X}(m)=\mathbb{P}\left(S(X)_{m}\right)$. We can choose $D_{m}$ for $m \in \mathbb{Z}$ such that $D_{m} \leq D_{m+1}$. Now, if $m \gg 0$ consider the short exact sequence

$$
0 \rightarrow \mathcal{L}\left(D_{m}\right) \rightarrow \mathcal{L}\left(D_{m+1}\right) \rightarrow V \rightarrow H^{1}\left(X, D_{m}\right) \rightarrow H^{1}\left(X, D_{m+1} \rightarrow 0\right)
$$

$\operatorname{dim}_{k} V=\operatorname{deg} D_{m+1}-\operatorname{deg} D_{m}=\operatorname{deg} D_{1}=\operatorname{deg} X$ (note that $D_{m} \in\left|m \cdot D_{1}\right|$ and therefore $\operatorname{deg} D_{m}=m \cdot \operatorname{deg} D_{1}$, as degree does not change under linear equivalence). If $m$ is large enough, then the linear system is complete, and $\ell\left(D_{m+1}\right)=P_{X}(m+1)$, and $\ell\left(D_{m}\right)=$ $P_{X}(m)$ so the difference is

$$
\ell\left(D_{m+1}\right)-\ell\left(D_{m}\right)=P_{X}(m+1)-P_{X}(m)=\operatorname{deg} X
$$

(The last equality is because the Hilbert polynomial is $P_{X}(t)=(\operatorname{deg} X) t+\left(1-p_{a}\right)$.) In particular, the canonical map $H^{1}\left(X, D_{m}\right) \xrightarrow{\sim} H^{1}\left(X, D_{m+1}\right)$ is an isomorphism.

CLAim 23.2. For $m$ large enough, $H^{1}\left(X, D_{m}\right)=0$.

Proof. Let $\left(f_{x}\right) \in \mathbb{A}_{X} \rightarrow H^{1}\left(X, D_{m}\right):=\mathbb{A}_{X} / K \oplus \mathbb{A}_{X}\left(D_{m}\right)$. We just said that this maps isomorphically to $\mathbb{A}_{X} / K \oplus \mathbb{A}_{X}\left(D_{m+1}\right)$. We can choose $n$, and $D_{m+n} \in \mathcal{L}_{X}(m+n)$ such that $f_{x} \in \mathbb{A}_{X}\left(D_{m+1}\right)$. Then $\left(f_{x}\right)=0$ in $H^{1}\left(X, D_{n+m}\right)$, so $\left(f_{x}\right)=0$ in $H^{1}\left(X, D_{m}\right)$.

Summary: We have proved: if $m \gg 0$ then for any $D_{m} \in \mathcal{L}_{X}(m)$ and $D_{m+1} \in \mathcal{L}_{X}(m+1)$ such that $D_{m+1} \geq D_{m}$, then $H^{1}\left(X, D_{m}\right) \cong H^{1}\left(X, D_{m+1}\right)$. Now we have claimed that these spaces are zero.

Corollary 23.3. For any divisor $D, \operatorname{dim}_{k} H^{1}(X, D)<\infty$.

Proof. Find some $D_{m}>D$ with $m$ sufficiently large.

$$
V \rightarrow H^{1}(X, D) \rightarrow H^{1}\left(X, D_{m}\right) \rightarrow 0
$$

$H^{1}\left(X, D_{m}\right)=0$, so because $V$ is finite-dimensional, so is $H^{1}(X, D)$.
DEfinition 23.4. $\chi(D):=\ell(D)-\operatorname{dim}_{k} H^{1}(X, D)$
Theorem 23.5 (Cheap Riemann-Roch).

$$
\chi(D)=1-p_{a}+\operatorname{deg} D
$$

Proof. If $D^{\prime}=D+x$, then we have a sequence

$$
0 \rightarrow \mathcal{L}(D) \rightarrow \mathcal{L}\left(D^{\prime}\right) \rightarrow V \rightarrow H^{1}(X, D) \rightarrow H^{1}\left(X, D^{\prime}\right) \rightarrow 0
$$

This implies $\chi\left(D^{\prime}\right)=\chi(D)+1$. So it suffices to prove this for hyperplane sections $D_{m}$, for $m$ very large. We have already done this. For $D_{m}$,

$$
\chi\left(D_{m}\right)=\ell\left(D_{m}\right)=P_{X}(m)=1-p_{a}+m \cdot \operatorname{deg} X=1-p_{a}+\operatorname{deg} D_{m}
$$

Corollary 23.6.

$$
p_{a}=\operatorname{dim}_{k} H^{1}(X, D=0)
$$

In particular, $p_{a} \geq 0$.

The other part of Riemann-Roch follows from Serre duality:
THEOREM 23.7 (Serre duality). There is a canonical isomorphism $H^{1}(X, D)^{\times} \xrightarrow{\sim} \mathcal{L}\left(K_{X}-\right.$ $D)$ where $K_{X}$ is the canonical divisor.

Corollary 23.8. $p_{a}=g$ (geometric genus)

Proof. Use $D=0$. Also, $\chi(D)=\ell(D)-\ell\left(K_{x}-D\right)$ so we get Riemann-Roch.

Finally, we will give a sketch of the proof of Serre duality.
DEFINITION 23.9. Let $\Omega_{\widehat{K}_{x}}=\Omega_{K} \otimes_{K} \widehat{K}_{x}$. Then $\Omega_{\widehat{\mathcal{O}}_{x}}=\widehat{\Omega_{\mathcal{O}_{x}}}=\Omega_{\mathcal{O}_{x}} \otimes_{\mathcal{O}_{x}} \widehat{\mathcal{O}}_{x}$. Elements of this are $f(t) d t$ for $f(t) \in k[[t]]$, and elements of $\Omega_{\widehat{K}_{x}}$ have the form $f(t) d t$ for $f(t) \in k((t))$. THEOREM 23.10. There exists a $k$-linear map

$$
r e s_{x}: \Omega_{\widehat{K}_{x}} \rightarrow k
$$

that satisfies:
(a) $\left.r e s_{x}\right|_{\Omega_{\widehat{\mathcal{O}}_{x}}}=0$
(b) $\operatorname{res}_{x}\left(f^{n} d f\right)=0$ for all $f \in K^{\times}$and all $n \neq-1$
(c) $\operatorname{res}_{x}\left(f^{-1} d f\right)=\operatorname{ord}_{x}(f)$

Corollary 23.11. If $\omega \in \Omega_{\widehat{K}_{x}}$, then $\omega=\sum a_{i} t_{i} d t$ with $r e s_{x} \omega=a_{-1}$.

This is hard in characteristic $p$. If $k=\mathbb{C}$, then $\operatorname{res}_{x} \omega=\frac{1}{2 \pi i} \oint \omega$. In this case, it is clear that $a_{-1}$ is independent of the choice of local coordinates. In general:
Theorem 23.12 (Residue theorem). Let $\omega \in \Omega_{K}$. Then

$$
\sum_{x \in X} r e s_{x} \omega=0
$$

(This is due to Tate.)
Notation 23.13. If $D$ is a divisor, then

$$
\Omega_{X}(D):=\left\{\omega \in \Omega_{K}:(\omega)+D \geq 0\right\}=\mathcal{L}\left(K_{X}+D\right)
$$

Consider the pairing $\Omega_{X}(-D) \times \mathbb{A}_{X} \rightarrow k$ that sends $\left(\omega,\left(f_{x}\right)\right) \mapsto \sum_{x \in X} r e s_{x}\left(f_{x} \omega\right)$. Clearly, this $k$-bilinear map factors through $\Omega_{X}(-D) \times \mathbb{A}_{x} / K \oplus \mathbb{A}_{X}(D) \rightarrow k$ (that is, it vanishes on $K \oplus \mathbb{A}_{X}(D)$ ). Since $K \oplus \mathbb{A}_{X}(D)=H^{1}(X, D)$, we get

$$
\Omega_{X}(-D) \otimes H^{1}(X, D)
$$

The claim is that this is a perfect pairing:
THEOREM 23.14. This pairing induces $H^{1}(X, D)^{\vee} \xrightarrow{\sim} \Omega_{X}(-D)$.

All of this is contained in a paper of Tate.

## The End.


[^0]:    ${ }^{1}$ recall $g-\ell\left(K_{x}\right)$ and $\ell(D)=\operatorname{dim} \mathcal{L}(D)$ where $\mathcal{L}(D)=\left\{f \in k(X)^{*}:(f)+D \geq 0\right\} \cup\{0\}$

