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Math 229 Barry Mazur Lecture 1

1. January 24

1.1. Arithmetic functions and first example. An arithmetic function is a func-
tion N → C, which we will denote n 7→ c(n). For example, let rk,d(n) be the number of

ways n can be expressed as a sum of d kth powers. Waring’s problem asks what this looks
like asymptotically. For example, we know r3,2(1729) = 2 (Ramanujan). Our aim is to
derive statistics for (interesting) arithmetic functions via a study of the analytic properties
of generating functions that package them. Here is a generating function:

Fc(q) =
∞∑
n=1

c(n)qn

(You can think of this as a Fourier series, where q = e2πiz.) You can retrieve c(n) as a
Cauchy residue:

c(n) =
1

2πi

∮
Fc(q)

qn
· dq
q

This is the Hardy-Littlewood method. We can understand Waring’s problem by defining

fk(q) =
∞∑
n=1

qn
k

(the generating function for the sequence that tells you if n is a perfect kth power). Then
fdk (q) is the generating function of the thing we want:(∑

qn
k
)d

= fdk =
∑

rk,d(n)qn

Take the case when k = 1; you get a geometric series. If k = 2, then

f2(q) =
∏

(1− q2m)(1 + q2m−1)(1− q2m+1)

by a theorem of Jacobi.

Another example is the partition function: p(n) is the number of ways that n can be
expressed as a sum of positive integers:

∞∑
n=1

p(n)qn =
∞∏
m=1

1

1− qm

A third example is

ω(q) = q ·
∏

(1− qm)2(1− q11m)2 =
∑

a(n)qn

If n 6= 11 is a prime, then a(p) = 1 +p−|E(Fp)| where E = y2 +y = x3−x2 (here |E(Fp)|
is the number of points on the curve with values in Fp). When you replace q = e2πiz

there’s a symmetry where you can replace z 7→ −1
11z .
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Math 229 Barry Mazur Lecture 1

1.2. Formal Dirichlet Series.

Dc(s) =
∞∑
n=1

c(n)

ns

Suppose we have two arithmetic functions n 7→ a(n) and n 7→ b(n). Define a product
a ∗ b = c where

c(n) =
∑
d|n

a(d)b
(n
d

)
(Divisors are assumed always to be positive.) Why do we care? If you have Dirichlet series

Da(s) =
∑ a(n)

ns and Db(s) =
∑ b(n)

ns then

Da∗b =
∑ a ∗ b(n)

ns
= Da(s)Db(s)

The star product is commutative, associative, and has the identity ε where

ε(n) =

{
1 n = 1

0 else

This is not the identity function 1 : n 7→ 1. The identity function is invertible, and the
inverse is the Moebius function

µ(n) =

{
0 if n is not square-free

(−1)# of prime factors of n else

Exercise: check that ∑
d|n

µ(d) · 1 = ε

so that ∑ µ(n)

ns
· ζ(s) = 1 .

Definition 1.1. An arithmetic function is called multiplicative if

c(u · v) = c(u) · c(v)

if (u, v) = 1. So

c(n) =
v∏
i=1

c(pkii )

if n =
∏v
i=1 p

ki
i .

Suppose n 7→ c(n) is multiplicative, and let p be prime. Let

Dc,p(s) =

∞∑
m=0

c(pm)

pms

Dc(s) =
∑ c(n)

ns

Formally

(1.1) Dc(s) =
∏
p

Dc,p(s)
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BUT, even if Dc(s) and Dp(s) converge, you may not have the formula, because the
product may not converge. If

∑∞
n=1 |c(n)n−s| converges, then everything works.

∞∑
n=1

c(n) · n−s =
∑

c(n)
n−iy

nx
=
∑

c(n)
e−log(n)iy

nx

If it converges at a point, then it converges at the entire vertical line through that point.

1.3. Riemann ζ function. Using the arithmetic function n 7→ 1, then define

ζ(s) = D1(s) =
∑ 1

ns

This converges absolutely if Re(s) > 1, by calculus.

There is an infinite product expansion∑ 1

ns
=

∑
p prime

1

1− 1
ps

=
∏

p prime

(
∞∑
m=0

p−ms)

(This is in the HW.)

Theorem 1.2.

ζ(s)−1 =
∑ µ(n)

ns
= Dµ(s)

Proof.
Dµ(s)ζ(s) = Dµ ·D1 = Dε = 1

�

This is analytically true when Re(s) > 1.

Basic reason for interest in Dc(s) for any c : n 7→ c(n): If we know enough, we will
be able to give very good estimates for

∑
p≤X c(p) := πc(X).

In particular, when c = 1, we get estimates for π(X), the number of primes ≤ X.

Theorem 1.3 (Euler).
∑

p≤X
1
p diverges as X →∞.

Proof. Define λ(X) =
∏
p≤X(1− 1

p)−1. Write this as
∏
p≤X

∑∞
m=0 p

−m. But∑
n≤X

1

n
≤ λ(X)
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because each 1
n is a term in the expansion of λ. But

∑ 1
n diverges (which immediately

proves that there are infinitely many primes). Take the log of the infinite product:

log λ(X) = −
∑
p≤X

log
(

1− 1
p

)
But

− log
(

1− 1
p

)
=

1

p
+

1

2p2
+

1

3p3
+ · · ·

≤ 1

p
+

1

p2
+

1

p3
+ · · ·

=
1

p
+

1

p2
· 1

1− 1
p︸ ︷︷ ︸∑

n∈N ∗
converges

for some c constant. So we have

lim
X→∞

log λ(X) =
∑ 1

p
+ something convergent

We showed above that λ(X) goes to∞, which means its log does too; if the LHS diverges,
then so does the RHS. �

1.4. Arithmetic functions related to the ζ-function. a will be an arithmetic
function, and let A(n) =

∑
d|n a(d). Equivalently, a = µ ∗ A so a(n) =

∑
µ(d)A

(
n
d

)
. In

terms of Dirichlet series,
DA(s) = ζ(s) ·D(a)

Define A as the series where
n 7→ σk(n) =

∑
d|n

dk

and a : n 7→ nk. Then

DA(s) =
∑ σk(n)

ns
= ζ(s)Da(s) = ζ(s) · ζ(s− k)

Da(s) =
∑ nk

ns
=
∑ 1

ns−k
= ζ(s− k)

If k = 0 then define σ0(n) = ν(n) which counts the number of divisors of n. Then∑ ν(n)

ns
= ζ(s)2

We call a = Φ, the Euler Phi function; then A(n) =
∑

d|n Φ(d); you can check that

A(n) = n.

DΦ(s) =
ζ(s− 1)

ζ(s)

Recall rk,d(n), the number of ways that n is expressible as a sum of d kth powers, and
recall that when k = 2 we had a nice formula for this. Let R2,d(n) be the number of ways
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Math 229 Barry Mazur Lecture 2

that n is expressible as the sum of d squares, counting (+α)2 and (−α)2 as different, and
including 0. Also, order matters here! For example,

R2,24(2) = 1104

Slightly more generally,

R2,24(n) =
16

691
σ11(n) + e(n)

where e(n) is the error term: up to taking logs, it is <
√

other term. We have a complete
description of the error term.

2. January 26

Define

∆ = q
∞∏
n=1

(1− qn)24

and recall
f2 =

∑
qn

2
.

It turns out that
∆ ≡ f2 (mod 2) .

RECALL, a Dirichlet series is a formal expression that looks like D(s) =
∑
a(n)n−s. We

also had arithmetic functions n 7→ a(n) ∈ C. L-functions will be a special case.

2.1. Some properties to learn about.

• Domain of definition. For example, ζ(s) doesn’t make sense as a power series to
the left of the line Re(s) = 1. However, there is a meromorphic continuation, with
pole only at s = 1. (We have good control to the right of the line, but the most
interesting information comes from the other half.) Also, there are symmetries: usually
a relationship between L(s) and L(1− s) (i.e. you can sort of reflect across the line).

• Poles and Zeroes. One way (the only way) of understanding
∑

p≤X a(p) is to under-

stand the poles and zeroes. In the case of ζ(s), this gives information about
∑

p≤X 1 =

π(X), the number of primes ≤ X. The Riemann hypothesis says that the zeroes of the
ζ-function are at the negative even integers, on the line Re(s) = 1

2 , and nowhere else. If
you’re interested in statistics, consider

∑
w(p)a(p) (i.e. a weighted sum). A good thing

to study is
∑

p≤X log(p).

• Special values of L(s). For example,

ζ(1− 2k) =
(−1)kB2k

2k
.

• Estimating density of primes p where a(p) has some property. For example,
there are asymptotically equal numbers of primes of the form 4n − 1 as of the form

8
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4n + 1. Also consider prime races: it turns out that 4n − 1 wins almost all the time.
We will call this a Chebotarev-t question.

2.2. Wedge uniform convergence. Suppose you have a Dirichlet series D(s) =∑∞
n=1 a(n)n−s which we assume converges at some complex point s0.

Notation 2.1. We will denote complex numbers as

s = σ + it

for σ, t ∈ R.

Make any wedge in C with vertex s0, pointing towards positive real infinity, where c|t−t0| <
σ − σ0 for c > 0.

Theorem 2.2. D(s) converges uniformly in any such wedge.

Define a remainder term
R(X) =

∑
n>X

a(n)n−s0

Since everything converges, this goes to zero as X →∞. Check that

a(n) = (R(n− 1)−R(n))ns0

so we can write
N∑

n=M+1

a(n)n−s =
N∑

M+1

(R(n− 1)−R(n))ns0−s

=

N∑
M+1

R(n− 1)ns0−s −
N∑

M+1

R(n)ns0−s

= R(M)(M + 1)s0−s −R(N) ·N s0−s −
N∑

M+2

R(n− 1)((n− 1)s0−s − ns0−s)

A

A = −(s0 − s)
∑

R(n− 1)

∫ n

n−1
us0−s−1du

= −(s0 − s)
∫ N

M+1
R(u)us0−s−1du

So in total this is

(2.1)

N∑
M+1

a(n)n−s = R(M)(M + 1)s0−s −R(N) ·N s0−s + (s0 − s)
∫ N

M+1
R(u)us0−s−1du
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This gives an estimate (using the fact that R(n) is supposed to be “small” for sufficiently
large n): ∣∣∣∣∣

N∑
M+1

a(n)n−s

∣∣∣∣∣ ≤ ε+ ε(s0 − s)
∫ N

M+1
us0−s−1du

when u ≥M and σ > σ0. As long as we have |s0−s| < C(σ0−σ), the integral is bounded.
If |t0 − t| < c(σ − σ0), then by Cauchy’s inequality we have |s0 − s| ≤ |σ0 − σ| + |t0 − t|
implies |s0 − s| < C|σ0 − σ| as desired.

This show that D(s) converges uniformly in any wedge with vertex s0.

Corollary 2.3. If D(s) is analytic in any s0-wedge then D(s) converges uniformly in any
neighborhood of any point in this wedge.

Corollary 2.4. Differentiating term-by-term,

D′(s) =
∞∑
n=1

− log(n)a(n)n−s

converges in the wedge.

Making the wedges larger and larger, we get

Corollary 2.5. If D(s) converges at s = s0, then it converges in the open half-plane of
Re(s) > Re(s0) = σ0.

How far to the left does it converge? Either it converges everywhere, it converges nowhere,
or it stops somewhere.

Definition 2.6 (Abscissa of convergence of D(s)). The abscissa of convergence is a num-
ber σc ∈ R∪ {±∞} such that D(s) converges or not depending on whether Re(s) > σc or
Re(s) < σc. (In general, we don’t have control over the line.)

Landau: if the series has positive real coefficients, then if σc is finite, it is a singularity of
some sort.

2.3. Sums. It is much easier to estimate A(X) :=
∑

n≤X a(n) than
∑

p≤X a(p).

A(X) is not differentiable, because it is a step function. So the derivative is a Dirac delta
function, normalized by the coefficients a(n). If you want to understand

∫
f(X)dA(X),

this is not a classical Riemann integral. The mess above is basically a hands-on integration
by parts. Integrals of this form are called Riemann-Stieltjes integrals. (Read appendix A
in the book.)

N∑
1

a(n)n−s =

∫ N+

1−
x−sdA(x)

10
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(The 1- and N+ refer to starting a little before and ending a little after the point, respec-
tively; this is necessary because we are adding up Dirac deltas.)

N∑
1

a(n)n−s =

∫ N+

1−
x−sdA(x)

= A(x)x−s|N+
1− −

∫ N

1
A(x)dx−s

N∑
1

a(n)n−s = A(N)N−s + s

∫ N

1
A(x)x−s−1dx

If σ > 0 then A(N)N−s goes to zero. By hypothesis, σc ≥ 0.

Lemma 2.7. If σ > σc then
∑∞

1 a(n)n−s = s
∫∞

1 A(u)u−s−1du

(σ > σc means that the A(N)’s converge.)

Definition 2.8. L = max{0, lim supx→∞
log |A(x)|

log(x) }

If σ > L then the RHS and LHS of Lemma 2.7 converge and are equal.

Corollary 2.9.
σc ≤ L

Proof. Use (2.1) . . . Actual proof next time. �

Notation 2.10. A(x) � Xτ means that |A(x)| < C · xτ , for sufficiently large x and for
some finite constant C > 0.

3. January 31

Recall we had a Dirichlet series D(s) =
∑∞

n=1 a(n) · n−s. We talked about wedge uniform
convergence, which guarantees that if it converges at any point s0, then it converges in a
wedge to the right of s0. You can compute the derivatives term-by-term. We defined the
abscissa of convergence σc to denote the largest half-plane where it converges. Suppose
the Dirichlet series converges at s = sc. Define the remainder sum

R(x) =
∑
n>x

a(n)n−s0

which goes to 0 as x → ∞. Via “manual” integration by parts, we integrated U s0−sdR
(the Stieltjes integral) to get

(3.1)

N∑
M+1

a(n)n−s = R(M)M s0−s −R(N)N s0−s + (s0 − s)
∫ N

M
R(u)us0−s−1du

11
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In particular, try sending M → 0 and N →∞:
∞∑
1

a(n)n−s = (s0 − s)
∫ ∞

0
R(u)us0−s−1du

Denote the partial sums by

A(x) =
∑
n≤x

a(n)

Play the same Riemann-Stieltjes game:

N∑
1

a(n)n−s = A(N)N−s + s

∫ N

1
A(u)u−s−1du

Case 1: σc < 0 and σ = Re(s) > 0. So it converges at zero, and the A(N) have a limit.
Letting N →∞, we get

∞∑
1

a(n)n−s = s

∫ ∞
1

A(u) · u−s−1du

Case 2: σc ≥ 0. Let

L = lim sup
x→∞

log |A(x)|
log x

We already have Re(s) = σ > L. Choose τ between σ and L. Then A(x) � xτ . Here is
the calculation:

x
log |A(x)|

log x =
(
xlog |A(x)|

) 1
log x

=

((
elog x

)log |A(x)|
) 1

log x

=

((
elog |A(x)|

)log x
) 1

log x

= |A(x)|

If σ > τ then A(N)N−s � xτN−s goes to zero. The integral term converges for the same

reason:
∫
A(u)u−s−1du should be compared to

∫
uτu−σ−1du = u−1−(σ−τ)du; as long as

σ > τ , this converges.

Corollary 3.1. If σ > τ > L and σc ≥ 0, then D(s) converges for Re(s) = σ, and
∞∑
1

a(n)n−s = s

∫ ∞
1

A(u) · u−s−1du

In this case, σc ≤ σ; but σ is any number > L, so σc ≤ L. (So this says something about
σc in terms of the growth rate of the coefficients.) Use

N∑
M+1

a(n)n−s = R(M)M s0−s −R(N)N s0−s + (s0 − s)
∫ N

M
R(u)us0−s−1du

Use M = s = 0 and this simplifies to

N∑
1

a(n)n−s = −R(N)N s0 + s0

∫ N

0
R(u)us0−1du

12
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Stuff converges at s0 so R(u) is bounded. Since R(N) is bounded, R(N)N s0 is growing
no faster than xσ0 (using absolute value), and similarly for the integral term.

|A(N)| � Nσ0

But there are points where it converges, but not absolutely. This suggests we should
pay attention to the abscissa of absolute convergence σa. We say that a Dirichlet series
converges absolutely at s if

∑
|a(n)| · n−σ converges. (Of course, absolute convergence

implies convergence, so σc ≤ σa.) An absolutely convergent series does not change when
you rearrange the terms.

Theorem 3.2.
σc ≤ σa ≤ σc + 1

Proof. Suppose there is a sequence b(n)→ 0 as n→∞. The modified sequence∑
b(n)n−1−ε

is convergent, if b(n) is any bounded sequence. Suppose D(s0) converges. Then let b(n) =
a(n) · n−s0 . If the sum converges, then the terms go to zero; in order to make it converge
absolutely, we just have to tuck in an extra −1 − ε in the exponent:

∑
a(n)n−s0−1−ε

converges absolutely. Letting ε→ 0 this proves the theorem. �

For example, the zeta function has a pole at s = 1, so it doesn’t have a chance of converging
beyond that point as a Dirichlet series. But we can multiply by the offending factor
(1− 21−s) to eliminate the pole:

(1− 21−s) · ζ(s) =
∑ c(n)

ns

where c(n) = (−1)n+1. Letting Σc and Σa denote the abscissas for the modified functions,
we have Σc = 0 and Σa = 1.

Suppose you have two Dirichlet series D(1)(s) and D(2)(s), where σ
(1)
c > σ

(2)
c . Then

D(1)(s) ·D(2)(s) makes sense for Re(s) > max{σ(1)
c , σ

(2)
c } We also talked about the star-

product of Dirichlet series: D(s) =
∑ a(1)∗a(2)

ns which also makes sense in that domain. But
the product might make sense but not converge. (For example, the abscissa of convergence
for (1− 21−s)ζ(s) is 1

4 and not zero.)

We had a lot of formal product formulas in the first lecture, for example ζ(s)D(s). Do
these make sense as functions (instead of just formal Dirichlet series)? Yes, if you have
absolute convergence (the star product just rearranges terms).

Theorem 3.3. D(1)(s) · D(2)(s) converges to the formal product of Dirichlet series if

σ > σ
(2)
a .

13
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Can you retrieve the coefficients from the functions? Yes.

Proposition 3.4. Suppose we have two Dirichlet series
∑
a(n)n−s and

∑
b(n)n−s that

converge somewhere. Then, if they are equal as functions in some right half-plane of
convergence, then they “are the same Dirichlet series” (i.e. the coefficients are the same).

Proof. By shifting, suppose they both converge at s = 0. Let c(n) = b(n)− a(n); we
will show that all c(i) = 0.

c(1) = −
∞∑
n=2

c(n)n−s

c(1) is constant, but the rest depends on s, so it’s zero. Keep going. �

Note that it’s not enough, in general, for complex continuous functions to be equal at a
discrete set of points, in order to show that they are equal (example: sin(x) and zero).
But Dirichlet series are indeed determined by their values at certain sequences.

For elliptic curves, σc = 1; in dynamical systems, it represents the entropy of the system.
In the case we’re dealing with, it will usually be 1 or 0.

Theorem 3.5 (Landau’s Theorem). Start with a Dirichlet series D(s) =
∑
a(n)n−s

where a(n) is real and nonnegative for sufficiently large n. Also assume that −∞ < σc <
∞.

Then σc is a singularity (it can’t be analytically continued there).

If a power series converges in a disc, you can ask what the largest disc of convergence is;
then the power series is singular everywhere on that largest circle.

Let s be such that σ > σc (i.e. it converges there). Take the kth derivative:

D(k)(s) =
∑
n

a(n)(− log n)kn−s

Assume σc = 0 (that is, replace an by ann
−σc , which does not change the fact that the

coefficients are nonnegative). Take s = 1: this is analytic here, so it converges as a power
series in the interior of some maximal circle:

D(s) =
∑
k

c(k)(s− 1)k

Certainly, the radius of this maximal circle is at least 1. But suppose, for the sake of
contradiction, the series is analytic at s = 0. Then it is analytic in some little circle Dδ(0)
around s = 0. There aren’t any obstacles to convergence anywhere to the right of the line
σ = 0, so the maximal circle of power series convergence is allowed to extend to the left
of σ = 0, as long as it is still contained in {σ > 0} ∪Dδ(0).

14
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c(k) can be gotten by taking the appropriate derivative:

c(k) =
1

k!
D(k)(s)|s=1

=
1

k!

∑
n

a(n)(− log n)kn−1

Watching the negative sign, rewrite

D(s) =
∞∑
k=0

(1− s)k

k!

∑
n

a(n) · (log n)kn−1

This is absolutely convergent, so you can rearrange terms (i.e. swap the sums)

D(s) =
∑
n

a(n)n−1
∑
k=0

((1− s) log n)k

k!
=
∑

a(n)n−1exp((1− s) log n)

=
∑

a(n)n−s

We assumed that the power series converged past s = 0, and then transformed the power
series into the original Dirichlet series, showing that this too converges past s = 0, a
contradiction.

4. February 2

Standard way of dealing with the Gamma function:

Γ(s) =

∫ ∞
0

e−xxs
dx

x

(Integrate by parts.)

There was a recap of Landau’s theorem, which I added to the notes on the previous lecture.

4.1. Euler Products. Let a(n) be a multiplicative function: that is, if n =
∏ν
i=1 p

ei
i ,

then a(n) =
∏ν
i=1 a(pei1 ). Define

Dp(s) =
∞∑
m=0

a(pm)p−ms

The Fundamental Theorem of Arithmetic says that∏
p prime

Dp(s) = D(s)

at least formally. But, is this true analytically?

Proposition 4.1. If D(s) converges absolutely then Dp(s) converges absolutely for all p,
and ∏

p

Dp(s) = D(s)

15
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(i.e. both sides converge, and they converge to the same thing).

Let N (X) be the set of numbers with prime divisors ≤ X. If D(s) converges absolutely,
then

∑
|a(n)|n−s converges; for Dp(s) to converge, we only need a subset of these terms

to converge, so that is OK. To show that
∏
pDp(s) converges, it suffices to show that∏

p≥X Dp(s)→ 0 (so you’re getting the terms where all of the divisors are > X).∣∣∣∣D(s)−
∑

n∈N (X)

a(n)n−s
∣∣∣∣

represents the set of summands of D(s) corresponding to terms where at least some divisor
is > X. But this difference is ≤

∑
n≥X |a(n) · n−s|, which goes to zero by absolute

convergence, so we are done.

4.2. Facts about the Ramanujan τ function. Define

L∆(s) =
∞∑
n=1

τ(n)n−s

L∆,p(s) =
∑
m

τ(pm)p−ms =
1

1− τ(p)p−s + p11p−2s

Theorem 4.2 (Mordell).
τ(m · n) = τ(m) · τ(n)

if (m,n) = 1.

τ(pm+1) = τ(p)τ(pm) + p11τ(pm−1)

Together with the Mordell theorem, this shows that τ is determined by its values at primes.

4.3. Log of the zeta function. Using the definition ζ(s) =
∏

(1− p−s)−1:

log((1− p−s)−1) =
∞∑
m=1

p−ms

m

log ζ(s) =
∑
p

∞∑
m=1

p−ms

m

Definition 4.3. The Von Mangoldt Lambda function is:

Λ(n) =

{
log p if n = pe for some e

0 else

log ζ(s) =
∑
p

∞∑
m=1

p−ms

m
=
∞∑
n=1

Λ(n)

log n
n−s

16
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(If n is not a power of p, then the coefficient is zero. If n = pm, then we get log(p)
log(pm)p

−ms

which produces the right thing.)

−(log ζ(s))′ =
∑
p,m

p−ms =
∑

Λ(n)n−s

−ζ
′(s)

ζ(s)
=
∑

Λ(n)n−s

4.4. Meromorphic continuation.

Notation 4.4. For u ∈ R write u = [u] + {u}, where {u} is the fractional part, and [u] is
the greatest integer ≤ u.

Similarly, for differentials we can write du = d[u] + d{u}. Then d[u] is basically a delta
function at each integer.

Break up the zeta function:

(4.1) ζ(s) =
∑
n≤x

n−s +
∑
n>x

n−s

The second piece is ∑
n>x

n−s =

∫ ∞
x+

u−sd[u]

=

∫ ∞
x

u−sdu︸ ︷︷ ︸
A

−
∫ ∞
x+

u−sd{u}︸ ︷︷ ︸
B

A =
u1−s

s− 1∫ ∞
x+

u−sd{u}+

∫ ∞
x+
{u}du−s = du−s{u} ]∞x+ = −x−s{x}

B = −x−s{x} −
∫ ∞
x+
{u}du−s

∑
n>x

n−s =
x1−s

s− 1
+ x−s{x}+

(
−s
∫ ∞
x+
{u} · u−s−1du

)
Going back to (4.1), we have

ζ(s) =
∑
n≤x

n−s +
x1−s

s− 1
+ x−s{x} − s

∫ ∞
x+
{u}u−s−1du

The integral is bounded by |s|
∫∞
x+ 1 · uσ−1du. This is bounded if σ > 0. The formula on

the right makes sense for Re(s) > 0. The LHS is a Dirichlet series that makes sense for
Re(s) > 1. The RHS is analytic in s. Take the limit as x → 1+. The decomposition

17
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reduces to

ζ(s) = 1 +
1

s− 1︸ ︷︷ ︸
s
s−1

−s
∫ ∞

1
{u}u−s−1du

This shows that the RHS is meromorphic, with a simple pole at s = 1, in the region
Re(s) > 0.

Let’s estimate the behavior of ζ(s) in the strip 0 < σ < 1. Take s = σ ∈ R. The
integral is bounded by replacing {u} by 1; now take the antiderivative, and we have
0 ≤ σ

∫∞
1 u−σ−1du ≤ 1. This gives

1

σ − 1
=

σ

σ − 1
− 1 ≤ ζ(σ) ≤ σ

σ − 1

for this range.

4.5. Euler’s constant. Many equivalent definitions in the notes.

Definition 4.5.

C := 1−
∫ ∞

1
{u}u−2du

Alternatively, it’s the unique constant approximated by∑
n≤x

1

n
− log x

as x→∞. More precisely, ∑
n≤x

1

n
− log x = C +O

(
1

x

)
Notation 4.6. A = O(f(x)) means that A ≤ c · f(x) for large x, and some constant c.

To prove the equivalence,∑
n≤x

1

n
=

∫ x+

1−
u−1d[u] =

∫ x+

1−
u−1du−

∫ x+

1−
u−1d{u}

where the last integral is
∫
{u}d(u−1)+u−1{u}]x+

1− by Riemann-Stieltjes calculations. Fin-
ish this later.

5. February 7

5.1. Euler’s constant.

(1) C = 1−
∫∞

1 {u}u
−2 du

(2)
∑

n≤x
1
n − log x = C +O( 1

x)
18
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(3) ζ(s) = 1
s−1 + C + a1(s− 1) + a2(s− 1)2 + · · ·

Proof. Write ∑
n≤x

1

n
=

∫ x

1−
u−1d[u] =

∫ x

1−
u−1 du︸ ︷︷ ︸
log x

−
∫ x

1−
u−1d{u}

where integration by parts gives∫ x

1−
d{u}+

∫ x

1−
{u}d(u−1) = {u}u−1|x1− = −1

This gives (2).

ζ(s)− x1−s

s− 1
=
∑
n≤x

n−s +
{x}
xs
− s

∫ ∞
x
{u}u−s−1 du

Now use x = 1:

ζ(s)− 1

s− 1
= 1− s

∫ ∞
1
{u}u−s−1 du

and take the limit as s→ 1, getting (3). �

Everyone thinks that C is transcendental, but we can’t prove it’s irrational!

5.2. Fourier transforms. Schwartz functions on the real line are rapidly decreasing
C∞ functions: we require f · P (X) to be bounded for any polynomial. (One easy way to
have this is to consider compactly supported functions.)

Definition 5.1. The Fourier transform of f is∫ ∞
−∞

e−2πixyf(x) dx = f̂(y)

If f is Schwartz then
̂̂
f = f . We have a bilinear map

R× R→ C∗ = C∗1 = {z ∈ C : |z| = 1} (x, y) 7→ e−2πixy

which shows that R is self-dual. One of the beautiful consequences of this symmetry is

Theorem 5.2 (Poisson summation).
∑

n∈Z f(n+ x) =
∑

n∈Z f̂(n)e−2πinx

Letting x→ 0, we have ∑
f(n) =

∑
f̂(n)

Definition 5.3. The Gaussian is f(x) = e−πx
2
.

Lemma 5.4. The Gaussian is its own Fourier transform.
19
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Proof. Integrals without limits will mean
∫
R.

f̂(y) =

∫
e−πx

2
e−2πixy dx =

∫
e−π(2+2ixy+y2−y2) dx

= e−πy
2

∫
e−π(x+iy)2

dx

The contour is now −∞+0→ +∞+0, and we want to change it to −∞+ iy → +∞+ iy.
Using a large R instead of ∞, turn this into a rectangle, where the contribution to the
integral from the sides → 0 as R→∞. So we can ignore the sides of the rectangle.∫ +∞

−∞
e−πx

2
dx =

(∫ +∞

−∞
e−πx

2
dx ·

∫ +∞

−∞
e−πy

2
dy

) 1
2

=

∫ ∫
e−π(x2+y2) dx dy =

∫
θ

∫ ∞
r=0

e−πr
2
r dr dθ = 1

�

We can renormalize the Gaussian to e−πx
2/t, and its Fourier transform is

√
te−πx

2t (you’re
replacing x 7→ x

t ). We’re thinking of t > 0, so we can take
√
t > 0.

Definition 5.5 (Theta function).

Θ(z) =
1

2

∑
n∈Z

eπin
2z =

1

2
+
∑
n≥1

eπin
2z

Write z = x+ iy, which makes

Θ(z) =
1

2

∑
n∈Z

e2πin2x · e−2πn2y

But e2πin2x has absolute value 1, so it will not play much of a role in convergence. But in

order for e−2πn2y to make sense, we need y > 0. We will consider it on the imaginary axis
z = iy, and think of it as a function of y.

Analytic continuation will show that symmetries in Θ(iy) relate to symmetries on the
entire upper half-plane.

Θ(iy) =
1

2

∑
n∈Z

e−πin
2y

We have Θ(z+2) = Θ(z), just from the definition (and noticing e2πin = 1). Apply Poisson
summation (and remember the Gaussian Fourier transform from above):

Θ
(
−1
iy

)
=

1

2

∑√
ye−πn

2/y =
√
y ·Θ(iy)

(Define our square roots so that they are positive on the positive real axis.) So

Θ
(−1
z

)
=

√
z

i
·Θ(z)
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Θ4k
(−1
z

)
= z2k ·Θ4k(z)

5.3. Gamma function.

Definition 5.6.

Γ(s) =

∫ ∞
0

ts−1e−t dt

Also define a function
F (s) = π−sΓ(s) · ζ(2s)

which we will write in a bunch of ways. Now work in the domain where the Dirichlet
series makes sense, and write

F (s) =

∞∑
n=1

(πn2)−sΓ(s)

=
∑∫ ∞

0
(πn2)−sts−1e−t dt

Make the substitution t = πn2y, and dt = πn2dy

· · · =
∑∫

(πn2)−s(πn2)s−1ys−1e−πn
2yπn2 dy

=
∞∑
n=1

∫ ∞
0

ys−1e−πn
2y dy

We can interchange the summation and the integral, because the integrand is positive and∑∫
· · · = F (s) is known to be convergent (use Fubini/Tonelli):

· · · =
∫ ∞

0
ys−1

∞∑
n=1

e−πn
2y · dy

=

∫ ∞
0

ys−1

(
Θ(iy)− 1

2

)
dy

HW: Θ(iy)− 1
2 = O(e−cy)

Split the range of integration:
∫∞

0 =
∫∞

1 +
∫ 1

0 . The problematic part is
∫ 1

0 . Split the 1
2

off from the Θ in this part:

· · · =
∫ ∞

1
∗+

∫ 1

0
ys−1Θ(iy) dy − 1

2
· y

s

s

∣∣∣∣1
0

=

∫ ∞
1

+

∫ 1

0
ys−1Θ(iy) dy − 1

2s

Now do the transformation y 7→ y−1:

· · · =
∫ ∞

1
+

∫ 1

∞
y1−s ·Θ

(
i

y

)
d(y−1)︸ ︷︷ ︸
−y−2 dy

− 1

2s
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=

∫ ∞
1

+

∫ ∞
1

y−1−s ·Θ
(
−1

iy

)
dy − 1

2s

Make the transformation

· · · =
∫ ∞

1
+

∫ ∞
1

y−1−s · y
1
2 Θ(iy) · dy︸ ︷︷ ︸∫∞

1 y−
1
2−sΘ(iy) dy

− 1

2s

=

∫ ∞
1

+

∫ ∞
1

y−
1
2
−s
(

Θ(iy)− 1

2

)
dy +

1

2

∫ ∞
1

y−
1
2
−2 dy︸ ︷︷ ︸

−1
1−2s

=

∫ ∞
1

(ys−1 + y−
1
2
−s)

(
Θ(iy)− 1

2

)
dy︸ ︷︷ ︸

I(s)

− 1

1− 2s
− 1

2s

= F (s)π−sΓ(s) · ζ(2s)

Note: I(s) =
∫

(ys−1+y−
1
2
−s)
(
Θ(iy)− 1

2

)
dy has an integrand that is a polynomial times

a very quickly decreasing function. It is entire. If we replace s 7→ 1
2−s, then ys−1 switches

with y−
1
2
−s, and − 1

1−2s switches with − 1
2s . Therefore,

Proposition 5.7.

F (s) = F

(
1

2
− s
)

Usual definition:
Λ(s) = π−

s
2 · Γ

(s
2

)
· ζ(s)

Then we’ve proven
Λ(1− s) = Λ(s)

To get from Θ to ζ, we’ve passed through Θ(iy) and gotten to ζ(s) by a Mellin transform.
Can you go the other way? Yes!

Θ(iy)− 1

2
=

1

2πi

∫
Re(s)=σ�0

u−sF (s) ds

Θ is a modular form, whose transformation law gives the symmetry of the functional
equation. Θ is completely determined by its transformation law, and growth rate. This
translates to a characterization of ζ(s) in terms of properties of its functional equation.

6. February 9

6.1. One way to prove the functional equation. For Re(s) > 0

ζ(s) =
1

s− 1
+ 1 + s

∫ ∞
1

{x}
xs+1
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You can check that

−s
∫ ∞

1

−1
2

xs+1
dx =

1

2
“Subtracting and adding” this to the previous line:

ζ(s) =
1

s− 1
+

1

2
− s

∫ ∞
1

{x} − 1
2

xs+1
dx

for Re(s) > 0. But claim that this is true for Re(s) > −1. Write f(x) = {x} − 1
2 and

define F (x) =
∫ x

1 f(y) dy which is bounded because the sawtooth is centered around y = 0.
Integration by parts: ∫ b

1

f(x)

xs+1
dx =

[
F (x)

xs+1

]b
1

+ (s+ 1)

∫ b

1

F (x)

xs+1
dx

The second integral is convergent for s > −1.

Claim 6.1.

−s
∫ 1

0

{x} − 1
2

xs+1
dx =

1

s− 1
+

1

2

Proof. Since {x} = x for x ∈ [0, 1), we can split up the LHS so that

LHS = −s
∫ 1

0
x−s dx+

s

2

∫ 1

0
x−s−1 dx︸ ︷︷ ︸

s
2

[
x−s
−s

]1
0

When −s > 0 then the lower bound of zero is OK. Now it is easy to evaluate this. �

Now we can plug this into the previous expression of ζ(s) and get

ζ(s) = −s
∫ ∞

0

{x} − 1
2

xs+1
dx

for −1 < Re(s) < 0. (We need > −1 so that the integral to ∞ will work out, and < 0 for
the lower bound.) By Fourier series,

{x} − 1

2
=
∞∑
n=1

sin(2πnx)

πn

and the HW implies you can switch the integral and sum, giving

ζ(s) = − s
π

∞∑
n=1

1

n

∫ ∞
0

sin(2πnx)

xs+1 dx

= − s
π

∑ (2πn)s

n

∫ ∞
0

sin y

ys+1
dy

= − s
π
ζ(1− s)(2π)s[−Γ(−s) sin(

1

2
πs)] by next lemma
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Lemma 6.2. ∫ ∞
0

sin(y)

ys+1
dy = −Γ(−s) sin

(
1

2
πs

)

Use the contour obtained by going counterclockwise around the quarter radius-X circle in

the right upper half-plane, and letting X go to ∞. Recall sin y = eiy−e−iy
2i . Here |eit| ≤ 1

and ∣∣∣∣ 1

ys+1

∣∣∣∣ ≤ 1

XRe(s)+1

The arc length is Xπ
2 and πX

2 ·
1

XRe(s)+1 → 0 as X → +∞. So we can concentrate on the
straight pieces.

Residues = 0 =

∫ ∞
0

eiy

ys+1
dy +

∫
arc

+

∫ 0

+i∞

eiy

ys+1
dy

Make the substitution z = iy:∫ +i∞

0
dy =

∫ ∞
0

e−z(iz)−s−1i dz = (e
1
2
πi)−s

∫ ∞
0

e−zz−s−1 dz︸ ︷︷ ︸
Γ(−s)

Actually, the integral isn’t defined at zero, so we need to make a little arc of radius r
around zero, and integrate on that instead.

We need to do something similar for e−iy in sin y = eiy−e−iy
2i ; this involves flipping the

contour over the x-axis. ∫ ∞
0

sin y

y1+s
dy = − sin

1

2
πs · Γ(−s)

Here we extended the domain of ζ(s) by a strip to the left. But you can keep doing this,
and, adding as many strips as you want, you can get the entire left half-plane.

6.2. The filter. Recall we had a normalized version of the functional equation from
last time:

F (s) = π−sΓ(s)ζ(2s)

Using contour integration along a vertical line:

Θ(it)− 1

2
=

1

2πi

∫
Re(s)=σ0

t−sF (s) ds

Let X > 0, and assume σ0 is sufficiently large (at least, > 0).
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Theorem 6.3.

1

2πi

∫ σ0+i∞

σ0−i∞

Xs

s
ds =


1 X > 1
1
2 X = 1

0 X < 1

We will do the first case; the second is HW. Use a rectangle between the lines Re(s) = −A
and Re(s) = σ0, cut off between s + iT and s − iT . So there are four integrals, around

the sides of the rectangle, and the goal is to show that the ones other than
∫ σ0+iT
σ0−iT go to

zero. Let’s do the top piece:∫ σ=σ0

σ=−A

Xσ

|σ + iT |
≤ 1

T

∫ σ0

−A
yσ dσ ≤ T−1 y

σ0

log y

The left-hand line is ∫ t=+T

t=−T

X−A

| −A+ it|
dt ≤ 2T

X−A

A

As A→∞, this goes to zero.

6.3. Unrigorous Mellin transform. Recall for a Dirichlet seriesD(s) =
∑
a(n)n−s,

we can define a counting function A(x) =
∑

n≤x a(n). Actually, modify this:

A′(x) =

{
A(x) x /∈ Z∑

n<N a(n) + 1
2a(N) else

(Basically, A′(x) = A(x+)+A(x−)
2 .)

Recall

Λ(n) =

{
log p n = pe

0 else

We also care about the counting function ψ(x) =
∑

n≤x Λ(n) and the associated function

ψ′(x) = ψ(x+)+ψ(x−)
2 .

Roughly, D(s) and A(x) encode the same information. How do you get from one to the
other?

D(s) =

∫
1−
x−s dA(x) = −

∫ ∞
1−

A(x) d(x−s) = s

∫ ∞
1

A(x)x−s−1 dx

This is the Mellin transform: reading right-to-left, you recover D(s) from A(x). The
inverse Mellin transform is getting A(x) out of D(s). Consider

1

2πi

∫
σ0

D(s)
Xs

s
ds =

1

2πi

∫
σ0

∞∑
n=1

a(n) · 1

s

(x
n

)s
ds

This is just applying the filter to each term, with x
n playing the role of x in the definition,

and you get a factor of 1 exactly when X
n ≥ 1 =⇒ X ≥ n, and these are the terms a(n)

that get selected. This just gets you A′(x). Now do this rigorously.
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Theorem 6.4.

A′(x) = lim
T→∞

1

2πi

∫ σ0+iT

σ0−iT
D(s)

xs

s
ds

where the limit is taken with fixed X.

Let DN (s) =
∑

n≤N a(n)n−s, DN (s) =
∑

n>N a(n)n−s. So D = DN +DN . (And yes, the

upper and lower N ’s are kind of bad notation. . . )

It suffices to prove that ∫ σ0+iT

σ0−iT
DN (s)

Xs

s
ds→ 0 as T →∞

Use a rectangle with vertices {σ0±iT, T±iT}, with counterclockwise direction. Everything
is regular here, assuming that σ0 > max{0, σc}; the only pole is at s = 0. We know that∫

A+

∫
B +

∫
C +

∫
D = 0

The claim is that all except
∫
A =

∫ σ0+iT
σ0−iT go to zero; this will imply that

∫
A→ 0.

Lemma 6.5. ∫
B,

∫
C,

∫
D → 0

DN (s) =

∫ ∞
N

u−s d(A(u)−A(N))

(The dA(N) doesn’t actually do anything, but we put it there for clarity.) This is

· · · = s

∫ ∞
N

(A(u)−A(N)) · u−s−1 du

Choose some θ between σc and σ0. Claim

A(u)−A(N)� uθ

(This comes from the lim sup discussion from earlier.) Next time, we use the integral and
the inequality to produce immediate estimates on all the contours.

7. February 14

7.1. Perron’s theorem. We have a Dirichlet series D(s) =
∑
a(n)n−s, have defined

A(x) =
∑

n≤x a(n) and A′ as before. The Mellin transform is

D(s) = s

∫ ∞
1

A(x)x−s−1 dx

Using the unrigorous method from last time,

A′(x)
?
=

1

2πi

∫ σ0+i∞

σ0−i∞
D(x)

xs

s
ds
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where σ0 > σc. This is certainly true if we’re allowed to swap the sum (in D(s)) with the
integral: one term looks like∫ σ0+i∞

σ0−i∞
a(n) · n−sx

s

s
ds =

a(n)

2πi

∫ (
x
n

)s
s

ds =


a(n) n < x
1
2a(n) n = x

0 n > x

The 1
2 in the middle case is why we had to use the averaging procedure for A′(x) instead

of A(x). So
∞∑
n=1

1

2πi

∫
a(n) · n−sx

s

s
ds = A′(x)

Now we need to make this rigorous.

Fix x. Choose N � x. Write

D(s) =
∑
n≤N

a(n)n−s︸ ︷︷ ︸
DN (s)

+
∑
n>N

a(n)n−s︸ ︷︷ ︸
DN (s)

Since swapping sums and integrals is fine when the sums are finite, we can say

A′(x) =
1

2πi

∫
DN (s)

xs

s
ds

We need to show that ∫
DN (s)

xs

s
ds→ 0 as N →∞

Make the rectangle with vertices {σ0 ± iT, T ± iT} We want to show that
∫ σ0+iT
σ0−iT ∗ (the

left vertical piece) is small; to do that, we show that the other integrals are small. We can
write

DN (s) =

∫ ∞
N+

u−s d(A(u)−A(N)) = s

∫ ∞
N

(A(u)−A(N))u−s−1 du

by Riemann-Stieltjes. Assume
A(u)−A(N)� uθ

for θ ∈ (max{0, σc}, σ0).

DN (s)� |s| ·
∫ ∞
N

uθ−σ−1 du = |s| · N
θ−σ

σ − θ
Now the integral we want to evaluate is

(7.1)

∫
∗

|s|
σ − θ

N θ−σ x
σ

|s|
ds = N θ

∫
∗

(
x
N

)σ
σ − θ

ds

When * is one of the horizontal pieces:

· · · ≤ N θ

σ0 − θ

∫
∗

( x
N

)σ
ds =

N θ

σ0 − θ

[(
x
N

)σ
log x

N

]T
σ0

=
N θ

σ0 − θ
·
(
x
N

)T − ( xN )σ0

− log N
x

N is large so
(
x
N

)T
is small
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≤ N θ

σ0 − θ
N−σ0xσ0

log N
x

=
N θ−σ0xσ0

log N
x · (σ0 − θ)

θ < σ0 by assumption

To do the right-hand vertical integral
∫ T+iT
T−iT , plug in σ = T to (7.1) (obtaining an integrand

that does not depend on t):

N θ

∫ +T

−T
N−T · xT

(T − θ)
dt = N θ ·N−T · xT

T − θ
· (T − (−T ))

= N θ
( x
N

)T
· 2T

T − θ︸ ︷︷ ︸
bounded

Choose N large such that N
T
2 � x and

N θ
( x
N

)T
= N θ−T

2 · x

N
T
2

≈ N θ−T
2

Remember, we were taking limT→∞ before taking limN→∞, because we were trying to find

limT→∞
∫ T+iT
T−iT DN (s)x

s

s ds for each N , and then hope that those integrals approached zero

as N →∞. So here, limT→∞N
θ−T

2 → 0 for every N .

7.2. Gamma facts. We’re interested in the behavior of Γ on upper vertical strips:
σ + it, where |t| > 1 and σ is in some strip.

Theorem 7.1 (Stirling’s formula).

|Γ(s)| � e−
π
2
|t|

By definition,

Γ(s) =

∫ ∞
0

e−tts
dt

t

It is the Mellin transform of e−t. So we can do the inverse Mellin transform:

e−t =
1

2πi

∫
line σ

Γ(s)t−s ds

(It’s a little like applying the filter to sΓ(s). . . )

7.3. Hecke’s theorem. Let λ, k be positive reals, and choose {a(n), b(n)} � c > 0.
Define the Dirichlet series

ϕ(s) =
∑
n=1

a(n)n−s ψ(s) =
∑
n=1

b(n)n−s

(Note that a(0) and b(0) are not used here. This will be a constant annoyance.) These
act like ζ(2s), and are defined in some right half-plane. However, we want expressions
for ψ(k − s) (which aren’t even defined yet.) To get a better relationship, we introduce
Γ-factors:

Φ(s) =

(
λ

2π

)s
Γ(s)ϕ(s) Ψ(s) =

(
λ

2π

)s
Γ(s)ψ(s)
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Define

f(z) =
∞∑
n=0

a(n)e2πinz/λ g(z) =
∞∑
n=0

b(n)e2πinz/λ

We need to show:

(1) ϕ(s), ψ(s) are analytic in the right half-plane σ > c + 1. (Use the bounds
a(n), b(n)� nc)

(2) f(z), g(z) are analytic in the upper half plane. Also,

f(x+ iy), g(x+ iy)� y−c−1 as y → 0+

(3) Φ(s) =
∫∞

0 (f(iy)− a(0))ys−1 dy and similarly for Ψ. (Unrigorously, this is obvi-
ous; the exercise is to justify the commutation of

∑
and

∫
.)

(4) Crux: the following statements are equivalent:

(a) The function Φ(s) + a(0)
s + εb(0)

k−s is entire on C, and is bounded on every
vertical strip, and

Φ(s) = εΨ(k − s)
(b)

ε · g
(
−1

z

)
=
(z
i

)k
f(z)

Example 7.2. Θ-function: k = 1
2 , ε = 1, g = f = θ

Θm

(
−1

z

)
=
(z
i

)m/2
·Θm(z)

This helps you estimate the function that counts the # of ways to write n as a sum of m
squares

Equivalence in the forward direction is what we did in the case of the Riemann zeta
function.

7.4. Digression: Lattice theory in dimension 24. Let L ⊂ RN be a lattice. You
can produce a theta function θL associated to the lattice:

θL(z) =
∑

a(n)qn

where a(n)−#{λ ∈ L : 〈λ, λ〉 = n} If N = 1, then this is our θ. But any of them satisfies
a transformation law. If L ⊂ R24, then elementary analysis shows that we can write

θL(z) = E(z) +D(z)

where E and D are both modular forms of weight 12. E(z) has large coefficients, but is
very elementary (it’s an Eisenstein series). D(z) has smaller coefficients, but is somewhat
deep; this gives the dominant term for the arithmetic function n 7→ a(n). It turns out
that D(z) is a multiple of ∆(q) = q ·

∏∞
n=1(1 − qn)24. For higher Waring problems, we

don’t have symmetries as nice.
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8. February 16

8.1. Phragmen-Lindelöf Theorem.

Theorem 8.1. Let f(s) be analytic in some upper vertical strip: σ1 ≤ σ ≤ σ2 and t ≥ T1.
Require

|f(s)| = O(et
a
)

on the entire strip, and
|f(s)| = O(tM )

on the vertical boundary. Then |f(s)| ≤ O(tM ) on the whole strip.

Corollary 8.2. If |f(s)| is bounded on the boundary, and |f(s)| = O(et
a
) on the strip,

then it’s bounded on the whole strip.

Clearly, the theorem implies the corollary. But:

Claim 8.3. The corollary implies the theorem.

Proof. Suppose f(s) satisfies the hypotheses of the theorem. Then g(s) = f(s)/sM

is still analytic on the strip, and still satisfies the interior bound. But, it’s also now
bounded on the boundary. By the corollary, g(s) is bounded everywhere on the strip. So
f(s) = g(s) · sM is O(tM ). �

So it suffices to prove the corollary.

Corollary. Let f(s) ≤ B on the boundary, and O(et
a
) on the entire strip. Choose

m > a such that m ≡ 2 (mod 4). Write sm = rm·eimθ. It’s OK to move T1 once, so assume
that the line from s (in the strip) to the origin makes an angle with the real axis that is
almost 90o. That is, s in the strip looks like r ·eiθ where θ ≈ π

2 . Furthermore, assume that
mθ ≈ π (this is why we want m ≡ 2 (mod 4)). So if sm = rm(cosmθ + i sinmθ) where
sinmθ is close to zero, and cosmθ ≈ −1, then sm ≈ −rm.

For the moment choose a constant c > 0, and define

gc(s) = f(s)ec·s
m

(recall sm < 0). This is bounded on the boundary, and on the interior it’s not so bad:

|gc(s)| = O(et
a+c·rm cosmθ)

(recall cosmθ < 0). The second term will eventually swamp the first: we can find T2 large
enough such that if t ≥ T2, then ta + c · rm cosmθ ≤ 0. (Recall that these things are
related by s = r · eiθ = σ + it, and here rm cosmθ ≈ sm.) Let T3 ≥ T2 be arbitrary. Then
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gc is bounded on all four sides of the rectangle T1 ≤ t ≤ T3, σ1 ≤ σ ≤ σ2, because:

|f(s)| ≤ Beta =⇒ gc(s) ≤ Bet
a+crm cosmθ =⇒ |gc(s)| ≤ B

Use the maximum modulus principle for gc on our rectangle. gc is analytic on the region,
and has absolute value bounded by B. That is,

|f(s)| ≤ B · ecrm cosmθ

for any θ in this strip.

This is true for every c. Taking the limit gives

|f(s)| ≤ lim
c→0

B · e−crm cosmθ = B

as desired.

�

8.2. Stuff about the HW.

• We had
∞∑
n=1

a(n)e−ny

for a(n)� nc. Break this up as
∞∑
n=1

a(n)e−ny/2︸ ︷︷ ︸
replace by 1

·e−ny/2

• (New HW.) Assuming the functional equation (i.e. ϕ(s) = stuff · ψ(k − s)),
Stirling’s formula, and Phragmen-Lindelöf, but not assuming Hecke’s theorem,
you can show that |ϕ(s)| = O(|t|M ) in vertical strips.
• Important case: assume that a(0) = b(0) = 0. Break up

Φ(s) =

∫ ∞
0

f(iy)y−s ds =

∫ ∞
1

+

∫ 1

0

We know that f(iy) is rapidly decreasing, so
∫∞

1 is absolutely convergent. Con-

vert
∫ 1

0 into a similar integral with bounds
∫∞

1 that is absolutely convergent.
• Assume that a(0) = b(0) = 0. From what we’ve just said, we know that Φ(s)

is bounded in vertical strips. Also, it satisfies the functional equation Φ(s) =
εΨ(k − s). You can show

εg

(
−1

z

)
=
(z
i

)k
f(z)

We have:

f(iy) =
1

2πi

∫ σ+i∞

σ−i∞
y−sΦ(s) ds
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g(iy) =
1

2πi

∫ σ+i∞

σ−i∞
y−sΨ(s) ds

for σ � 0. But this isn’t so useful if we want to use Φ(s) = εΨ(k − s). First,

think of
∫ σ+i∞
σ−i∞ as a limit of

∫ σ+iT
σ−iT . We’ll have to move σ far to the left, so that

k − s corresponds to something that is safe for Φ. Let σ > k. Integrate around
the box with vertices {−σ ± iT, σ ± iT}. The claim is that the contribution of
the horizontal bits goes to zero as T →∞, so you end up integrating

lim
T→∞

(∫ −σ+iT

−σ−iT
y−sΦ(s) ds−

∫ σ+iT

σ−iT
y−sΦ(s) ds

)
= Residue

If you integrate along the top edge of the rectangle you get∣∣∣∣∫ +σ0+iT

−σ0+iT
ysΦ(s) ds

∣∣∣∣ ≤ ∫ yσ
(
λ

2π

)σ
|Φ(s)| · |ϕ(s)| dσ

By Phragmen-Lindelöf, and maybe Stirling, we have ϕ(s) = O(tM ). By Stirling,

Γ(s) = e−
π
2
t. The integral∫

Re(s)=σ0

yσ
(
λ

2π

)σ
dσ

is just a constant. So you get a bound out of the other two parts. This bound
goes to zero as T →∞. Eventually, you’ve shown that you can move the line of
integration from +σ to −σ.
• Hint for Carl’s problem: you’re trying to switch the order of summation in∫ ∞

0

∑
sin(2πnx)

nπxs+1
dx

Break this up into ∫ B

0
+

∫ ∞
B

where you can use the dominated convergence theorem on the first part, and the
second part should go to zero. Use lemma (D.1) in the book to help bound the
partial sums.

8.3. Entire holomorphic functions (Levent). References: Elkies’ Math 229 in
2009

Definition 8.4. Let pi ∈ C. We say that
∑∞

i=1 pi converges to p 6= 0 iff

lim
N→∞

∏
i≤N

pi → p

If any pi = 0, then say the product is zero. Now, assume that none of the terms are zero.

Proposition 8.5.
∏
n≥1(1 + an) converges iff

∑
n≥1 log(1 + an) <∞.

Proof. (⇐= ) exp(
∑N

1 log(1 + an)) =
∏N

1 (1 + an)
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( =⇒ ) Fix a branch of log. Write Pn =
∏n
i=1 pi, and P = limPi. We know that Pn/P → 1.

Write sn =
∑n

i=1 log(1 + ai). Define the integer hn by

logPn − logP + 2πihn = Sn

But also
2πi(hn+1 − hn) = log(Pn+1/P )− log(Pn/P )→ 0

For n sufficiently large, |2πi(hn+1 − hn)| < π, which implies that hn+1 = hn. �

Definition 8.6.
∏

(1 + an) converges absolutely if
∑
| log(1 + an)| <∞.

Proposition 8.7.
∏

(1 + an) converges absolutely iff
∑
|an| <∞.

Lemma 8.8. Let f be entire and holomorphic such that f 6= 0 anywhere. Then there is
some g that is entire and holomorphic such that f = exp(g).

Corollary 8.9. Let f be entire and holomorphic, with zeroes at a1 · · · an. Then there is
some m ∈ N, and g entire such that

f = zmeg
n∏
i=1

(
1− z

an

)
Note: this product converges absolutely iff

∑ 1
an

converges absolutely.

Theorem 8.10. Let f be entire, {an} its zeroes. Then: there exists m ∈ N, polynomials
pn(z), and an entire function g such that

f(z) = zmeg(s)
∞∏
n=1

(
1− z

m

)
epn(z)

Moreover, if {an} is a sequence of complex numbers such that |an| → ∞, then there exists
mn ∈ N such that

∞∏
n=

(
1− 1

an

)
exp

(
z

an
+

1

2

(
z

an

)2

+ · · ·+ 1

mn

(
z

an

)mn)
converges to an entire function.

Note: one can choose pn to have degree h iff
∑ 1
|an|n+1 converges.

9. February 21

9.1. More on Weierstrass’ theorem.

Theorem 9.1. Let an be nonzero complex numbers, where |an| → ∞. Then
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(1) There exist pn(z) for which
∏(

1− z
an

)
epm(z) converges uniformly (absolutely)

to an entire function;
(2) If f 6= 0 is entire, and {an} are its (nonzero) zeroes with multiplicity, then there

exist m ∈ N, a sequence mn ∈ N, and an entire function g such that

f(z) = eg(z)zm
∏(

1− z

an

)
e
−
(

z
an

+ 1
2

(
z
an

)2
+···+ 1

mn

(
z
an

)mn)

General idea: if there are finitely many an 6= 0, then you can write

f(z) = zm
∏(

1− z

an

)
× entire function

where m is the order of vanishing (if at all) at zero, and the entire function can be written
esomething. When we introduce infinitely many zeroes an 6= 0, then we need to worry

whether
∏(

1− z
an

)
converges. In general, it doesn’t. But I claim that we can fix this by

multiplying by epolynomial. To see this, use the “definition” from last time that says that you
can check convergence of products by first taking the log, and then checking convergence of
the resulting sum. After taking logs, we want∑∣∣∣log

(
1− z

m

)∣∣∣+ polynomial

to converge for some polynomial. In fact, this polynomial can be solved for by writing out
the Taylor expansion for log.

Remark 9.2. An interesting case is when mn = h (i.e. each “fudge” polynomial is the
same length). In this case, the minimal such h is called the genus of {an}. If f is entire,
such an h exists, and g is a polynomial, then the genus of f is max{h,deg g}. The point is
that you can measure this, up to an order of 1, thanks to an estimate of Hadamard that
measures growth rate.

Suppose |f | ≤ O(exp |z|a). The aim is to recover a.

Definition 9.3. Let f be entire. Let M(r) = sup|z|≤r |f(z)|. Then the order of f is

λ = lim sup
r→∞

log logM(r)

log r

Alternatively, λ is minimal such that, for all ε > 0,

|f | ≤ O(exp |z|λ+ε)

This is something we can actually measure!

Theorem 9.4 (Hadamard). Let f be entire. Then λ <∞ ⇐⇒ h <∞, and in this case,

h ≤ λ ≤ h+ 1
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Example 9.5. Recall that Euler used the factorization

sin(πz) = πz
∞∏
n=1

(
1− z2

n2

)
to find ζ(2). We know where the zeroes of sinπz are: they are just the integers, and so an
are the integers. Euler knew that

∑ 1
n2 converges. We can take h = 1. Since sinπz has a

simple zero at each integer,

sin(πz) = zeg
∏
n6=0

(
1− z

n

)
e
z
n

= zeg
∞∏
n=1

(
1− z2

n2

)
Let’s take logarithmic derivatives, and ignore convergence issues:

cot(πz) =
1

z
+ g′(z) +

∞∑
n=1

(
1

n
+

1

z − n

)
By the expansion of cot, or using the Hadamard factorization theorem (which implies that
g has degree at least 1. . . ), this is also 1

z +
∑

n6=0
1
n + 1

z−n . So g′ is identically zero, and g

is constant. Note that sin(πz)
z → π as z → 0, and eg = π.

9.2. The Riemann ξ function. Recall the Weierstrass product expansion of the
gamma function:

Γ(s) =
e−Cs

s

∞∏
n=1

e
s
n

1 + s
n

It has a pole at zero, and at every negative integer. Levent’s g is e−Cs. We can check the
formula

Γ(s)Γ(1− s) =
π

sinπs
If you unfold this, you will get Euler’s formula. Plausibility check: there’s a simple pole
at every integer on the RHS, and on the LHS Γ(s) gives the poles at nonpositive integers
and Γ(1− s) gives the poles at positive integers. Or, you can write it as

(9.1) Γ
(s

2

)
Γ
(

1− s

2

)
=

π

sin
(
πs
2

)
and

Γ(s)Γ

(
s+

1

2

)
= π−

1
2 21−2sΓ(2s)

Riemann didn’t define the ζ function; he defined the ξ(s) function:

ξ(s) =
1

2
s(s− 1)π−

s
2 Γ
(s

2

)
· ζ(s)︸ ︷︷ ︸

our Λ(s)

Having killed the poles, ξ(s) is entire, and it satisfies a functional equation:

ξ(s) = ξ(1− s)
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We also have
ξ(s) = ξ(s) =⇒ ξ(s) = ξ(1− s)

If ρ is a zero of ξ(s), then the usual notation is to write ρ = β + iγ, and 1− ρ and ρ are
zeroes. So related zeroes are:

β + iγ 1− β − iγ β − iγ 1− β + iγ

So if you have a zero that’s off the line Re(s) = 1
2 , then there’s another one on the other

side.

Theorem 9.6.
ζ(s) = 2s · πs−1Γ(1− s) sin

(πs
2

)
︸ ︷︷ ︸

stuff relating to the
functional equations of ξ

ζ(1− s)

We might call this an inhomogeneous functional equation.

Proof. A nuisance. But you just use the original functional equation of ξ, plus the
prior formulas for Γ(s).

In the formula for ξ, we can ignore 1
2s(s− 1), because it’s symmetric around 1

2 .

π−
s
2 Γ
(s

2

)
ζ(s) = π

s−1
2 Γ

(
1− s

2

)
ζ(1− s)

Γ
(s

2

)
ζ(s) = πs−

1
2 Γ

(
1− s

2

)
ζ(1− s)

ζ(s) = πs−
1
2

Γ
(

1−s
2

)
Γ s

2

ζ(1− s)

But we have a formula for the fraction term, gotten by rearranging (9.1), and multiplying
both sides by Γ

(
1−s

2

)
:

Γ
(

1−s
2

)
Γ
(
s
2

) = Γ

(
1− s

2

)
1

π
Γ
(

1− s

2

)
· sin

(πs
2

)
which we plug in to get

ζ(s) = πs−
1
2 Γ

(
1− s

2

)
1

π
· Γ
(

1− s

2

)
· sin πs

2
· ζ(1− s)

I claim we’re done, by Legendre’s formula

Γ
(s

2

)
· Γ
(
s+ 1

2

)
= π−

1
2 21−sΓ(s)

in which we can replace s by 1− s:

Γ

(
1− s

2

)
· Γ
(

1− s

2

)
= π−

1
2 2sΓ(1− s)

Plug in and compare with what we want. All the terms are there; you can do the book-
keeping. �
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9.3. Zeroes and poles of ζ. We know that ζ has a simple pole at s = 1. Beyond
this line, there are no zeroes or poles. By what we just proved about the symmetry of
the zeroes, ζ(1 − s) does not contribute any zeroes to the left of σ = 0 (we’re following
the formula for ζ in the theorem.) sin

(
πs
2

)
has a zero at every even integer. Γ(1− s) has

a simple pole at all positive integers, and no zeroes. These poles cancel out the zeroes,
except at the even negative integers. These are called the trivial zeroes of ζ. Other than
these, there are no zeroes to the left of σ = 0. So there is a critical strip 0 ≤ σ ≤ 1, where
we don’t know where the zeroes are. (It has been proven that there are no zeroes on the
boundary lines.)

9.4. Bernoulli numbers. Curiously, Jacob Bernoulli introduced the numbers as the
constant terms of polynomials, whose growth was studied. They appear everywhere: the
numerators are related to the number of differentiable structures on spheres; the denomi-
nators are related to the image of the J-homomorphism in algebraic topology. Define

SR(n) =
∑

1≤a<n
ak

This is a polynomial
1

k + 1
nk+1 + · · ·+ (±Bk) · n

where Bk, the Bernoulli number, is defined as above, as a part of the constant term in
this polynomial. The Bernoulli numbers also arise in the generating function:

x

ex − 1
= 1− x

2
+

∞∑
k=1

B2k
x2k

(2k)!

(You can use the generating function form to prove that the coefficients are rational.) All
the odd terms (except B1 = −1

2) are zero, so we often write the Bernoulli numbers as B2k.
There are other useful formulas:

B2k = −2(2k)!(2πi)−2kζ(2k)n−2k

We know that ζ(1− 2k) is related to ζ(2k); this gives rise to a formula

−B2k

2k
= ζ(1− 2k)

9.5. Facts about the logarithmic derivative. Consider the operator

D : f 7→ f ′

f
=

d

dz
log f(z)

Useful properties:
D(fg) = D(f) +D(g)

D((z − a)m) =
m

z − a
That is,

∮
aD((z − a)m) dz = m. Since D is logarithmic, this counts multiplicities for any

function. If f(z) = (z−a)m · g(z), where g(z) is regular and nonzero at z = a, then Df(z)
has the same property:

Df(z) =
m

z − a
+ regular part
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If f(z) is analytic in the neighborhood of some contour, and has poles inside, then

1

2πi

∫
0
Df(z) dz = algebraic sum of multiplicities

Example 9.7. Let σ > 1, and integrate∫
σ
Dζ(s) · x

s

s
ds

Once we do this, we will get an explicit formula for sums of logs of primes up to x.

10. February 23

Let f(s) be a meromorphic function. Let D be the logarithmic derivative:

f(s)
D→ Df(s) =

f ′

f
(s) =

d

ds
log f

Note that
D((s− s0)m) =

m

s− s0

In particular, if f(s) has a pole or zero at s0, you can write it as (s− s0)mg(s) where g(s)
has no zeroes or poles in a neighborhood of s0. Then

D(s− s0)m · g(s) =
m

s− s0
+Dg(s)

where Dg(s) is harmless. Now consider a contour γ around some points mi that are zeroes
or poles. Integrating around γ is the same as integrating around a little neighborhood of
each point. So you get

Df(s) =
∑
i

mi

s− si
+ something harmless

Now let h(s) be holomorphic in the region in question.

1

2πi

∫
C
Df(s) · h(s) ds = m1h(s1) + · · ·+mνh(sν)

If h(s) is meromorphic, then there will be an extra contribution corresponding to the poles
of h.

We had a Dirichlet series for σ > 1:

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n) · n−s

where we had defined

Λ(n) =

{
log p ifn = pe

0 else

Now use the filter:

− 1

2πi
lim
T→∞

∫ σ0+iT

σ0−iT

ζ ′

ζ
(s)

xs

s
ds =

1

2πi
lim
T

∫ σ0+iT

σ0−iT

∞∑
n=1

Λ(n)

(
x
n

)s
s

ds
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Commuting sum and integration as in Perron’s formula, this is just ψ′(x) = 1
2(ψ(x+) +

ψ(x−)), where ψ(x) =
∑

n≤x Λ(n).

We know that ζ(s) has a pole at s = 1, might have zeroes ρ in the critical strip 0 < σ < 1,
and has zeroes at the negative even integers. Assume σ0 > 1. The idea is to replace
integration on the line σ = σ0 with integration on a line far to the left. To do this,
integrate along a rectangular contour with vertices {σ0 ± iT, σ1 ± iT}, where we take
limσ1→−∞. You have to be careful that σ1 never falls on a negative even integer. Let’s
ignore this for the moment.

Just read the textbook. To recap, the idea is to evaluate ψ′(x) = − 1
2πi

∫
σ0
Dζ(s)x

s

s ds
by evaluating the contour over an expanding rectangle in such a way that the horizontal
components are zero. This contour is completely determined by the parameters σ0, σ1, T .
Choose

σ0 = 1 +
1

log x
You can’t just choose any random T . Instead, in any interval [T, T + 1], we can find a
“good” T , which we will notate T1. Similarly, for σ1 you also have to keep away from the
zeroes. Just let σ1 be the negative odd integers.∫ σ0+iT1

σ0−iT1

=

∫
side1

+

∫
side2

+

∫
side3

+residues

At s = 0, xs

s has a pole, and you get a residue ζ′

ζ (0). At the negative integers s = −2k,

the residue is the multiplicity of the zero, so we get a contribution of −x−2k

2k . At s = 1, ζ

has a pole (so ζ′

ζ has a zero), and we get a contribution of −x. At s = ρ (any zero in the

critical strip, counted with multiplicity), we get a contribution of xρ

ρ . Unrigorously,

ψ′(x) = x−
∑ xρ

ρ
− ζ ′

ζ
(0) +

∞∑
k=1

x−2k

2k

Now clean this up. Just using the Taylor expansion of log, we have
∞∑
k=1

x−2k

2k
= −1

2
log

(
1− 1

x2

)
Define

s(x) =
ζ ′

ζ
(0) +

1

2
log

(
1− 1

x2

)
This is a smooth function. As x → ∞, this goes to ζ′

ζ (0); so it’s basically a constant for

large x.

Recall that every zero ρ = β + iγ has a companion zero ρ = β − iγ. So

ψ′(x) = x− lim
T→∞

x−
∑
|γ|≤T

xρ

ρ
− s(x)
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This illustrates a general principle: whenever your abscissa is too large, you can try to
pull the line further to the left by taking a contour integral, and counting the residues
inside.

Let’s talk about
∑
|γ|≤T

xρ

ρ .

Theorem 10.1 (“The not-too-many-zeroes theorem”). If ρ are the nontrivial zeroes of
ζ(s), counted with multiplicity, then∑

ρ

1

|ρ|1+ε
< +∞

for any ε.

We won’t prove this now, but here’s a corollary.

Corollary 10.2. If γ is the imaginary part of the corresponding ρ, then∑
|γ|≤T

1

|ρ|
� T ε

for any ε > 0.

Proof.

(2T )ε
∑
|γ|≤T

1

|ρ|1+ε
=
∑(

(2T )
|ρ|

)ε
|ρ|

≥
∑
|γ|≤T

1

|ρ|

�

10.1. Explicit formula. Let

R(x, T ) := ψ′(x)− x+
∑
|γ|≤T

xρ

ρ
+ s(x)

Theorem 10.3. Fix x. Then R(x, T )→ 0 as T →∞.

But, we can do better. Recall R(x, T ) is gotten by integrating three sides of a contour
integral. Define

m(x, T ) = min
{

1, x
T ·〈x〉

}
where 〈x〉 is defined to be the distance between x and the nearest prime power, except if
x is a prime power, in which case you go to the closest other prime power. (The issue is
that ψ′ jumps at prime powers.)
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Theorem 10.4.
R(x, T )� x

T
(log x)2 +m(x, T ) · log x

where � is to be interpreted as x, T both tending towards ∞.

We won’t prove this now either.

Let T ≥ x
1
2

+δ.
R(x, T )�

√
x

because all the log terms are insignificant compared to any xsomething. This gives an
estimate

ψ′(x) = x−
∑

|γ|≤x
1
2 +δ

xρ

ρ
+O(

√
x)

So this says that you don’t have to compute that many zeroes to get a decent approxima-
tion.

10.2. Zero-free regions.

Hypothesis 10.5. For 1
2 < α < 1, there are no zeroes ρ = β + iγ with β ≥ α.

(Call this “hypothesis α”, where the Riemann hypothesis is “hypothesis 1
2”.)

ψ′(x) = ψ(x) = x−
∑ xρ

ρ
+O(x

1
2

+δ)

The aim is to estimate
∑ xρ

ρ , where xρ = xβ · xiγ , where β ≤ α. So∣∣∣∣∣x−α∑
ρ

xβ+iγ

ρ

∣∣∣∣∣ ≤∑ xβ−α

|ρ|
∑ 1

|ρ|︸ ︷︷ ︸
�T ε

so ∑ xρ

ρ
� xα+δ

for small δ.

It has been proven that there are no zeroes on the line s = 1. Hypothesis α gives

ψ(x) = x+O(xα+δ)

Every time you have a zero-free region, you get an estimate for
∑ xρ

ρ .

We’re interested in counting primes: finding π(x). We have some chance of understanding
ψ(x), and we will see that this informs you about π(x).
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11. March 1

11.1. Tony. Recall we had defined

Λ(s) = π
−s

2 Γ
(s

2

)
ζ(s)

which satisfies the functional equation

Λ(s) = Λ(1− s)

The growth of Λ is dominated by the gamma term. Define ξ(s) = s(s−1)
2 Λ(s). Recall that

the order of f is

lim sup
r→∞

log logMr|f |
log r

If |f | ≈ e|t|a then this picks out the a.

Proposition 11.1.
order(ξ) = 1

We will do this by showing

(1) There is no c such that |ξ(s)| � ec|s|

(2) There is some c′ such that |ξ(s)| � ec
′|s| log |s|

Along R, |ζ(s)| = 1−s + · · · ≥ 1, so this doesn’t really slow the growth rate. Stirling’s
approximation says that

n! ≈
(n
e

)n√
2πn

This dwarfs any exponential, which proves (1). It also means that

|Γ
(s

2

)
| � ec

′|s| log |s|

Now we need a bound for the zeta function. It suffices to show, then, that

|ζ(s)| � |ζ(|s|)| � D

sufficiently far to the right. Write

ζ(s) =
∑ 1

ns
+

1

s− 1
+

∫ ∞
1

x−s dx

x1−s
1−s

∣∣∞
0

=
1

s− 1
+
∞∑
n=1

∫ n+1

n

1

ns
− 1

xs

s
∫∞
n

1
ys+1 dy

dx

That is, ∣∣∣∣s(s− 1)

2
ξ(s)

∣∣∣∣ ≤ ∣∣∣s2 ∣∣∣+

∣∣∣∣s2(s− 1)

2

∣∣∣∣ ∞∑
n=1

∫ n+1

n

∫ x

n

1

yσ+1
dy dx
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We have ∣∣∣∣ 1

ns
− 1

xs

∣∣∣∣ ≤ |s| ∫ ∞
n

1

|ys+1|
dy

nσ

and
∫∞

1
1

yσ+1 dy = C.

Remark 11.2.

You can get zeroes of zeta in Mathematica as ZetaZero[z].

11.2. Chebyshev.

Notation 11.3. We say f(x) � g(x) if there exist c1, c2 > 0 such that

c2g(x) < f(x) < c1g(x)

for x sufficiently large.

Definition 11.4.

(1) π(X) =
∑

p≤X 1

(2) θ(x) =
∑

p≤X log p

(3) ψ(x) =
∑

n≤X Λ(n) =
∑

pe≤X log p

Obvious 11.5.
π(X) ≤ θ(X) ≤ ψ(X)

There is a formula for π(X) in terms of the zeroes of zeta, but it is complicated. Easier is
to use ψ(X) to approximate θ(X), and θ(X) to approximate π(X). The goal:

Theorem 11.6.

(1) θ(X) = ψ(X) +O(X
1
2 )

(2) π(X) = ψ(X)
logX +O

(
X

(logX)2

)
This can be used to show

Theorem 11.7.
ψ(x) � x

Recall that
∑

d|n Λ(d) = log n. By Moebius transformations, we can write

Λ(n) =
∑
d|n

µ(d) · log
n

d

43



Math 229 Barry Mazur Lecture 11

which gives an alternate form of

ψ(x) =
∑
n≤x

Λ(n) =
∑
n≤x

∑
d|n

µ(d) · log
n

d

=
∑
d≤x

µ(d) ·
∑
n
d
≤x
d

log
n

d

We’re going to make approximations to the Moebius functions, which we call mock Moe-
bius functions. First, start with any d 7→ m(d), and denote

ψm(x) =
∑
d≤x

m(d) ·
∑
d|n
n
d
≤x
d

log
n

d

Now we restrict m(d) by setting restrictions on the resulting ψm(x). Let

T (x) =
∑
a≤x

log a

and in particular we care about

T
(x
d

)
=
∑
d|n
n
d
≤x
d

log
n

d

Approximate T (x) by
∫ x

1 log t dt = x log x− x which gives the bound

N logN −N ≤ T (N) ≤ (N + 1) log(N + 1)−N − 1

T
(x
d

)
=
∑
d|n
n
d
≤x
d

log
n

d
= N logN + a small error term of about log 2N

From now on, let O denote O(log 2N).

Now we get to impose a condition on m: we want m(d) = 0 for d sufficiently large (i.e. m
has compact support).

ψm(d) =
∑

m(d) · T
(x
d

)
=
∑
d≤x

m(d)
(x
d

log
x

d
− x

d

)
+O

=
∑ m(d)

d
x · log x−

∑ m(d)

d
· x log d−

∑
d≤x

m(d)
x

d
separating log x

d

= (x log x− x) ·A+ x ·B

where A =
∑

d≤x
m(d)
d and B(x) = −

∑
d≤x

m(d) log d
d .

We want B = 1, and A→ 0. So require

Hypothesis 11.8. A(x) =
∑

d≤x
m(d)
d = 0 for x large.

Hypothesis 11.9. B(x) = 1
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Under these restrictions, we have that ψm(x) ∼ x+O.

Proposition 11.10.
ψm � ψ

We are done if we show this, and show that there is some m(d) meeting our hypotheses.
At this point, just assume that m(d) satisfies our hypotheses.

ψm(x) =
∑
d≤x

m(d)
∑
ν
d
≤x
d

d|ν

log
ν

d

=
∑

(d,n),dn≤x

m(d) log n =
∑

(d,n) : dn≤x

m(d)
∑
k|n

Λ(k)

=
∑

(k,d,ν) : kdv≤x

m(d)Λ(k) collect indices and replace n = k

=

[x]∑
k=1

Λ(k)
∑

(d,ν) : dν≤x
k

m(d)

=

[x]∑
k=1

Λ(k)
∑
d≤x

k

m(d) ·
⌊ x
kd

⌋
number of ν’s is

⌊ x
kd

⌋
Set

F (y) =
∑
d≤y

m(d)
⌊y
d

⌋
So our previous expression is

∑[x]
k=1 Λ(k) · F

(
x
k

)
. Now use the second hypothesis on the

mock-Moebius functions: we can write

F (y) =
∑
d≤y

m(d)
y

d
−
∑
d≤y

m(d)
y

d
= y

∞∑
d=1

m(d)

d
−
∑
d≤y

m(d)
y

d
= 0−

∑
d≤y

m(d)
y

d

Notice that F (y) is periodic: F (y +D) = F (y), where D is the least common multiple of
all the d’s such that m(d) 6= 0 (i.e. the d’s that are “actually” in the sum).

ψm(x) =
∑

Λ(k) · F
(x
k

)
if x is large

The aim was to compare ψm to ψ =
∑

Λ(k) · 1. So we hope we can make F
(
x
k

)
close to

1.

12. March 6

RECALL: we are interested in

ψ(x) =
∑
n≤x

Λ(n) =
∑
d≤x

µ(d)
∑
n
d
≤x
d

d|n

log
n

d
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We imitate this by creating a “mock Moebius function” m(d), which is chosen to satisfy
certain axioms:

(1) m(d) has finite support

(2)
∑∞

d=1
m(d)
d = 0

Define
ψm(x) =

∑
d≤x

m(d)
∑
n
d
≤x
d

d|n

log
n

d

We had

ψm(x) = (x log x− x)
∑
d≤x

m(d)

d
− x d

∑
d≤x

m(d) log d

d
+O(log 2x)

We were trying to show that ψ(x) � x by way of showing ψm(x) � x. The second
“axiom” guarantees that the first term in ψm(x) is eventually zero; ideally, we want∑

d
m(d) log d

d = −1. We won’t get this, but we can make it close to −1.

We want to transform ψm to make it look like ψ.

ψm(x) =
∑
d≤x

m(d)
∑
n
d
≤x
d

d|n

log
n

d

=
∑
dn≤x

m(d) log n combine the two indices n, d of summation into one sum

=
∑

m(d) ·
∑
k|n

Λ(k)

=
∑
dn≤x

m(d) ·
∑
k|n

Λ(k) =
∑
kdn≤x

m(d)Λ(k)

=

x∑
k=1

Λ(k)
∑
dn≤x

k

m(d)

=
x∑
k=1

Λ(k)
∑
d

m(d)
[ x
kd

]
How many n are there?

=
x∑
k=1

Λ(k)F (x/k) define F

That is, we’ve defined

F (y) =
∑

m(d)
[y
d

]
=
∑

m(d)
(y
d
− {y

d
}
)

=
∑

m(d) · y
d

0

−
∑

m(d){y
d
}

= −
∑

m(d)
{y
d

}
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This is a periodic function, with period D = lcm{d : m(d) 6= 0}. The simplest choice of
m(d) is:

m(1) = 1 m(2) = −2 m(d) = 0 if d > 2

The period is 2. Assume d ≤ y, so there is nothing at 0, the function is 1 for y ∈
[1, 2] ∪ [3, 4] ∪ · · · and zero elsewhere.

ψm(x) =

[x]∑
k=1

Λ(k)F
(
x
k

)
If x ≥ k ≥ x

2 then 1 ≤ x
k < 2 and write

ψm(x) =

x
2∑

k=1

Λ(k)F
(x
k

)
+

∑
x
2
<k≤x

Λ(k)

ψ(x)−ψ(x2 )

since F
(
x
k

)
= 1 in the second case. This gives

ψ(x) ≥ ψm(x) ≥ ψ(x)− ψ
(
x
2

)
There is some constant cm such that ψm(x) = cmx+O(log x)

ψm(x) =

∼log2 x∑
j=0

ψ
( x

2j

)
− ψ

( x

2j+1

)
≤ cm

∼log2 x∑
j=1

x

2j
+O((log x)2)

This is gotten by plugging in the expression for ψm(x), but noting that the error term
compounds.

The claim is that any expression ψ(x) � x, with whatever explicit constant, can give
information about the π(x) ≤ θ(x) ≤ ψ(x) situation as

(1) θ(x) = ψ(x) +O(x
1
2 )

(2) π(x) = y(x)
log x+O

(
x

(log x)2

)
which is essentially π(x) = ψ(x)

log x + o(x)

ψ(x) =
∑
pk≤x

log p =
∞∑
k=1

θ(x
1
k )

ψ(x) = θ(x) +

∞∑
k=2

θ(x
1
k )

Pull off the term for k = 2:

ψ(x)− θ(x)� x
1
2 +

∞∑
k=3

θ(x
1
k )

x
1
3
∑∞
k=3 x

−1
3 θ(x

1
k )
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θ(x
1
k ) puts a log p for every prime p that occurs ≤ x

1
k ; the term x

−1
3 subsumes this. So∑∞

k=3 x
−1
3 θ(x

1
k ) ≤ log x.

π(x) =

∫ x

2−
log(u)−1 · dθ(u)

=
θ(x)

log x
−
∫ x

2
θ(u) · d(log u)−1

1
u log u

π(x)− θ(x)

log x
= π(x)− ψ(x)

log x
+O

(
x

1
2

log x

)
We wanted to study π(x)− ψ(x)

log x , but up to the error term, we can just study π(x)− θ(x)
log x .

We have

π(x)− θ(x)

log x
= −

∫ x

2−

θ(u)

u(log u)2 du

Since θ(u) is bounded by const · u, this is

· · · �
∫ x

2−

du

(log u)2

Estimate by ∫ x

2−

du

(log u)2
=

∫ √x
2−

+

∫ x

√
x

bounded by
∫

du
(log
√
x)2

so the first integral is essentially
√
x, and the second integral can be estimated by x

(log x)2 .

This gives statement (2).

12.1. Prime number theorem.

• Find a zero-free region within the critical strip.
• Bounds for ζ in the zero-free region.
• Basic contour integrals.
• Compute error terms.
• Combine error terms.

Take a safe vertical line σ0 > 1, and a function c(t) with 1
2 < c(t) = c(−t) < 1 with c(|t|)

monotone increasing, such that the wobbly strip R between c(t) and the line σ = σ0 > 1.
The idea is that there should be no zeroes in the strip; so 1

2 < c(t) < 1. That is,

R = {s = σ + it : c(t) ≤ σ ≤ σ0}
Define a contour C that cuts out a wobbly rectangle with height between t = σ + iT and
t = σ − iT , and width bounded by σ0 and c(t). So this consists of two horizontal lines
{σ ± iT : c(t) ≤ σ ≤ σ0}, and then a part of the line σ = σ0 and part of the curve c(t).

1

2πi

∫
C

ζ ′

ζ
(s)

xs

s
ds = x
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ψ(x) =
−1

2πi

∫ σ0+iT

σ0−iT

ζ ′

ζ
(s)

xs

s
ds+R(x, T )

where R(x, T ) is the error term from Perron’s formula. The issue is to compute the integral
over the other three sides; we will pick up error terms from each piece. Actually, we will
make σ0 a function of x, and move them to have more control over the error terms.

The region R contains the pole s = 1. Look for a specific T0 > 0 (the book uses 7
6). Call

the patch the region bounding s = 1 by bounding the imaginary part by −T0 ≤ t ≤ T0;
the rest will refer to, well, the rest. We have some estimates on the patch:

ζ ′

ζ
(s) = − 1

s− 1
+O(1)

1

ζ(s)
� |s− 1|

Outside the patch,
ζ ′

ζ
(s)� log τ

A zero of ζ would show up as a pole of ζ′

ζ ; so this guarantees a zero-free region.

We will define c(t) = 1− constant
log τ .

13. March 8

Recall from last time we described a hypothetical zero-free region, bounded on the right
by the line σ = σ0, on the left by some function c(t) with 1

2 < c(t) = c(−t) < 1 where c(|t|)
is monotonically increasing, and bounded on the top and bottom by ±T . This produces
a contour C. We’re trying to integrate

x = − 1

2πi

∫
C(T )

ζ ′

ζ
(s)

xs

s
ds

The integral on the right can be done using Perron’s formula, which gives an estimate for
ψ(x). The trick is to bound the others, and find the residue of the s = 0 pole; this will
give an estimate for ψ in terms of other things.

To isolate the pole at 0, draw a rectangle around it, bounded vertically by ±T0, and call
this the “patch”.

Estimates on the patch:

• ζ′

ζ (s) = − 1
s−1 +O(1)

• log(ζ(s)(s− 1))� 1
• 1

ζ(s) � |s− 1|
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Estimate outside the patch:

• ζ′

ζ (s)� log τ

Label the contour C(T ) as
∫
A +

∫
B +

∫
D +

∫
C clockwise starting on the left.

Perron’s formula:

ψ(x) =

∫
right

+
2

R(x, T )

�log x+ x
T

(log x)

On the top (assuming T > T0 so we can use the estimate ζ′

ζ (s) � log τ , and assuming

x > 1): ∫ σ0+iT

c(T )+iT

ζ ′

ζ
(s)

xs

s
ds�

∫ σ0

c(T )
log τ

|xs|
|s|

dσ

≤
∫

log T
xσ0

T
dσ � log T

T
xσ0(σ0 − c(T ))� log T

T
xσ0

Break up the integral on the left into a few pieces, depending on whether we’re in the
patch or not. ∫ c(T )+iT

c(T )−iT
=

∫ c(T )+iT0

c(T )−iT0

+

∫ c(T )−iT0

c(T )−iT
+

∫ c(T )+iT

c(T )+iT0

First piece:∫ c(T0)+iT0

c(T0)−iT0

ζ ′

ζ
(s)

≈ 1
s−1

xs

s

�xc(T0)

const.

ds�
∫ t=+T0

t=−T0

xc(T0)

|c(T0) + it− 1|
dt

� xc(T0)

|1− c(T0)|
remove it term

Top part of this:∫ c(T )+iT

c(T )+iT0

ζ ′

ζ
(s)

xs

s
ds�

∫
log τ

xc(T )

c(T0) + iT

denom.≈t

dt� (log T )2 · xc(T )

Now add up the error terms we’ve gotten so far:

ψ(x)− x� log x+
x

T
(log x)2 +

log T

T
xσ0 +

xc(T )

1− c(T )
+ xc(T )(log T )2

For given x, chose T and σ0 as functions of x. We can ignore the log x term, because it
will always be beaten by the other terms. The problem is log T

T xσ0 , because σ0 > 1.

Choose: σ0 = 1 + a(x), where a(x) = 1
log x .
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Prove: If T > 2 then c(T ) = 1 − δ(T ) where δ(T ) = c
log T for 0 < c < 1. (We will get a

way of moving it around for T < 2.)

Take x out of the whole thing:

ψ(x)− x� x

(
(log x)2

T
+

log T

T
x

1
log x

constant

+
x−δ(T )

δ(T )
+ x−δ(T )(log T )2

)
The problematic error term turns into

x−δ(T )

δ(T )
≈ x

− c
log T

c
· log T

Do some bookkeeping, and you get

T = exp(
√
c log x)

which gives an estimate

ψ(x)− x = O

(
x

exp(c′
√

log x)

)
(For the bound, see theorem 6.4 in the book. Read this!)

13.1. Heuristic argument for nonvanishing at σ = 1. Write

R(s) = Re
ζ ′

ζ
(s)

Assume s = 1 + δ + iγ > 1, where we will be taking the limit δ → 0.

R(s) = −
∑

Λ(n)n−1−δ · cos(γ · log n)

We know that |R(1 + δ + iγ)| ≤ R(1 + δ)|. Suppose ρ0 is a zero of the form 1 + iγ0. Take
R(1 + δ) close to the pole; you pick up a residue so R(1 + δ) ≈ −1

δ . You have a zero at

1 + iγ. So R(1 + δ + iγ0) ≈ 1
δ . A lot of the cos terms are −1 at γ0.

−R(1 + δ + 2iγ0) ≈ 1

δ
So this has a pole here, which is a contradiction.

13.2. Actual argument. This starts with a trig formula:

ϕ(θ) := 3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2

(Use the fact that 1 + cos 2θ = 2 cos2 θ.)

−3R(1 + δ)− 4R(1 + δ + iγ)−R(1 + δ + 2iγ) =
∑

Λ(n)n−1−δ (ϕ(γ · log n))

≥0
because it’s 2 × a square

≥ 0

Replace γ = γ0, where s = β0 + iγ0 is a zero of ζ(s), where 5
6 ≤ β0 ≤ 1 and |γ0| ≥ 7

8 . We
won’t prove the estimates in the following table:
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−3R(1 + δ) −4R(1 + δ + iγ) −R(1 + δ + 2iγ)

Estimate 3
δ − 4

δ + 1− β0
0

Error O(1) c1 · (log |γ0|+ 4) c1 · (log |2γ0|+ 4)

τ ≈ γ0

Set C = c1 · (log |γ0|+ 4) and take δ = 1
2C . Plugging everything in:

6C − 4

1 + 1
2c − β0

+ C + C ≥ 0

You eventually get

1− β0 ≥
1

14C

The table is the application of a result described below. Let f(z) be an analytic function
on the disc |z| ≤ 1, where f(0) 6= 0. Let M = max |f(z)|. Choose a disc D(0, R) inside.
Then

Theorem 13.1. ∣∣∣∣∣∣∣
f ′

f
(z)−

∑
zeroes zk
in D(0,R)

1

z − zk

∣∣∣∣∣∣∣ = O

(
M

|f(0)|

)

14. March 20

14.1. Finite abelian groups. Let G be a finite abelian group; by the fundamental
theorem of finite abelian groups, it can be written (non-uniquely) as a sum C1 ⊕ · · · ⊕Cν
of finite cyclic groups. We can choose Ci to be the pi-primary component, for pi a prime
factor.

Direct sum and direct product are not the same thing. If G = G1 ⊕ G2, then G1 and
G2 are two subgroups. If G = G1 × G2, then there are quotients G � G1 and G � G2.
Of course, if there are only finitly many factors, then G1 × · · · × Gn and G1 ⊕ · · · ⊕ Gn
are isomorphic . . . but they’re “morally” different things and arise in different ways. (The
book writes ⊗ instead of ⊕ . . . oops.)

Let Ĝ = Hom(G,C∗) be the dual group. We would like a more symmetric definition. So
let A and B be abelian groups. A bilinear pairing is a map

A×B ψ→ C∗ where (a1a2, b) 7→ ψ(a1, b) · ψ(a2, b)

Given a ∈ A, there is a map A → B̂ that sends a to ψa = ψ(a,−) ∈ B̂. There is also an

analogous map B → Â. If this is an isomorphism, it is called a perfect pairing.
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Proposition 14.1.

Â⊕B = Â× B̂

Proof. It is easy to show an isomorphism Hom(A⊕B,C∗) ∼= Â× B̂. �

If C = Z/nZ is a finite cyclic group, then an element of Ĉ is a root of unity; that is,

Ĉ = {e
2πia
n }. Clearly, |C| = |Ĉ| here, so C ∼= Ĉ. Using the previous proposition, we have

G ∼= Ĝ

for any finite abelian group G.

Fix g ∈ G. Then ∑
χ∈Ĝ

χ(g) =

{
|G| if g = e ∈ G
0 otherwise

(If g 6= e, since our pairings are perfect, there is some χ1 such that χ1(g) 6= 1. Then∑
χ(g) =

∑
(χ1 χ)(g) = χ1(g) ·

∑
χ(g) =⇒

∑
χ(g) = 0.) Temporarily let χ0 be the

trivial character (the identity) in Ĝ. For fixed χ,∑
g∈G

χ(g) =

{
|G| if χ = χ0

0 otherwise

Recall the Chinese Remainder Theorem: if (a, b) = 1 and n = ab, then there are r, s such
that 1 = ra+ sb, and

Z/nZ ∼= Z/aZ× Z/bZ
where the backwards map is (x, y) 7→ sbx+ rag. There is a similar isomorphism between
groups of units:

(Z/nZ)∗ ∼= (Z/aZ)∗ × (Z/bZ)∗

For the rest of this lecture, n will have a prime decomposition
∏ν
i=1 p

ei
i . Apply the Chinese

Remainder Theorem, to write

G := (Z/nZ)∗ =

ν∏
i=1

(Z/pe
i

i )∗ =
ν∏
i=1

Gpi

If m | n then there is a natural reduction

(Z/nZ)∗ � (Z/mZ)∗

If p > 2, then
(Z/peZ)∗ ∼= (Z/pZ)∗ × Γ

where Γ is the group of units congruent to 1 mod p; it is “canonically” cyclic of order
pe−1, with generator 1 + p. For p = 2, this is

(Z/2eZ)∗ ∼= (Z/4Z)∗ × Γ

where Γ contains units u with u ≡ 1 (mod 4).
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14.2. The Character. Let q ∈ N, and let G = (Z/qZ)∗. A Dirichlet character is a
function

Ĝ 3 χ : (Z/qZ)∗ → C∗

that is totally multiplicative: that is, χ(mn) = χ(m)χ(n).

Definition 14.2.

(1) We say that q is the modulus of χ; this is implicit in the choice of χ (note that
any character of modulus q gives a canonical character of modulus n · q for every
n: just precompose with (Z/nqZ)∗ � (Z/qZ)∗).

(2) Let χ0 be the principal character of modulus q: the map (Z/qZ)∗ → {1}
(3) Since G =

⊕
pGp, and Ĝ =

∏
p Ĝp, every χ : G → C∗ induces homomorphisms

χp : Gp → C∗, so we can write χ =
∏
χp. This is the local factorization of χ.

(4) The minimal modulus is the smallest q such that χ “comes from” χ : (Z/qZ)∗ →
C∗, in the sense of (1).

(5) If χ is a real character, then its image is C ⊂ C∗; either it’s a quadratic character,
or it’s trivial.

Given a character χ : (Z/qZ)∗ → C∗, we can extend it to a map Z→ C∗, where

a 7→

{
0 if (a, q) 6= 1
χ(a (mod q)) if (a, q) = 1

In (Z/peZ)∗ (for p 6= 2) there is a unique quadratic character. If a is a square (mod p),
then χ(a) = 1; otherwise χ(a) = −1 (unless it’s the trivial character). This is the

Legendre character χa =
(
a
q

)
. If p | a, then it is zero.

Dirichlet characters are totally multiplicative: that is, they are homomorphisms.

Take a quadratic extension K = Q[
√
d] → Q. Let A be the ring of integers of K. If p

ramifies in A, then (p) lifts to a square of prime ideals P 2 ⊂ A (this is only possible for
divisors of the discriminant). If p is split, then there are two (conjugate) prime ideals P, P
in A. If p is non-split, then (p) lifts to a prime ideal in A. So we can define a character

p 7→ χK(p) =


0 if p ramifies

+1 if p splits

−1 if p is inert (does not split)

There is only one way to define χK(−1) in order to make a Dirichlet character. (It turns
out to be the sign of d.) Exercise: show that this is a (quadratic) Dirichlet character; find
the minimal modulus.
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14.3. Dirichlet L-functions. For σ > 1 a Dirichlet L-function looks like

L(s, χ) =
∑ χ(n)

ns
=
∏(

1−
χ(p)

ps

)−1

The proof of convergence is the same as the proof for ζ.

Case 1: χ = χ0. If p | modulus of χ0, then the corresponding factor in the product is
just 1. The rest look like the factors of ζ when written as a product; that is,

L =
∏
p-q

(
1− 1

ps

)−1

which is just the product expansion of ζ deprived of finitely many factors. As earlier in
the course, define

A(x) =
∑
n≤x

χ(n)

and we have

σc = lim sup
x→∞

log |A(x)|
log x

But |A(x)| ≤ q, because if you sum χ(n) over a full set of representatives mod q, you get
zero. (So in

∑
χ(n) only the last few terms matter.) This shows that σc = 0. There is a

cottage industry around showing that∣∣∣∣∣∣
∑

M≤n≤N

χ(n)

∣∣∣∣∣∣ ≤ q1−ε

where ε > 0.

Corollary 14.3.

L(1, χ) =
∑ χ(n)

n
is convergent.

Exercise: show that

−L
′

L
(s, χ) =

∞∑
n=1

Λ(n) χ(n)n−s

14.4. Deprived L-functions. Let L(s, χ) be an L-function. In the χ0 case, we
noticed that L(s, χ) is the ζ-function, deprived of some factors. In general, let

LD(s,X) =
∏
p-D

(
1−

χ(p)

ps

)−1

= L(s,X) ·
∏
p|D

(
1−

χ(p)

ps

)
The last factor has no poles or zeroes. The only thing that changes is the nature of the

residue. For example, L(s, χ0) has a pole at s = 1 with residue
∏
p|D

(
1− 1

p

)
.
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14.5. ζ-functions of quadratic number fields. Let K → Q be a quadratic exten-
sion; we defined χK to be the quadratic character associated to K, which encodes splitting
information. Define

ζK(s) = ζ(s) · L(s, χK) =
∏
p

(
1− 1

ps

)−1

·
∏
p

(
1−

χ(p)

ps

)−1

To be continued.

15. March 22

Recall we had a quadratic extension K → Q, and an associated Dirichlet character χK .
We were computing ζ(s) · L(s, χK), for σ > 1. (We’ve already shown that L(s, χK)
extends to σ > 0, so everything is at least defined here.)

ζ(s) · L(s, χK) =
∏
p

(
1− 1

ps

)−1(
1−

χK(p)

ps

)−1

=


∏(

1− 1
ps

)−1
ramified∏(

1− 1
ps

)−2
split∏(

1− 1
(p2)s

)−1
inert

number of primes over p NK/QP

p ramified
(

1− 1
ps

)−1
1 p

p split
(

1− 1
ps

)−2
2 p

p inert
(

1− 1
(p2)s

)−1
1 p2

where NK/QP is the norm.

So this is ∏
P |p

(
1− 1

(NK/QP )s

)−1

We don’t necessarily have unique factorization in quadratic number fields, but we do have
unique factorization of ideals. By the same reasoning that produced the equivalence of
the sum / product forms of the Riemann zeta function:

ζK :=
∑

Ideals I 6=0

1

(NI)s
=
∏
P

(
1− 1

(NP )s

)−1

where NI is the norm of I. This is the Dedekind ζ-function.

Proposition 15.1. L(1, χK) 6= 0 (so s = 1 is a pole of ζK)
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Proof. By contradiction. If L vanishes, then by Landau’s theorem ζK would be
analytic up to σ = 0. Write

ζK(
1

2
) =

∑
single-element

ideals

+
∑

the rest

>0

=
∑
0<n

(n2)−s +
∑
∗ =

∑ 1

n
+ positive

which diverges. �

Corollary 15.2 (of HW). If χ is any quadratic Dirichlet character, then L(1, χ) 6= 0.

15.1. Arithmetic progressions. Let χ be a Dirichlet character of modulus q, and
an integer a with (a, q) = 1.

Proposition 15.3.

1
ϕ(q)

∑
χ

χ(a) · χ(n) =

{
1 n ≡ a (mod q)

0 else

Applying the proposition:∑
n≡a (mod q)

Λ(n)n−s =
∑
n

Λ(n)n−s · 1
ϕ(q)

∑
χ

χ(a) χ(n)

1
ϕ(q)

∑
χ(a)

∞∑
n=1

Λ(n) χ(n)n−s

−L′
L

(s,χ)

= − 1
ϕ(q)

∑
χ

χ(a)
L′

L
(s, χ)

= − 1
ϕ(q)

L′

L
(s, χ0) +

−1
ϕ(q)

∑
χ 6=χ0

χ(a)
L′

L
(s, χ)

=
1

ϕ(q)(s− 1)
+O(1) + · · ·

If L′

L (s, χ) for χ 6= χ0 has a pole, then the L-function either has a zero or a pole. L does
not have a pole. So we have to prove that L(1, χ) 6= 0 for all χ 6= χ0.

∏
χ modulus q

L(s, χ) = exp

(∑
χ

logL(s, χ)

)
= exp

(∑ Λ(n)

log n
χ(n)n−s

)

= exp

∑
n

Λ(n)

log n

∑
χ

χ(n)n−s

1 or 0
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= exp

 ∑
n≡1 (mod q)

Λ(n) log n · n−s


∏
χ modulus q

L(1, χ) ≥ 1

∏
χ

L(s, χ) = L(s, χ0)
∏

χ quadratic

L(s, χ) ·
∏

χ ord>2

L(s, χ)

If any of these are zero, then we get a finite number; if two factors are zero at s = 1,
then this is zero, contradicting

∏
L(σ, χ) ≥ 1 for σ > 1. So we have at most one factor

contributing zero at s = 1. We know that factor of
∏
quadratic L(s, χ) do not contribute a

zero. So we have to worry about the characters χ of order > 2. Then χ 6= χ. Recall that∑ χ(n)
ns is conjugate to

∑ χ(n)
ns . If χ contributes zero, then χ also contributes zero, which

is a contradiction.

Corollary 15.4. ∑
n≡a (mod q)

Λ(n)

ns

We just showed that 1
ϕ(q)

∑
χ 6=χ0

χ(a)L
′

L (s, χ) is bounded. So using the earlier expression

for
∑

n≡a (mod q) Λ(n)n−s, we have∑
n≡a (mod q)

Λ(n)n−s =
1

ϕ(q)(s− 1)
+O(1)→∞

as s→ 1+.∑
n≡a (mod q)

Λ(n)n−s =
∑

pk≡a (mod q)

log p

pk
=

∑
p≡a (mod q)

log p

p
+

∞∑
k=2

pk≡a (mod q)

(log p) · p−k

≤
∑
p log p

∑∞
k=2 p

−k=
∑
p

log p
p(p−1)

which converges.

Corollary 15.5. ∑
p≡a (mod q)

log p

p
=∞

15.2. Gauss sums. Fix χ of modulus q. Let ζ (ugh) be a primitive qth root of unity

e
2πi
q .

τ( χ) =

q∑
a=1

χ(a)e
2πia
q =

q∑
a=1

χ(a)ζa

Treating the sum as a discrete integral, etc., this is sort of like a discrete version of the
Γ-function.
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Proposition 15.6. (1) If (b, q) = 1, then χ(b)τ(χ) =
∑q

a=1
χ(a)ζab since

τ( χ) =
∑
a

χ(ab)ζab = χ(b)
∑
a

χ(a)ζab

This is also true for all b if χ is primitive, because both sides are zero.
(2) Let χ be primitive. Then |τ(χ)| = √q.

Proof. We will show that |τ(χ)|2 = q. Fix any b such that (b, q) = 1. From
(1),

|τ( χ)2| =
∣∣∣∑ χ(a)ζab

∣∣∣2
because χ(b) is nonzero and goes away when you take the absolute value. Sum
over b.

ϕ(q)|τ( χ)|2 =
∑
b

(b,q)=1

∣∣∣∣∣∑
a

χ(a)ζab

∣∣∣∣∣
2

=
∑
b

∣∣∣∣∣∑
a

χ(a)ζab

∣∣∣∣∣
2

if (b, q) 6= 1, everything is zero.

∣∣∣∑ χ(a)ζab
∣∣∣2 =

(
q∑

a=1

χ(a)ζab

)(
q∑
c=1

χ(c) · ζ−c·b
)

so

ϕ(q) · |τ( χ)|2 =
a∑
b=1

q∑
a=1

q∑
c=1

· · · =
∑
a,c

χ(a) χ(c)
∑
b

ζb(a−c)

If a 6≡ c (mod q) then the last sum is zero. Otherwise, the sum is q. So this is∑
a≡c (mod q)

χ(a) · χ(c) · q = ϕ(q) · q = ϕ(q) · |τ( χ)|2

�

Putting these facts together, if χ is primitive mod q,

χ(n) =
1

τ(χ)

q−1∑
a=1

χ(a)ζan

(Since |τ(χ)| 6= 0, we can divide by it.)

15.3. Evaluating L(1, χ). We know

•

L(1, χ) =
∞∑
n=1

χ(n)

n

converges (but not absolutely).
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• If 1 ≤ a < q, then
∑ ζan

n converges. (We had our old theorem about σc =
log |A(x)|

log x . If A is controllable, then you control convergence. You can make the

same argument for the additive character ζan.)

Substitute the old expression for χ(n) into the definition of L(1, χ).

L(1, χ) =
1

τ(χ)

∞∑
n=1

q∑
a=1

χ(a)
ζan

n

=
1

τ(χ)

∑
q

χ(a)

∞∑
n=1

ζan

n

We have written L(1, χ) as a finite sum, having switched summations, weighted by char-
acter of a function of a. Define

F (z) =
∑ zn

n
= log

1

1− z
if |z| ≤ 1 and z 6= 1. So

L(1, χ) =
1

τ(χ)

∑
χ(a)F (ζan)

16. March 27

Recall we had a primitive Dirichlet character χ of modulus q.

L(1, χ) =
1

τ(χ)

q−1∑
a=1

χ(a) ·
∞∑
n=1

e
2πian
q

n

We had defined ζ = e
2πi
q and F (z) =

∑∞
n=1

zn

n = log
(

1
1−z

)
for |z| ≤ 1, so that L(1, χ) =

1
τ(χ)

∑
χ(a)F (ζan). Take the branch where log(x) is real if x > 0, and log(eiθ) = iθ ∈

(−π,+π]. Take 0 < a < q. Use trig:

1− e
2πia
q = e

πia
q (e

−πia
q − e

+πia
q ) = −2ie

πia
q sin

πa

q

= e
πi
(
a
q
− 1

2

)
· 2 sin

πa

q

F (e
2πian
q ) = log

1

1− e
2πian
q

= − log(2 sin
πa

q
)− πi

(
a

q
− 1

2

)
L(1, χ) =

−1

τ(χ)

∑
χ(a) log(2 sin

πa

q
)

S(χ)

− πi

τ(χ)q

∑
χ(a) · a

T (χ)

Note that if χ(−1) = +1 then (by symmetry with replacing a 7→ q−a) we have T (χ) = 0.
More precisely,∑

χ(a)a =
∑

χ(−a)(q − a) =
∑

χ(a) · (q − a) = q
∑

χ(a)−
∑

χ(a) · a
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Similarly, if χ(−1) = −1∑
χ(a) · log

(
2 sin

πa

q

)
=
∑

χ(q − a) log

(
2 sin

π(q − a)

q

)
=
∑

χ(−a) log(2 sin(π − πa

q
)) = −

∑
χ(a) log

(
2 sin

πa

q

)
So, we have two cases:

L(1, χ) =
−1

τ(χ)

∑
χ(a) log

(
2 sin

πa

q

)
χ even

L(1, χ) = − πi

qτ(χ)

q−1∑
a=1

χ(a) · a χ odd

Let χ = χK be a quadratic character (arising from a quadratic extension K → Q). First
assume that K is a real quadratic field.

L(1, χK) = − 1

τ(χ)
log

(∏(
e
πia
q − e

−πia
q

)χ(a)
)

(There should be an extra factor of i in the denominator, because the 2 in 2 sin cancels
the 2 in the 2i denominator of the exponential version of sin. . . Prof. Mazur claims that
it goes away when you examine terms – the terms with i in the denominator cancel the
terms with it in the denominator?) Write this as

L(1, χ) = − 1

τ(χ)
· log(εχ)

Note that χ = χ since this is a quadratic character. Let e
2πi
2q = ζ, a root of unity. So this

is

εχ =
∏(

e
πia
q − e

−πia
q

)χ(a)
=
∏

(ζa − ζ−a)
ζ−a(ζ2a−1)

χ(a)

ζa ∈ Z[ζ] ⊂ Q(ζ) (a 2qth root of unity), and Z[ζ2] ⊂ Q(ζ2) (qth roots of unity). Let ξ = ζ2

be this qth root of unity. The root of unity ζ−a doesn’t matter; we really only care about
ζ2a − 1 = ξa − 1, for (q, a) = 1.

Suppose we have (b, q) = 1, so

ξb − 1 = (ξ − 1)(ξb−1 + ξb−2 + · · ·+ 1)

Find b′ such that bb′ = 1. Then we can write ξ − 1 = (ξ − b)b′ − 1. So the above equation
is also

ξ − 1 = (ξb − 1)((ξb
′
)b−1 + · · ·+ 1)

So the ratio of any ζb−1
ζa−1 is a unit (if (a, q) = 1 = (b, q)), which also means that εχ is a

unit in Z[ξ], where ξ is a primitive qth root of unity. It turns out that εχ ∈ K.

Let A be the ring of units of K, and let U = A∗ ⊂ A ⊂ K be the group of units. Then
U = {±1} × γZ, where γ is the fundamental unit : the generator that has the property
γ > 1 (i.e. it is real and positive) in the usual embeding. So εχ = γh (where h is now
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just some arbitrary power. . . ). (Note that it is not negative, because it was the log of
something > 1.) It turns out that |h| is the class number.

Digression 16.1. The class number is the obstruction forA to satisfy unique factorization.
If it is 1, then the ring of integers A satisfies unique factorization. If A is a PID, then it has
unique factorization. The class number is the obstruction to being a PID. Consider the
multiplicative system of nonzero ideals; there is a sub-multiplicative system of principal
ideals. There are no inverses; but impose the equivalence relation I ∼ J if there exist
principal ideals (n), (m) such that (n)I = (m)J . There is an induced multiplication, and
you can show that this is a finite group. This is called the ideal class group, and the class
number is its size. If it is trivial, then every ideal is principal.

So L(1, χ) = −1
τ(χ) = log(γh) = h log γ, where log γ is called the regulator of the quadratic

field. This is an example of an analytic formula.

16.1. The Dedekind zeta-function of a number field. Let A ⊂ K be the ring
of integers of a number field K.∑

ideals

1

(NI)s
=

∏
P prime

1

1−NP−s
=: ζK(s)

These enjoy some basic facts of life:

(1) There is an analytic continuation to C with a single, simple pole at s = 1. Unlike
ζ(s), the residue of the pole has arithmetic information:

res =
2r1(2π)r2(Class number)(Regulator)

(#roots of 1)
√
|Discriminant|

If K → Q is a degree-n extension, then there are r1 embeddings into R, and r2

distinct embeddings into C (not including the trivial ones into R), up to conju-
gation. So n = r1 + 2r2. (This information is easy to come by: take the minimal
polynomial of a primitive element of K; ask how many real roots and how many
pairs of complex roots.)

(2) There is a functional equation as follows. Define

ΓR(s) = π
−s
2 Γ
(s

2

)
(the Gamma-factor we’ve seen in the Riemann ζ-function), and

ΓC(s) = 2 · (2π)−sΓ(s)

In general,
ΓK(s) = ΓR(s)r1 · ΓC(s)r2

If you define
ξK(s) = ΓK(s) · |DiscK |

s
2 · ζK(s)

then there is a functional equation

ξK(s) = ξK(1− s)
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Remark 16.2. Read Ireland/ Rosen, or Davenport’s Higher Arithmetic, for an elementary
treatment of class numbers.

16.2. Analytic continuation of L(s, χ). Let χ be a primitive, modulus-q Dirichlet
character. In the Riemann ζ case, recall the motivation for Hecke’s theorem: we intro-
duced Θ, used Poisson summation, got the functional equation for Θ, which gave analytic
continuation and a functional equation for ζ(s). We will do the same in this case, by
constructing Θχ, etc.

17. March 29

Let z ∈ C where Re(z) > 0. Let χ be a primitive character of modulus q. Define

κ = κ( χ) =

{
0 χ even

1 χ odd

Θeven(z, χ) =
∞∑

n=−∞

χ(n)e
−πn2z
q χ even

Θodd(z, χ) =
∑

n χ(n)e
−πn2z
q χ odd

Theorem 17.1. There are functional equations

Θeven(z, χ) =
τ(χ)

q
1
2

z−
1
2 ·Θeven

(
1

z
, χ
)

Θodd(z, χ) =
τ(χ)

iq
1
2

z−
3
2 ·Θodd

(
1

z
, χ
)

n in the sums above are only interesting as elements of congruence classes mod q. That
is,

Θeven(z, χ) =

q−1∑
a=1

χ(a)

∞∑
m=−∞

e
−π(mq+a)2z

q

Change variables A = a
q , Z = qz.

Theorem 17.2.
∑∞

m=−∞ e
−π(m+A)2·Z = Z−

1
2
∑∞

m=−∞ e
2πikAe

−πk2

Z

Use Poisson summation:
∞∑

m=−∞
f(m) =

∞∑
k=−∞

f̂(k)
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with f(u) = e−π(u+A)2Z and f̂(t) = Z−
1
2 e2πiAte

−πt2
Z . Now apply this:

Θeven(z, χ) =

q−1∑
a=1

χ(a) ·
∞∑

m=−∞
e
−π(m+a

q
)2qz

=

q−1∑
a=1

∞∑
m=−∞

e
−π(mq+a)2 z

q = z−
1
2

q−1∑
a=1

χ(a)
∞∑

m=−∞
e

2πik a
q e
−πk2

qz

=
∞∑

k=−∞
e
−πk2

qz

q−1∑
a=1

χ(a)e
2πika
q

Gauss sum

=
∞∑

k=−∞
e
−πk2

qz χ(k) · τ( χ)

(qz)−
1
2 τ( χ) ·

∞∑
k=−∞

χ(k) · e
−πk2

qz =
τ(χ)

q
1
2

· z−
1
2 θeven

(
1

z
, χ
)

Define the epsilon factor :

ε( χ) =
τ(χ)

ikq
1
2

Now we can write the functional equation more concisely as

Θκ(z, χ) =
ε

z
1
2

+k
Θκ

(
1

z
, χ
)

17.1. Hecke’s Theorem. The input is λ, k, ε and two functions

f(Z) =
∑

a(n)e
2πinZ
λ

g(Z) =
∞∑
n=1

b(n)e
2πiZ
λ

such that

εg

(
− 1

Z

)
=

(
i

Z

)k
f(Z)

Officially exclude the case q = 1; this is the Riemann zeta function, and we’ve done it.

Take Z = iz, λ = 2q, and ε = ε(χ).

f 7→
∑

a(m)e
−πmz
q g 7→

∑
b(m)e

−πmz
q

εg

(
i

z

)
= z−kf(iz)

Define

a(m) =

{
0 if m is non-square

2χ(n) if m = n2
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b(m) =

{
0 if m is non-square

2χ(n) if m = n2

Exercise: Finish this for HW; some stuff is probably wrong here. . .

17.2. Cyclotomic Fields. Consider the extension Q(e
2πi
N ) → Q (that is, adjoining

a primitive N th root ζ of unity). This is Galois, where G ∼= (Z/NZ)∗. The conjugates
of ζ are ζa (for (a,N) = 1). Let µN denote the group of all N th roots of unity in Q(ζ);
the generators are the aforementioned ζa. An element in the Galois group is a map
Q(ζ)→ Q(ζ) that is the identity on Q; so it is uniquely determined by assigning ζi 7→ ζai.
If we call this automorphism σa, the isomorphism (Z/NZ)∗ → G is just a 7→ σa.

Let K → L be any Galois extension, with Galois group G. There are rings of integers
B ⊂ L and A ⊂ K. By the primitive element theorem, write L = K(θ), where θ satisfies
an irreducible polynomial f(X) ∈ K[X] of degree equal to [L : K]. So L = K[X]/(f(X)).
We are in a separable extension, so f is separable, i.e. all its roots θ1, · · · , θn are distinct.
The Galois group acts on the set {θi}, and there is a single orbit.

We can always assume that f is monic. θ is an algebraic number, so it is in B; so
A[θ] ⊂ B. (It is not always the case that a ring of integers is generated by a single
element; the inclusion here may be proper, and we don’t care.)

The ground field doesn’t matter, so assume K = Q. Then B = Z[θ]. Reduce mod primes;
B → Z[θ]/pZ[θ]. There is a map

f(X) ∈ Z[X] −→ f(X) ∈ Fp[X]

Roots θi get sent to roots θi of f . If p - Disc, the θi are distinct. But f might split as
f = f1 · · · fν (irreducibles). So Fp[X]/f i(X) are fields. So you can write pZ[θ] = P1 · · ·Pν
where Pi is the kernel of Z[X]/(f(X))→ Fp[X]/(f i(X)).

18. April 3

Remark 18.1. There was a typo. The functional equation should have been

εg

(
−1

Z

)
=

(
Z

i

)k
f(Z)

Let ζ = e
2πi
N be a primitive N th root of 1. Form Z[ζ] = Z[X]/(ΦN (x)) where ΦN is the

cyclotomic polynomial 1 +X + · · ·+XN−1, whose roots are all the primitive N th roots of
unity. We had an extension Q(ζ) → Q, with an isomorphism G ∼= (Z/NZ)∗ (where G is
the Galois group), identifying a ∈ (Z/NZ)∗ with the automorphism ζ 7→ ζa.

Now let L → K be any Galois extension. By the primitive element theorem, we can
write L = K[θ] = K[X]/F (X), and suppose θ1, · · · , θd are all the roots of F (that is,
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θ = θi for some i and θi is the full set of conjugates). If A ⊂ K is the ring of integers,
B = A[θ] is the ring of integers of L. [Oops! The Galois group doesn’t necessarily fix
the ring of integers. . . We should let B = A[θ1, · · · , θn], but then this messes other stuff
up. Fixed below.] Let π ⊂ A be a prime ideal, not dividing discF . Let k = A/π.
We can then factor Fπ(X) =

∏ν
j=1 fj(X) ∈ k[X]. The ideal π lifts to πB ⊂ B, and

B/πB = k[X]/(Fπ(X)). Check that Fπ is a separable polynomial. By the Chinese
Remainder Theorem, k[X]/(Fπ(X)) =

∏ν
j=1 kj where kj = k[X]/(fj). This gives a nice

description of the prime decomposition of πB ⊂ B: if Pj is the kernel of B → kj , then
πB =

∏ν
j=1 Pj . The Galois group G of the extension operates transitively on {θ1, · · · , θd}

and on {P1, · · · , Pν}. Furthermore, given a fixed θ, the map G → {θ1, · · · , θd} given by
g 7→ gθ is a 1-1 correspondence. This is not the case for the Pj : let Gj = {g ∈ G : gPj =
Pj} be the stabilizer. Gj acts on kj = B/Pj , and hence represents an element of the Galois
group. So now {G1, · · · , Gν} is in 1-1 correspondence with {P1, · · · , Pν}, via the obvious
map Gj 7→ Pj (G acts by conjugation on the left and multiplication on the right).

Consider the collection {Gj}j=1,··· ,ν as a collection of subgroups of G. This corresponds
to a full orbit under the action of G.

Gj acts on B and stabilizes Pj , so it acts on kj = B/Pj . This induces a mapping Gj →
Gal(kj/k), which turns out to be an isomorphism. All the Gj are cyclic, and there is
a canonical generator: ϕj : x 7→ xq, where q = |k| (this is a homomorphism on kj =
B/P j). Call this “Frobenius at Pj”. We have a collection {ϕj}j=1,··· ,ν , which form a
single conjugacy class in G. This depends only on the choice of π, so call it Cπ ⊂ G.

It turns out that none of this depends on the choice of θ or B.

18.1. More general theory. We have an extension L→ K, with A ⊂ K the ring of
integers. Let π ⊂ A be a prime ideal, and let Aπ = lim←−

m

A/πm be the localization. Then let

Bπ = B⊗AAπ. Suppose that π - disc(L/K) (where the discriminant is now an ideal). We
have

∏
BPj . As before, the Gj act on BPj . Let kj = BPj/P

j ·BPj be the residue field; we
have a Galois group Gal(kj/k). Let the inertial group be the kernel of Gj � Gal(kj/k).
Assume that π - disc(L/K), so there is a unique generator ϕj : x 7→ xq. For all π that
are “good” (i.e. those that don’t divide disc(L/K)), we have identified a single conjugacy
class Cπ ⊂ G, called Frobenius at π.

For example, let Q(ζ)/Q, and let G ∼= (Z/NZ)∗. This is an abelian group, so conjugacy
classes are single elements. If p is good (i.e. p - N), then Cp is the image of p in G (i.e.
it’s p (mod N)).

If L → K is a Galois extension, and C ⊂ G = Gal(L/K) is a conjugacy class, let
PC = {π “good” : Cπ = C} be the Chebotarev class. In the previous example, the
Chebotarev classes are the arithmetic progressions p = a+Nt, for given N .
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18.2. Review of representation theory. A representation is a homomorphism
ρ : G → GLn(C) ∼= AutC(V ) where V is an n-dimensional vector space. We will be
considering representations up to conjugation. If G acts on V1 and V2, we say that the
representations are equivalent if there is an isomorphism h : V1 → V2 such that, for all
v ∈ V1, g ∈ G, we have h(gv) = gh(v).

The character of a representation is χρ : G → C that maps g 7→ Trace(ρ(g)). This is
well-defined up to equivalence: if you change a matrix up to conjugation, you don’t change
its trace.

Given a character G
χ→ C, this factors through the set C of all conjugacy classes; so there

is an induced function C → C, which we also call χ. Let HG = Maps(C,C), which we
make into a Hilbert space as follows:

(ϕ | ψ) =
1

|G|
∑
x∈G

ϕ(x)ψ(x)

There is a natural basis. If c ∈ C, then

δc :

{
c′ 7→ 0 if c′ 6= c

c′ 7→ 1 if c′ = c

A representation ρ on V is irreducible if it cannot be decomposed as ρ1 + ρ2 on V1 ⊕ V2.
An irreducible character is one that comes from an irreducible representation.

Theorem 18.2 (Orthogonality relations). {χ}χ irreducible ⊂ HG is an orthonormal basis.

So now we have two bases: the natural basis, and the “deeper” basis of irreducibles. We
can relate these:

δc =
|c|
|G|
·

∑
χ irreducible

χ(c) χ

Also, the representation is determined uniquely by the irreducible characters, and it is
expressible uniquely as a sum of irreducibles.

18.3. Artin L-functions. Let L/K be an extension with Galois groups G, and a
representation G → GLn(C). Choose a prime π - disc(L/K). We have a conjugacy class
Cπ of elements. Choose ϕπ ∈ Cπ and a positive integer m. ϕm

π is uniquely determined
up to conjugacy, and so are ρ(ϕmπ ) and Trace(ρ(ϕmπ )) =: χρ(ϕ

m
π ). Call ϕ = ϕπ and

χρ(ϕ
m
π ) = χ(πm). We will use this to produce a Dirichlet series, the “local at π Artin-

Euler factor attached to ρ and L/K”:

Lπ(s; ρ, L/K) =

∞∑
m=1

χ(πm)

m(Nπ)ms

The numerators are bounded, so this makes sense for σ > 1.
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Alternatively, let ϕπ be Frobenius at π; ρ(ϕπ) ∈ GLn(C) ⊂ Matn(C). Let 1 denote the
identity matrix here. Exercise: show that

Lπ(s; ρ, L/K) : s 7→ 1

det(1− ρ(ϕπ) ·Nπ−s)
for sufficiently large Re(s). Let π be (possibly) ramified. The inertial group Ij is the
normal subgroup given by the kernel of

Gj � Gal(kj/k)

We had a representation ρ acting on a vector space V ; but Gj and Ij also act on V . Let

V Ij = {v ∈ V : γv = v ∀γ ∈ Ij}
This is designed to have an action of Gj/Ij = Gal(kj/k), which we call ρj . Frobenius is
sitting in this latter Galois group, and it corresponds to some element ψj ∈ Gj/Ij . If V had
dimension n, let nj be the dimension of V Ij . We have 1, ρj(ψj) ∈ GLn(C) ⊂ Matnj (C).
Then we have a function

s 7→ 1− ρj(ψj)(Nπ)−s ∈Matnj (C)

Define
L(s, ρ, L/K) =

∏
π

Lπ(s, ρ;L/K)

where the product is taken over all π, ramified or not.

19. April 5

19.1. Zeros of L-functions (Akhil). We cared about
∑

n
n≡a(q)

Λ(n), and more gen-

erally ψ(x, χ) =
∑

n≤x Λ(n)χ(n) = 1
2πi

∫ 1+i∞
1−i∞

−L′(s,χ)
L(s,χ)

xs

s ds. Recall that ζ had no zeros in

the area σ ≥ 1− c
log t for some c.

Proposition 19.1. Let χ be nontrivial, with σ ∈ (δ, 2). Then

L(s, χ)� (1 + τ1−σ) min{ 1

σ − 1
, log τ}

Proposition 19.2. If 5
6 ≤ σ ≤ 2, then

L′(s, χ)

L(s, χ)
=

∑
ρ close to s

1

s− ρ
+O(log τ)

where “close” means in the circle of radius 5
6 around 3

2 + it.

This comes from a more general fact about analytic functions, and the proof is the same
as in the ζ case.
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Observation 19.3. If Re(s) > 1 then Re
(
L′(s,χ)
L(s,χ)

)
≥ Re

(
1
s−ρ

)
− C · log τ for any root ρ

close to s. In particular, if ρ = β + iγ, take s = 1 + η + iγ. Then

Re

(
L′(s, χ)

L(s, χ)

)
≥ 1

1 + η − β
− C · log γ

Proposition 19.4.

Re

(
3
L′(σ, χ0)

L(s, χ0)
+ 4

L′(σ + it, χ)

L(σ + it, χ)
+
L′(σ + 2it, χ2)

L(σ + 2it, χ2)

)
≤ 0

This is the analogue of a similar inequality from earlier.

L′

L
(σ, χ0) =

−3

σ − 1
+ c

L′

L
(σ + 2it, χ2) ≥ −c · log τ

Re

(
L′

L

)
(s, χ) ≤ 3

4(σ − 1)
+ C · log τ

1

r + η
− c · log γ ≤ 3

4η + c · log γ

Let D = η
r , then

1

(1 + r)
≤ 3

4Dr
+ c · log γ(

1

D + 1
− 3

4D

)(
1

r

)
≤ c · log γ =⇒ r � (log γ)−1

Theorem 19.5.

π(x, q, a) =
1

ϕ(q)
log x+O(xe−δ

√
log x)

19.2. Recall we had an extension L→ K and a Frobenius element ϕπ ∈ G, where π
is a “good” prime of K. For example, in the case of the cyclotomic extension Q(ζN )→ Q,
a “good” prime is one such that p - N . It determines an element in the Galois group
G = (Z/NZ)∗; this is ϕp.

We had Dirichlet L-functions, which involved a Dirichlet character χ : (Z/NZ)∗ → C∗,
and Artin L-functions, which involved a Galois character χ : G→ C∗. When L = Q(ζN )
and K = Q, then there is a canonical identification between these two. In general, if you
have an abelian extension (i.e. the Galois group is abelian), then there is an analogue
that is a Dirichlet character. The relationship between them is basically class-field theory.
(What’s interesting is that the Dirichlet character has nothing to do with L, only K; but
the whole point of Artin characters is that they depend on L.)
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Ideals form a monoid. We can make it into an abelian group by adding in fractional ideals;
call this I. Consider the characters χ : I → C∗. Given an extension L→ K that is Galois
and abelian, for all good primes you get an element ϕπ ∈ G. You a get a map from most
of I to G (i.e., sending π 7→ ϕπ), just by multiplicativity. So a character χ : I → C∗
factors through G. . .

It took quadratic reciprocity to guarantee that the χK we defined before is actually defined
on (Z/NZ)∗

19.3. More algebraic number theory. Given an extension L → K with Galois
group G, and a prime π ⊂ K that lifts to P , we can form the decomposition group
DP ⊂ G, the subgroup stabilizing P . We defined the inertial group IP as the kernel of
DP → Gal(kP /k) (recall kP = B/P , where B is the group of integers). From last time,

Lπ(s, ρ, L/K) =
1

det(1− ρP (ϕπ) ·Nπ−s)

where ρp : DP /IP → Aut(V IP ). Then the global Artin L-function is

L(s, ρ, L/K) =
∏
π

Lπ(s, ρ, L/K)

You can show that this actually converges for σ > 1; in the cyclotomic case, if ρ is a
1-dimensional character, then this is the Dirichlet L-function.

Let M → L → K be a Galois tower: there is a Galois group G(M/K), and hence an
induced Galois group G(M/L) (we don’t care whether L→ K is Galois). By composition,
given ρL : G(L/K) → GLn(C), we get ρM : G(M/K) → G(L/K) → GLn(C). We have
L(s, ρL, L/K) = L(s, ρM ,M/K), because if {ϕ`π} are the Frobenius elements in the first
extension, and {ϕMπ } are the Frobenius elements in the second, the ϕMπ map onto ϕ`

π.
Taking 1 : G→ {1}, then L(s, 1, L/K) = ζK(s) is an incomplete Dedekind ζ-function.

19.4. Induced representations. Let H ⊂ G be a subgroup, and suppose you have
a representation ρ : H → GLn(C). Then I claim you get an induced representation
IndGH(ρ) : G → GLm(C), where m = [G : H] · n, such that for every tower of fields
M → L→ K (where M → K has Galois group G, and L→ K has Galois group H), then

L(s, ρ,M/L) = L(s, IndGHρ,M/K)

This is basically linear algebra. Let W be a finite-dimensional C vector space with H
acting C-linearly. Define C[H] =

⊕
h∈H C · h, an associative C-algebra. By facts about

representation theory, this is a direct sum of total matrix algebras, one for every irreducible
character of H. You get a tensor product

C[G]⊗C[H] W
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20. April 10

April 24: Second 11
2 hour exam

Last time we introduced the group ring C[G]; I mentioned that a G-representation V is
the same as a left C[G]-module. G acts on C[G] by left multiplication, so C[G] is a left
(and right) G-module; this is called the regular representation, and it has degree |G|.
When G was abelian, Ĝ = Hom(G,C∗). In general, we let Ĝ be the set of irreducible
G-representations. These are completely determined by their characters. The number of
these is = the number of conjugacy classes in G. Suppose χ1, · · · , χs are the irreducible
characters, which have degree d1, · · · , ds. Recall

C[G] ∼=
s⊕
i=1

End(Vi)

which gives that |G| =
∑s

i=1 d
2
i .

Let H ⊂ G be finite groups. We have a character ψ : H → C, which belongs to a
representation W . We want an induced representation

V = IndGHW = C[G]⊗C[H] W

of G, with character χ = IndGHψ. Let R = {γ}γ∈G (mod H) be a set of representatives
from each coset G/H. For all g ∈ G there exists hg/γ ∈ H such that g · γ = γ′ · hg,γ . So G
acts on

⊕
γ∈R γ ·W , where γW → γ′W sends w 7→ hg,γw. Recall ψ was the character of

the H-representation, and χ = IndGHψ is the character of the induced G-representation.
This can be defined as

χ(u) =
∑
r∈R

r−1ur=hu,r∈H

ψ(r−1ur) =
1

|H|
∑
x∈G

x−1ux∈H

ψ(x−1ux)

Alternatively, we could just write this as
∑

r∈R ψ(r−1ur) where ψ is extended to G by
ψG−H = 0.

Let M → L → K be a sequence of fields, where M → K is Galois with Galois group G,
and M → L is Galois with Galois group H. There is some prime π of K that splits as a
series of Pi in L, and a series of Qi in M . We have Artin L-functions L(s, ψ;M/L) and
L(s, χ,M/K).

Theorem 20.1.
L(s, ψ;M/L) = L(s, χ,M/K)

This is not that deep. We know that L(s, χ,M/K) =
∏
π Lπ(s, χ;M/K). Define

Lπ(s, ψ,M/L) =
∏
P |π LP (s, ψ,M/L) (where ramified primes are not counted with mul-

tiplicity). We will actually avoid ramified primes; they make the notation worse. So it
suffices to prove
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Proposition 20.2.
Lπ(s, ψ,M/L) = Lπ(s, χ;M/K)

Before proving this, we will do a special case.

Example 20.3 (S3-example). M → K has Galois group S3, and M → L is degree 2. So
L→ K is a non-Galois cubic extension. Write H = {1, t} and G = {1, t, r, rt, r2, r2t}. Let
R = {1, r, r2} be a representative system for G/H. Let π be a prime. Either it remains
prime, it splits into two primes, or it splits into three primes. If it remains prime then
the residue field extension is degree 3. In the second case, one degree is 1 and the other
is 2; in the third case, all extensions are degree 1. In the first case, P can’t stay prime,
because the group isn’t cyclic. So P splits into Q and Q. In the second case, the combined
residue extensions have to be the same. So P1 lifts to Q1 (degree 1) and P2 splits into
Q2 and Q3, each extensions of degree 1. In the third case, you can’t have each Pi lift
through a degree-2 extension to some Qi: the decomposition group has to be contained in
H; but they are all Galois conjugate. So each Pi splits into Qi and Qi. So, determining
the splitting of π in L determines the splitting in M .

Let ψ : H → C∗ be the nontrivial character. We know what ψ is on H: it sends t 7→ −1.

χ(u) =
∑
0,1,2

ψ(r−iuri)

χ(1) = 3 because that’s the degree of the induced representation ([G : H] = 3).

conj. class 1 t r
χ 3 −1 0

Let 1 denote the trivial representation, ε denote the sign representation, and τ be the
2-dimensional representation (action of S3 on its vertices).

1 t r
1 1 1 1
ε 1 −1 1
τ 2 0 −1

So χ = ε+τ . In this example, Lπ(s, ψ,M/L) = Lπ(s, ε;M/K)·Lπ(s, τ ;M/K). Evaluating
local factors gets (

1

1− π−s

)3

for the first case,
(

1
1+π−s

)(
1

1−π−2s

)
for the second case, and

(
1

1−p−3s

)
for the third case.

Given the previous computation,

L(s, ψ;M/L)

degree 1

= L(s, ε,M/K)

degree 1

·L(s, τ ;M/K)

degree 2
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If we have a general theory of analytic continuation and functional equations for degree 1
and Artin L-functions, then we have that L(s, τ ;M/K) would be the ratio of two analytic
functions, i.e. a meromorphic function. If you have a zero-free region for Artin L-functions
(which we do), then you get a zero-free region for L(s, τ,M/K) (modulo a few poles,
maybe). This is actually useful: you don’t need entire-ness to get good estimates.

Theorem 20.4 (Brauer). Any character can be written χ =
∑

finite njInd
G
Hj
ψj such that

each ψj : Hj → C∗ has degree 1, and nj ∈ Z.

Thus L(s, χ;M/K) =
∏
L(s, ψj ,M/Lj)

nj . Combining this with the “general theory”, you
have nice control over Artin L-functions: you can write them as the product / quotient of
degree-1 L-functions, which are analytic.

Proof of proposition. π splits into primes P1, · · · , Pν in L. For each of these,
choose some Qi above Pi in M . For each j choose ηj ∈ G such that ηjQ1 = Qj . Each
Qj has a decomposition group Gj (this is the Galois group of Qj → K). These conjugate

the way the Qi’s do: ηjG1η
−1
j = Gj . Each Gj contains Frobenius, which we call ϕj ; and

ηjϕ1η
−1
j = ϕj . Let f ′j : Qj → Pj be the degree of the residue field extension for M → L,

and let fj : Pj → π be the other residue field extension degree. Let f = fjf
′
j (the same

for all j – it’s the residue field extension degree of any of the Qj over π).

(1) |Gj | = f
(2) |Gj ∩H| = f ′j
(3) |Gj/(Gj ∩H)| = fj
(4) {γj,1, γj,2, · · · , γj,fj} is a representative system for Gj modulo Gj ∩H.

Lemma 20.5.
L : {γj,k · ηj : k = 1, .., fj j = 1, · · · , ν}

is a representative system for G/H.

Proof. Homework. �

χ(u) =
∑
j,k

ψ(γj,kηjuη
−1
j γ−1

j,k )

(Make use of the convention that ϕ(X) = 0 if X /∈ H.) Take the Frobenius element ϕ1,
and let u = ϕm

1 be an arbitrary element of G1 = Gal(Q1/kπ). Write this as the Artin

symbol (Qi,M/K). So ϕ
fj
j = (Qj ;M/L) ∈ H, and ϕm

j ∈ H iff fj | m.

χ(ϕm1 ) =
∑

ψ(γjj,k ηjϕ
m
1 η
−1
j γ−1

jk )
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=
∑

ψ(γjkϕ
m
j γ
−1
jk )

=
ν∑
j=1

fjψ(ϕmj ) in an abelian group

logLπ(s, χ;M/K) =
∑ χ(πm)

m ·Nπms

=
∑ χ((Qj ,M/K)m)

m ·Nπms

=
∞∑
m=1

γ∑
j=1

fjψ(ϕmj )

m ·Nπms

=

∞∑
n=1

∑ fjψ((ϕ
fj
j )n)

fjn · (Nπ)fjns
only some of the above terms count

= Lπ(s, ψ,M/L) by definition

�

21. April 12

21.1. Artin L-functions and Dedekind ζ-functions. Let L → K to be Galois
with Galois group G, and choose H ⊂ G as the trivial group. Then L(s, ψ, L/L) = ζL(s)
by definition; but we just proved this is equal to L(s, IndG{1}ψ,L/K). Write C as a C[H]

module, where every element of H acts trivially on C. The induced representation χ

is C[G] ⊗C[H] C1 = C[G]. So the induced character is the regular representation of G
acting on C[G] ∼=

⊕
χi irred

EndC(Vi); if each representation Vi has dimension di, then

EndC(Vi) =
⊕di Vi.

L(s, IndG{1}ψ,L/K) =
∏

χi irred

L(s, χi;L/K)di = ζL(s)

(Clarification: we’re thinking of C[G] acting on C[G] = Reg; also |G| = dimC(Reg). By
more representation theory, write Reg =

⊕
EndC(Vi) =

⊕
Mdi×di(C). This is canonical.

But EndC(Vi) =
⊕di Vi depends on choice of basis.)

21.2. Signed divisors and D-ideal class groups. (Notation is made up by Mazur.)
We have a number field K → Q, with ring of integers A. A signed divisor is a pair (D,S∞)
(usually referred to as D), where D is an ideal, and S∞ is a set of distinct real embeddings
of K ↪→ R. Define ID to be the group of fractional ideals of A relatively prime to D: the
“denominators” do not include primes of D. Let PrD be the set of principal D-ideals: the
subgroup of nonzero elements a ∈ K∗ such that
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(1) for all P | D, a ∈ AP (A localized at P )
(2) a ≡ 1 (mod DP ); so DP = D ·AP for all P | D; alternatively, a− 1 has no copies

of p in the denominator
(3) a has positive image under any embedding K ↪→ R

Definition 21.1. ClD(K) = ID/PrD is the ideal class group.

If α is an ideal, write [α] to represent the corresponding element in the ideal class group.

Let κD be the set of ideals prime to D, and let κD(c) = {α ∈ κD : [α] = c}. Also define

κD(c,X) = {α ∈ κD(c) :
∣∣NK/Qα

∣∣ ≤ X}
Theorem 21.2. There exists ρ = ρD(K) > 0 depending upon K and D, but not c, such
that

|κD(c,X)| = ρ ·X +O
(
X

1− 1
[K:Q]

)
It turns out that

ρ =
2r1 · (2π)r2 ·Regulator

|roots of 1| ·
√
Discriminant

but it doesn’t really matter what ρ is, and it simplifies the proof if you don’t specify ρ.
We’ll prove this. . . later? maybe not at all.

If K = Q, then ρ = 1. If K = Q(i), ideals are points in the first quadrant of the radius-x
circle.

Define
ζcK(s) =

∑
α∈κD
[α]=c

(Nα)−s

Also define
ζ
{D}
K (s) =

∑
α∈κD

(Nα)−s =
∑

c∈ClD(K)

ζcK(s)

Also, write ζQ for the Riemann ζ function.

A(x) of the Dirichlet series ζcK(s)−ρ · ζQ(s) is O(X
1− 1

[K:Q] ). Going back to the old lim sup

discussion, we can show that the abscissa of convergence is ≤ 1− 1
[K:Q] .

Corollary 21.3. ζcK has meromorphic continuation to at least σ = 1 − 1
[K:Q] , and has a

pole at s = 1 with residue = ρ.

Corollary 21.4. The incomplete ζ-function ζ
{D}
K (s) has the same meromorphic continu-

ation with residue hD(K) · ρ, where hD(K) = |ClD(K)|.
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21.3. Ideal class L-functions. Let D be a signed divisor. A D-ideal class character
(of degree 1) is a homomorphism

ID/PrD
χ→ C∗

Also view these as characters (also notated ζ) of ID.

L{D}(s, χ) =
∑

c∈ClD(κ)

ζc(s) =
∑
α∈κD

χ(α)

(Nα)s
=
∏
P∈κD

1

1− χ(P )
NP s

(the last expression is by unique factorization, just like the Riemann ζ case).

Corollary 21.5. If χ is any nontrivial character, then L{D}(s, χ) extends as an analytic
function to the right-half plane bounded by σ = 1− 1

[K:Q] .

Why? ζc(s) has a pole of exactly the same residue R at s = 1. So the residue of L{D}(s, χ)
is
∑

c∈ClD(K)
χ(c) ·R.

You can also prove (but we won’t) that L{D}(s, χ) doesn’t vanish on σ = 1. We also have

the weaker result that L{D}(1, χ) 6= 0.

21.4. Logs of Ideal class L-functions. The difference between ζ-functions and L-
functions is that L-functions have to have Euler products, but ζ-functions may not. When
we have a product, we want to take the log.

Say that f ∼ g if f − g is analytic around s = 1.

logL{D}(s, χ) =

∞∑
m=1

∑
P∈κD

χ(P )m

m · (NP )ms
=
∑ χ(P )

(NP )s
+Rest ∼

∑
P∈κD

χ(P )

NP s
∼

∑
P∈κD

deg(P )=1

χ(P )

NP s

(L{D}(s, χ) has an analytic continuation around s = 1.)

Let K be a field, P a collection of primes. Take∑
P∈P

1
NP s∑

P prime
1

NP s

, and the denominator is ∼ log 1
s−1 . Then the limit of this as s→ 1 is the Dirichlet density.

21.5. Relationship between D-ideal class L-functions and abelian Artin L-
functions.

Theorem 21.6. Let L/K be abelian, with Galois group G. There exists a signed divisor

D over K and a unique surjective homomorphism ClD(L)
Artin
� G that is completely

described by the following: if P ∈ ID(K) is prime, and [P ] is its image in the class group,
then Artin([P ]) = ϕP ∈ G (the Frobenius element).
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Corollary 21.7. If χ : G→ C∗ is a character, then

LD(s, χ ◦Artin) = Lincomplete(s, χ, L/K)

where the incompleteness is because we’ve ignored ramified primes on the left.

22. April 17

22.1. Density. The Dedekind zeta function has a simple pole at s = 1, and is analytic
elsewhere.

ζK(s) =
∑

P∈PK

(NP )−s = 1 · log
1

s− 1
+ h(s)

where h(s) is analytic. (This comes from breaking up ζK as a sum over primes to various
powers, and realizing that powers > 1 don’t change much.) Then we took A ⊂PK , and
asked about

∑
P∈ANP

−s. We say that A has strong analytic density if∑
P∈A

(NP )−s = a · log
1

s− 1
+ h(s)

where h is another function that is holomorphic around s = 1. Impose the relation
f(s) ∼ g(s) if f(s) = g(s) + h(s) where h(s) is analytic around s = 1.

A has natural density a if

a = lim
X→∞

#{P ∈ A : NP ≤ X}
#{P ∈PK : NP ≤ X}

A has Dirichlet density (or analytic density) a if

a = lim
s→1+

(∑
P∈ANP

−s

log 1
s−1

)

Let K be a field, P a prime over p ∈ Q. Say that P has degree 1 if NK/QP = p.

Proposition 22.1. Let A = P
(1)
K ⊂P be the set of primes of K of degree 1. Then the

strong analytic density of A is 1.

∑ 1

NP s
=
∑
p

∑
Ps.tNP=p

1

ps

degree 1

+(higher degree) ≤
∑∑ 1

ps
+ [K : Q]

∑
k≥2

1

pks

So, A(1) ⊂ A have the same densities. Similarly, the stuff of degree 1 over some other field
F has the same density.

22.2. The Artin Map. We did not prove:
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Theorem 22.2. Let L/K be an Abelian extension with Galois group G. There exists a
signed divisor D of K and a surjective homomorphism called the Artin map

ClD(K) =
ID(K)

PrD(K)

Artin−→ G

such that the composition

P 7→ [P ]

∈ClD(K)

Artin→ (P ;L/K) = FrobP

produces the Frobenius element.

In particular, consider the composition ID
Artin→ G

χ→ C∗; clearly

L(s. χD, L/K) = LD−incomplete(s, χ, L/K)

Proposition 22.3 (Regularity). Let χ = χD (i.e. a D-ideal class character) that is not
principal. Then L(1, χD,K) is regular: that is, it is neither zero nor a pole.

This implies the same for abelian Artin L-functions. But we also get it for non-abelian
Artin L-functions! We proved that Brauer’s theorem implies the following: if χ is any
non-abelian character, then χ =

∑
χi irred

niInd
G
Hi
χi where ni ∈ Z. So

L(s, χ, L/K) =
∏

(L(s, χi, L/Ki))
ni

where Ki is the fixed field of Hi.

Theorem 22.4. Let L/K be an abelian extension. Let c ∈ Gal(L/K), and define

Ac = {P prime of K : FrobP = c}

Strong analytic density of Ac =
1

[L : K]

Theorem 22.5 (General Chebotarev). If L/K is any Galois extension, and C ⊂ G a
conjugacy class. Let AC = {P : FrobP = C}. Then

Strong analytic density of AC =
|C|

[L : K]

Lemma 22.6. G is a finite group, C a single conjugacy class. Let δC be the characteristic

function of C: δC(x) =

{
1 x ∈ C
0 x /∈ C

. Then

δC =
|C|
|G|

∑
χ irred

χ(c) χ
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Abelian ideal class L-function theorem → general. δC =
∑

χ irred a(χ) · χ.
By orthonormality,

1

|G|
∑
x∈G

δC(x) χ(x) = a( χ)

a( χ) =
1

|G|
∑
x∈C

χ(x) =
|C|
|G|

χ(x)

Let FrobP denote the conjugacy class of Frob at P in G.∑
P∈Ac

NP−s =
∑

P∈PK

δC(FrobP ) ·NP−s =
|C|
|G|

∑
NP−s +

C|
|G|

∑
χ irred 6=1

χ(c)
∑
P

χ(FrobP ) ·NP−s

because the principal character applied to FrobP is just 1.

We want to show that the second term has no effect (is analytic), and in particular,
that

∑
P
χ(FrobP ) ·NP−s ∼ 0 for fixed χ nonprincipal. This comes from the regularity

theorem for nonabelian characters. �

Artin abelian theorem → Artin general theorem. We had a Galois exten-
sion L/K with Galois group G. Let C ⊂ G be a conjugacy class, and let g ∈ C (choice
shouldn’t matter!). Let M be the fixed field under g; so L/M has Galois group cyclic,
generated by g. Let p denote a prime in Q, π a prime in K, P a prime in M , and Q a
prime in L. As before, norm always means norm down to Q. L/M is an abelian extension.
Suppose we want FrobP = g. That implies that P is inert in L/M . So there exists a
unique Q lying over P . Let GQ ⊂ G be the stabilizer of Q in G. If FrobP = g then
GQ = 〈g〉. So the notation GQ = GP makes sense.

When we compute analytic density, we only care about the degree-1 primes π. If P lies
over π then it is also degree 1: its decomposition group is just GQ.

We’re trying to compute AC in PK : the primes of K whose Frobenius live in C. We
want: ∑

deg π=1
∃Q,FrobQ=g

(Nπ)−s ∼ |C|
|G|

log
1

s− 1

The LHS is
∑
p−s ·#{π → p, ∃Q→ π, FrobQ = g}. For every Q, there is a corresponding

P . So this is ∑
p

p−s ·#{π → p : ∃P → π, FrobP = g} =: f(s)

We want to compare this with the RHS

g(s) :=
∑

p−s#{P : degP = 1, F robP = g} =
∑

degP=1,FrobP=g
P→p

(NP )−s
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By the abelian theorem (or, even the cyclic theorem), this is

∼ 1

| 〈g〉 |
· log

1

s− 1

Lemma 22.7.

# := #{P → π,degP = 1, F robP = g} =
|G|

| 〈g〉 | · |C|

This is the number of primes over π that has the same Frobenius element as g. (We’re
assuming that # > 0. . . this should end up in the theorem hypotheses. . . )

Note that if there is some Q over P with FrobQ = g, then that Q is unique. So # =
#{P → π,degP = 1, ∃Q → P, FrobQ = g}. Let {Q,Q1, · · · , Q?} be the other primes
over π. Every Qi is given by a conjugacy class of G/GQ. FrobxQ = xgx−1. The number
= the number of x that commute with g; this is the commutator in G of g. Anything in
GQ doesn’t change anything; so we divide by GQ:

# =
CentralizerG(g)

GQ

I claim that CentG(g) = |G|
#elts. conjugate to g = |G|

|C| . So

f(s) ∼ |C|
|G|

log
1

s− 1

�
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