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Math 114 Peter Kronheimer Lecture 1

1. August 31

What is the volume of any set E ⊂ R3? We want some properties to hold:

• If E = E1 ∪ E2 and E1 ∩ E2, then we want vol(D) = vol(E1) + vol(E2).
• If E′ and E are related to each other by rotations and translations, then their

volumes should be equal.
• We want some normalization by specifying the volume of the unit ball to be 4π/3

(or, equivalently, saying that the unit cube has volume 1).

Sadly, there is no such way to define volume: the Banach-Tarski paradox says that we can
take the unit ball in 3-space, cut it into finitely many pieces, and reassemble them to form
two copies of the unit ball, disjoint. (This only works if we accept the axiom of choice.)

So we need a definition for subspaces of R3 that is restricted enough to rule out the
Banach-Tarski paradox, but general enough to be useful.

Measure should be thought of as the n-dimensional analogue of volume (for subsets of R3)
and area (for subsets of R2). The idea is that we can define a measure with the above
properties, if we stick to measurable subsets.

Let’s first define a rectangle to be a Cartesian product of closed intervals. (So the rotation
of a rectangle is probably not be a rectangle.) A d-dimensional rectangle is the product
of at most d intervals (or exactly d intervals, if some of them are allowed to be [a, a]). An
open rectangle R0 is the product of open intervals, and can be ∅. It’s easy to define the
volume of a rectangle:

|R| = |[a1, b1]× · · · × [ad, bd]| =
d∏
i=1

(bi − ai)

If we have a random set E ⊂ Rd, let’s cover it with at most countably many rectangles:
E ⊂ R1 ∪R2 ∪ · · · . There are many ways to do this, and some of them have less overlap
than others.

Definition 1.1. The exterior measure m∗(E) is defined as

inf
{Ri}covering E

∞∑
1

|Rn|

What does this mean? If m∗(E) = X, then for any ε > 0 we can cover E by rectangles
with total volume ≤ X + ε. (But it doesn’t work for any ε < 0.) It is clear from the
definition that m∗(E) ≥ 0 and it has the monotonic property that

E′ ⊃ E =⇒ m∗(E
′) ≥ m∗(E)
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Math 114 Peter Kronheimer Lecture 2

Definition 1.2. E is null if m∗(E) = 0. (So your set can be covered by rectangles of
arbitrarily small total size.)

The key example of an uncountable null set is the Cantor set. To define this, define C0 =
[0, 1], C1 = [0, 1

3 ]∪ [2
3 , 1], and so on, where to get Cn you delete the middle third of all the

disjoint intervals in Cn−1. The Cantor set is the intersection of all of these. In base 3, these
numbers have a ternary expansion that looks like x = 0.02200200222 · · · : that is, there are
no 1’s in this expansion. To show that it is null, note that m∗(C) ≤ m∗(Cr) ≤ 2r × (1

3)r

because it is covered by 2r rectangles of length 1
3r . (This is completely by definition.)

Now, we really hope that m∗(R) = |R|. We know that m∗(R) ≤ |R|, but what if this is
<? Annoyingly, this is not obvious; it’s not even obvious why it is nonzero at all. BUT,
it’s true!

First, let’s forget the part about being able to use infinitely many rectangles. Can we find
a set {Rn} such that

∑N
1 |Rn| ≤ |R|. It is clear, that it is silly to have the rectangles stick

out over the boundaries of R: so R1 ∪ · · ·Rn = R. Now, draw enough lines/ hyperplanes
so that each cube belongs to all of some set collection of rectangles. From here, there is
some awkwardness, but we can get a contradiction.

Now the problem is in allowing infinite covering sets. Suppose R ⊂ ∪∞1 Rn, such that

R| >
∑∞

1 |Rn|. Let ε = |R| =
∑∞

1 |Rn|. Choose some R̃n ⊃ Rn so that Rn ⊂ R̃0
n and

|Rn| = |R̃n| − ε
2n. So R ⊂ ∪∞1 R̃0

n and |R| =
∑∞

1 |R̃n|. Now we appeal to the Heine-Borel
theorem: because R is closed and bounded, it is compact, and is covered by finitely many

of those open R̃0
n. So we’re back to the first situation, with finitely many rectangles.

2. September 2

RECALL we were in Rd, and we had an arbitrary subset E on which we defined the
exterior measure m∗(E). Also recall that we can’t expect both properties

• m∗(E) = m∗(E) +m∗(E) for E = E1 ∪ E2 disjoint
• m∗(E) is invariant under rigid motions.

Proposition 2.1 (Countable additivity of exterior measure). If E = ∪∞j=1Ej then m∗(E) ≤∑
m∗(Ej)

Recall that the sum could diverge, and then the proposition doesn’t say very much.

Proof. Given ε > 0, for each j, we can find rectangles Rj,n such that Ej ⊂ ∪nRj,n
such that m∗(Ej) ≥

∑
n |Rj,n| −

ε
2j

. So we have that E is covered by this doubly-indexed
5
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collection E ⊂ ∪n ∪j Rj,n, and

m∗(E) ≤
∑
j

∑
n

|Rj,n|

≤
∑
j

m∗(Ej) +
ε

2j

So m∗(E) ≤
∑

jm∗(Ej) + ε. Since this works for all ε, we have the desired inequality. �

2.1. Measurable sets. There are many ways to define measurable sets; here we will
give Carathéodory’s.

Definition 2.2. E ⊂ Rd is measurable if for every other subset A of Rd we have:

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec)
(where Ec is the complement of E in Rd).

So, to check that E is measurable, it is enough to check

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ec)
because the other inequality just comes from countable (finite!) additivity above. This
means that it is also enough to check for all A of finite exterior measure.

Lemma 2.3. A half space (a space of the form E = {xi ≥ a}) is measurable.

Proof. Given ε > 0 we can find rectangles Rn with
∑
|Rn| ≤ m∗(A) + ε. Divide

each rectangle Rn along the line xi = a, so you have two pieces R′n = Rn ∩ {xi ≥ a} and
R′′n = Rn ∩ {xi ≤ a}. Since A ∩ E is covered by rectangles, we have

m∗(A ∩ E) +m∗(A ∩ Ec) ≤
∑
n

|R′n|+
∑
n

|R′′n|

=
∑
n

|Rn| ≤ m∗(A) + ε

Since this works for all ε, the inequality holds in general, showing that E is measurable. �

Lemma 2.4. If E is measurable, so its its complement Ec.

Proof. The definition is symmetric in terms of E and Ec. �

Lemma 2.5. If E1 and E2 are measurable, so are E1 ∪ E2 and E1 ∩ E2.

Proof. Since E1 ∪E2 = (Ec1 ∩Ec2)c, we will do the intersection case only (as per the
previous lemma). So take a space A of finite measure. E1 is measurable, so m∗(A) =
m∗(A ∩E1) +m∗(A ∩Ec1). Now decompose this further, taking A ∩E and A ∩Ec as the
arbitrary set:

m∗(A) = m∗((A ∩ E1) ∩ E2) +m∗((A ∩ E1) ∩ Ec2) +m∗(A ∩ Ec1 ∩ E2) +m∗(A ∩ Ec1 ∩ Ec2)

≥ m∗(A ∩ (E1 ∩ E2)) +m∗(A ∩ (E1 ∩ E2)c)
6
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where the last inequality is by sub-additivity. Done! �

Summary: Measurable sets form an algebra of sets – they are closed under complements,
finite intersection, and finite union.

We have done this for half-spaces; taking intersections gives us “rectangles”. However, we
do not have the unit disk yet. The key is to replace finite intersections with countable
ones.

Proposition 2.6. If E = ∪∞n=1En and if each En is measurable, then so is E. Further-
more, if the En are disjoint, then m∗(E) =

∑
m∗(En).

Corollary 2.7. Every open set in Rd is measurable.

This is because every open set is a countable union of rectangles (remember the definition
of a topology!).

Proof of proposition. We may as well assume from the beginning that the En are
disjoint: replace the nth set by En\ ∪m<n Em. We have not messed up measurability, be-
cause we just showed we can take finite unions and complements. To prove measurability,
we want to fix some set A of finite measure. (Recall that A need not be measurable itself.)
We have

m∗(A ∩ (E1 ∪ E2)) = m∗(A ∩ E1) +m∗(A ∩ E2)

This is a consequence of the measurability of E1 (or E2) and the disjoint-ness of E1 and
E2, with the “test set” being A∩ (E1∪E2). This shows additivity of two terms, and hence
additivity of finitely many terms. That is, for every N ∈ N we have

m∗(A ∩ ∪Nn=1En) =
N∑
n=1

m∗(A ∩ En)

m∗(A ∩ E) ≥ m∗(A ∩ ∪N1 E2)

=
N∑
1

m∗(A ∩ En)

where the first inequality is by containment. Taking the limit as N →∞, we have

m∗(A ∩ E) ≥
∞∑
1

m∗(A ∩ En)

Countable sub-additivity gives the other inequality, so we get

m∗(A ∩ E) =
∞∑
1

m∗(A ∩ En)

7



Math 114 Peter Kronheimer Lecture 3

We haven’t yet proved measurability, however. We have to play a similar game with
A ∩ Ec:

m∗(A ∩ Ec) ≤ m∗(A ∩ (∪N1 En)c)

= m∗(A ∩ ∪N1 En)

= m∗(A)−
∑

m∗(A ∩ En)

where the first inequality is by inclusion. Then we applied the definition of measurability
to ∪N1 En. Note that we are assuming that A has finite exterior measure. (In using the
simple trick x = y + z =⇒ x − y = z, we have to watch out if two of the things are
infinite.)

Now take the limit with N →∞, which gives

m∗(A ∩ Ec) ≤ m∗(A)−
∞∑
1

m∗(A ∩ En)

= m∗(A)−m∗(A ∩ E)

by the additivity proven earlier. (Again, we have proven only the nontrivial inequality.)
So the countable union E is measurable.

Note that in just the first part (countable additivity), we didn’t use the fact that A had
finite measure; so we can take A = Rn, which gives the countable additivity

m∗(E) =
∑

m∗(En)

�

If E is measurable, we define the measure m(E) = m∗(E).

3. September 7

3.1. More about measurable sets. RECALL we had defined outer measure for
all E ⊂ Rd. When E was measurable, we defined the measure to be m(E) = m∗(E).
We showed that measurability is preserved by complements and countable unions and
intersections. We also had the key formula

m(E) =
∞∑
1

m(En)

if E = ∪En and the En were disjoint. As examples of measurable sets, we had rectangles
and open sets. The definition of open-ness can be reformulated to say that all points x in
the open set O can be surrounded by a rectangle R ⊂ O; moreover, this rectangle can be
taken to have rational coordinates for the vertices. There are only countably many such
R; so every open set can be written as a countable union of rectangles.

8
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Null sets are measurable: these are precisely the sets such that m∗(E) = 0. To check
measurability, we require

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ec)
If E is null, then m∗(A ∩ E) = 0, so this inequality holds. So null sets are measurable.

We say that En ↗ E as n → ∞ if E1 ⊂ E2 ⊂ · · · and E = ∪En. Similarly, we say that
En ↘ E if E1 ⊃ E2 ⊃ · · · and E = ∩En.

Lemma 3.1. • If En is measurable and En ↗ E then E is measurable and

m(E) = lim
n→∞

m(En).

(We are using measure in the extended sense: it is allowed to be infinite.)
• If En ↘ E and m(E1) is finite, then

m(E) = lim
n→∞

m(En).

Note that the condition m(E1) < ∞ is necessary: take En = [n,∞), and note that
m(En) =∞ but m(∩En) = 0.

Proof. • If En ↗ E, set Fn = En\En−1, where F1 = E1. By countable
additivity,

m(E) =
∑

m(Fn) = lim
n→∞

n∑
i=1

m(Fi).

But the first n Fi’s are disjoint, and their union is En.
• If En ↘ E and m(E1) <∞, write H1 = E1\E2, H2 = E2\E3, etc. We have that
H = ∪∞1 H2.

E1 = E ∪H
m(E) = m(E1)−m(H)

We can’t rearrange this formula unless m(E1) is finite. So

m(E) = m(E1)−
∞∑
1

m(Hn)

= lim(m(E1)−
n∑
i=1

m(Hi))

= limm(En+1)

En+1 = E1\ ∪ni=1 Hi

�

Stein and Shakarchi have a “different” definition of measurability:

Definition 3.2. E ⊂ Rd is SS-measurable if: for all ε > 0, there is an open O ⊃ E with
m∗(O\E) ≤ ε.

9
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Lemma 3.3. A set is SS-measurable iff it is measurable (in the previous sense).

Proof. If E is SS-measurable, then for every n chooseOn ⊃ E open withm∗(On\E) ≤
1
n . Write

G =
∞⋂
n=1

On

We have that G ⊃ E and m∗(G\E) ≤ m∗(On\E) ≤ 1
n for all n. So m∗(G\E) = 0. Null

sets are measurable (in the old sense), and G is measurable too, being the intersection of
measurable sets. We can write

E = G ∩ (G\E)c

which shows that E is measurable in the old sense.

Conversely, suppose that E is measurable in our sense. First suppose that E has finite
measure. Given ε > 0, cover E with rectangles Rn with

∞∑
1

m(Rn) ≤ m(E) +
ε

2

Now we want to find larger rectangles R̃n such that Rn ⊂ R̃on. We can also require that∑
m(R̃on) ≤ m(E) + ε. Set O = ∪∞n=1R̃

o
n. So O ⊃ E and m(O) ≤ m(E) + ε. Since E is

measurable, we have
m(O) = m(E) +m(O\E)

So we have that
m(O\E) ≤ ε.

Note that it’s important that m(E) is finite in this argument; otherwise we keep running
into trouble by trying to “subtract infinity.” �

Definition 3.4. A subset of Rd is called a Gδ set if it is a countable intersection of open
sets. A subset of Rd is called an Fσ set if it is a countable union of closed sets.

Notice that in the previous proof we had a line

E = G\(G\E)

where E was measurable, and G was a Gδ set: Gδ = ∪On. Also remember that G\E was
null. This gives a nice decomposition of measurable sets.

Corollary 3.5. If E is measurable, then E ⊂ G where G is a Gδ set and G\E is null.
(And conversely.)

3.2. Integration. Integrals are about signed area. We can imagine breaking up the
area under a graph into the positive and negative parts:

U+ = {(x, y) : 0 ≤ y ≤ f(x), y ∈ R, x ∈ Rd}
U− = {(x, y) : 0 > y ≥ f(x), y ∈ R, x ∈ Rd}

But instead of talking about area, let’s talk about measure! We could define (but we
won’t) f integrable to mean that U+ and U− are measurable subsets of Rd+1 of finite

10
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measure. If f is integrable, we could write∫
Rd
f = m(U+)−m(U−)

[Note that the dx is omitted, and sometimes we will even omit Rd when that is understood.]
But we’re not going to do this! This definition has the problem of not being able to handle
infinite upper and lower areas very well; we will give another definition.

Definition 3.6. A function f : Rd → R is measurable if for every a ∈ R,

Ea = {x ∈ Rd : f(x) ≤ a}
is measurable in Rd.

(So the constant function 1 is measurable, but not integrable.) Observe

{x : f(x) < a} ≤
∞⋃
1

Ea− 1
n

(That is, saying that y ≤ a − 1
n for all n is equivalent to y < a.) So if f is measurable,

this is a measurable set. Similarly,

{x : f(x) ≥ a}
{x : f(x) ∈ [a, b]}

are also measurable if f is measurable. So we could have written our definition a bit
differently. If A ⊂ R is open, then it is a countable union of closed intervals [a, b]. So
{x : f(x) ∈ A} is also measurable. The other direction is also true.

Lemma 3.7. f is measurable iff f−1(A) ⊂ Rd is measurable for all open sets A ⊂ R.

Proof. Boring. �

4. September 9

4.1. Measurable functions.

Definition 4.1. We say that f : R → R is measurable if f−1(A) is a measurable set for
all open A. (Equivalently, for all closed intervals, or all half-intervals [a,∞).)

We can also consider functions f : Rd → Rk. Such a function f = (f1 · · · fk) is measurable
if f−1(A) is measurable for all open A ⊂ Rk, or all closed rectangles, or all half-spaces.
Thus f is measurable iff f1 · · · fk are measurable for all its components fi.

Remark 4.2. If C ⊂ R is measurable and f is a measurable function, then f−1(C) need
not be measurable. (The test sets need to be simple things like opens, etc.)

Example 4.3. Examples of f : Rd → R measurable:
11
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• The characteristic function χE for a measurable set E ⊂ Rd. This is

χE =

{
1 on E

0 else.

• The linear combination of measurable functions is measurable. Why?

Proposition 4.4. If Rd f→ Rk is measurable, and Rk g→ R` is continuous,

then the composite Rd g◦f→ R` is measurable.

Proof. To test whether the composition is measurable, we need a test open
set in R`, which is pulled back to an open set in Rk, by continuity. Now use the
fact that f is measurable. �

Now use the continuous function (f, g) : Rd → R2 where (f, g)(x) = (f(x), g(x)),
and then compose with the continuous function (x, y) 7→ ax+ by.
• It is not true that the composite of measurable maps is measurable.

Definition 4.5. When we say that something holds for almost all x (a.a. x), we mean
that it holds for all x outside a null set in Rd. Equivalently, we say that a property holds
almost everywhere (a.e.).

Proposition 4.6. Suppose that fn are measurable functions Rd → R for n ∈ N, and
fn → f a.e. (that is, fn(x)→ f(x) for almost all x). Then f is measurable too.

Note first: if g = g̃ a.e.then one of them is measurable iff the other one is. (The inverse
image of an open set will be the same under both, ± a null set.) We can change fn and
f so that they are zero on the null “bad set,” so we can assume that fn → f everywhere.
(Note that our convergence is pointwise.)

Proof. Using the definition of convergence, f(x) ≥ a means: for all k there exists
some n0 such that for all fn(x) ≤ a+ 1

k for n ≥ n0. Let’s write the quantifiers in terms of
intersections:

{x : f(x) ≤ a} =
⋂
k≥1

⋃
n0≥1

⋂
n≥n0

En,k

where En,k = {fn(x) ≤ a + 1
k}. Since countable unions and intersections of measurable

things are measurable, . �

4.2. Integrals of simple functions. First we will define the integral of simple func-
tions, then non-negative functions, and finally treat the general case.

Definition 4.7. A simple function is a finite linear combination Rd → R

g =

k∑
1

aiχEi

where Ei is measurable and of finite measure.
12
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This takes finitely many values. The set where this takes a given value is measurable.
There are many ways to write a simple function in this form, but there is always a most
efficient expression: take ai to be the distinct non-zero values that g takes, and let Ei =
g−1(ai). (This produces a decomposition in which the Ei are disjoint.) We call this
the standard form of a simple function. Of course, you can always reduce something to
standard form: if E = E′ ∪ E′′ is a disjoint decomposition, then aχE → aχE′ + aχE′′ .

Definition 4.8. If g =
∑
aiχEi (not necessarily in standard form) define the integral∫

g =
∑

aim(Ei).

We need to check that this is well-defined among other representations of something in
standard form. Reducing a representation by the operation described above does not
change this integral. Note that this only makes sense if the Ei have finite measure:
otherwise you could be adding ∞+ (−∞).

Linearity of the integral is obvious by the definition of simple functions:

Proposition 4.9. (1)
∫

(ag + bh) = a
∫
g + b

∫
h

(2)
∫
g ≥ 0 if g ≥ 0

Lemma 4.10. If (gn) is a sequence of simple functions and gn ↘ 0 then
∫
gn → 0 as

n→∞.

For all x outside a null set, gn(x) is decreasing and converges to zero as n→∞.

If I take a simple function, and modify it on a null set, then it is still a simple function
and the integral is unchanged. If we make all gn(x) = 0 for all x in the bad null set, you
can replace all claims of “almost everywhere” by “everywhere.”

Proof. Let M be the measure of the set where g1 6= 0, and let S be the set where
it happens. We call this the support of g1. Let C = maxx∈Rd g1(x). By the assumption
of decreasing-ness, all other g’s are contained in the set of measure M where g1 is zero.
If Q ≥ gn, then

∫
Q ≥

∫
gn. Choose δ > 0, and overestimate gn by filling in the box

S × [0, δ]. That is,

(1)

∫
gn ≤ δM + Cm{x : gn(x) ≥ δ}

This holds for all δ > 0. Look at

En = {gn(x) ≥ δ}
We have En ↘ ∅ for δ > 0. So m(En) → 0 as n → ∞. This is the continuity of measure
as we described in lecture 2. So the second term on the right of (1) approaches zero as
n→∞. Eventually,

∫
gn < 2δM ; this is true for any δ, so

lim
n→∞

∫
gn = 0.

�
13
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Corollary 4.11. (Monotone convergence theorem for simple functions) If {gn} is a se-
quence of simple functions where gn ↗ g a.e. with g also simple, then lim

∫
gn =

∫
g. Put

hn = g−gn. This is simple, nonnegative, and hn ↘ 0 a.e. So by the last lemma,
∫
hn → 0

so
∫
g −

∫
gn → 0.

5. September 12

5.1. Non-negative functions f : Rd → R. We are going to approximate our general
non-negative f by simple functions gn ≤ f .

Definition 5.1. Let f : Rd → R be non-negative and measurable. We say that f is
integrable if

sup
g

∫
g <∞

where the supremum is over all simple g ≥ 0, g ≤ f . When this quantity is finite, we will
define ∫

f = sup
g

∫
g

A simple example of a function that isn’t integrable is

f(x) =

{
bxc if x− bxc < 1

bxc
x elsewhere

When this does work, we want to be able to approximate this by functions that are zero
outside a finite box. Inside the box defined by |xi| ≤ n for all i, define

gn(x) = max{k
n

: 0 ≤ k ≤ n2,
k

n ≤ f(x)
}

where we are thinking of the graph living in Rn × R 3 (x1, · · · , xd, y). (Notice that the
range of gn is indeed ≤ n.)

Lemma 5.2. Suppose {fn} are integrable, nonnegative, and non-decreasing: f1 ≤ f2 ≤ · · · .
Let’s look at the integrals. Suppose limn→∞

∫
fn <∞. Then, for almost all x,

limn→∞fn(x)

exists. Define
f(x) = lim fn(x).

Then f is integrable, and ∫
f = lim

n→∞

∫
fn.

Notice that we do not even assume that all the functions converge, only that the integrals
do.

Proof. Define f(x) = limn→∞ fn(x). We will continue this in the extended sense,
where the limit may be ∞ for some x. Let h be any simple function with h ≤ f . We’ll

14
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show

(2)

∫
h ≤ lim

n→∞

∫
fn.

If we can prove (2), we’re pretty much done:

• f can’t be infinite on a set E of positive measure, or else we could set hC = C ·χE
with C very large, and see that

∫
hC has no upper bound (whereas limn→∞ fn

does by hypothesis).
• Also,

∫
f = suph

∫
h ≤ limn

∫
fn = K; i.e., f is integrable and∫
f ≤ lim

n

∫
fn.

• Also, fn ≤ f , so

lim

∫
fn ≤

∫
f.

So equality holds where we want.

So now let’s try to prove (2). For each fn there are simple functions gn,m with gn,m → fn
as m → ∞. Look at the diagonal sequence. gn,n are not necessarily increasing, but we
can define

g̃n,n = max
m,m′≤n

gm,m′ .

We claim that g̃n,n ↗ f a.e. By construction, g̃n,n are simple and non-decreasing. Given
simple h ≤ f , consider

F = min{g̃n,n, h}
which is a simple function. As n → ∞, F (x) ↗ h(x), since the g̃n,n will eventually lie
above h. Now we can apply the monotone convergence theorem for simple functions:∫

h = lim

∫
min{g̃n,n, h}

≤ lim
n

∫
g̃n,n

≤ lim
n

∫
fn = K

which is what we wanted at (2). (In the end we used the fact that g̃n,n ≤ fn by construc-
tion: gm,m′ ≤ fm and fm ≤ fn.)

�

Application 5.3. If f, g are ≥ 0 are integrable and a, b ≥ 0, and

F = af + bg

then F is integrable and ∫
F = a

∫
f + b

∫
g.

15
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Proof. We have simple functions fn ↗ f and gn ↗ g so we can set Fn = afn + bgn
so Fn ↗ F . By linearity of the integral for simple functions, we have∫

Fn = a

∫
fn + b

∫
gn ↗ a

∫
f + b

∫
g <∞.

In the form just proven, the Monotone Convergence Theorem says that limFn exists a.e.
But we already knew that: the Fn converge to F . But it also tells us that∫

F = lim

∫
Fn.

�

6. September 14

We know that
∑∞

n=1
1
n =∞. Define In ⊂ [0, 1] to have length 1

n . Consider the function

f(x) =
∞∑
n=1

1

n
χ
In(x)

Let the fn’s be the partial sums. Then we have an increasing sequence fn ↗ f . But
it looks like f might not be well-defined somewhere! But remember the set ∩nIn has
zero measure, and everywhere else this limit is perfectly well-defined. The monotone
convergence theorem says that f is finite for a.a. x ∈ [0, 1] (no matter how we chose In).
Furthermore, it says that ∫

fn =
n∑
1

∫
1

m
χIm

=
n∑
1

1

m2
=

n

m2

Each
∫
fn converges, and so does f .

Definition 6.1 (General case of the Lebesgue integral). Let f : Rd → R be measurable.
We can write

f = f+ − f−
where

f+(x) = max{f(x), 0},
f0(x) = max{−f(x), 0}.

We say that f as above is integrable if f+ and f− are. In this case, we define∫
f =

∫
f+ −

∫
f−.

Notation 6.2. |f | means that the function |f |(x) := |f(x)|.

Remark 6.3. f integrable implies that |f | is also integrable, just because |f | = f+ + f−
and each of those are integrable.

16
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If |f | is integrable and f is measurable, then f is also integrable, because f+ ≤ |f | and f+

is measurable. (Any measurable function (here, f+) that lies below an integrable function
is also integrable.)

If f = h+ − h− with h+ and h− both integrable, then f is too. f is measurable, and |f | is
integrable because |f | ≤ |h+|+ |h−|, and the RHS of this is integrable. From here we can
say that f+ and f− are integrable, which shows that f is integrable.

Proposition 6.4 (Properties of the integral).

(1) f ≥ 0 =⇒
∫
≥ 0

(2) If f ≤ g then
∫
f ≤

∫
g.

(3)
∫

(af + bg) = a
∫
f + b

∫
g for integrable f and g.

(4) f integrable ⇐⇒ it is measurable and |f | is integrable

Proof. Just the third part. The annoyance here is that (af + bg)+ 6= af+ + bg+. But
we can write

af + bg = h+ − h−
and then h+ = af+ + bg+. So∫

(af + bg) =

∫
h+ −

∫
h−

= a

(∫
f+ −

∫
f−

)
b

(∫
g+ −

∫
g−

)
�

We sometimes write
∫
f = +∞ to mean that f is measurable and f = f+− f− and either

f+ or f− is not integrable, and the other one is finite. (Think about f = 1, modified to
have a little squiggle below the x-axis in the middle.)

Theorem 6.5 (Monotone Convergence Theorem a.k.a. Bepo Levi’s Theorem). Let fn be
a non-decreasing sequence of integrable functions (a.e., of course), and suppose that

∫
fn

(an increasing sequence) does not diverge to +∞ as n→∞; i.e. limn→∞
∫
fn exists. Then

for a.a. x ∈ Rd, limn→∞ fn(x) exists (it is finite). If f is defined a.e. by f(x) = limn fn(x)
then

(1) f is integrable
(2)

∫
f = lim

∫
fn.

This is just a slightly fuller version of the monotone convergence theorem we had earlier;
here the functions can be negative. Again, the interesting thing is that we don’t assume
that the functions converge, only that their integrals do.

17
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Proof. Set f̃n = fn − f1. Then the f̃n ≥ 0 a.e. and are increasing a.e. By the
monotone convergence theorem for non-negative functions,

f̃(x) = (lim fn(x))− f1(x)

exists a.a. x and ∫
f̃ = lim

∫
(fn − f1) =

(
lim

∫
fn

)
−
∫
f1.

�

Theorem 6.6 (Dominated convergence theorem). Suppose {fn} is a sequence of integrable
functions Rd → R. Suppose that there is some function f such that

fn(x)→ f(x).

Suppose there exists some function g which is integrable (and non-negative) such that

|fn| ≤ g ∀n.
Then f is integrable and

∫
f =

∫
lim fn = lim

∫
fn.

Without the existence of the dominating function g, this is really wrong. For example,
take fn = χ

[n,n+1]. Then fn → 0 everywhere, but

lim

∫
fn 6=

∫
lim fn,

because the LHS is 1 and the RHS is 0.

Proof. Write
fn = fn,+ − fn,−
f = f+ − f−

In this way we can reduce to the case that all of the fn and f are nonnegative functions. f
is measurable because it is a limit of fn (a.e.). By the dominated hypothesis, |f | = f ≤ g
and is thus integrable. So

∫
f exists. We may as well assume that fn → f everywhere, by

changing things on a null set. Set

f̂n(x) = sup
m≥n

fm(x)

^
f n(x) = inf

m≥n
fm(x)

So fn(x) → f(x) implies that f̂n(x) ↘ f(x) and
^
f n(x) ↗ f(x). The monotone conver-

gence theorem says that

lim
n→∞

∫
f̂n =

∫
f = lim

n→∞

∫
^
f n

But also,
^
f n ≤ fn ≤ f̂n everywhere, and so∫

^
f n ≤

∫
fn ≤

∫
f̂n

18
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Now we use the squeeze theorem to say that∫
fn =

∫
f

�

Application 6.7. Consider a series
∑∞

1 gn where gn is integrable for all n and
∑

n

∫
|gn| <

∞. Then
∑∞

1 gn(x) exists a.a. x ∈ Rd and∫ (∑
gn

)
=
∑(∫

gn

)
.

Proof. Consider

Gn =

n∑
1

|gm|.

Then Gn ↗ something for all x and∫
Gn =

n∑
1

∫
|gm| ↗ K <∞

By the MCT, there is some G such that Gn(x) ↗ G(x) for a.a. x. So
∑∞

1 |gn(x)| is

convergent a.a. x ∈ Rd and that sum is G(x). Therefore,
∑∞

1 gn(x) converges a.a. x also.

To see why you can change the limit with the integral use the DCT. Set

fn =
n∑

m=1

gm

to be the partial sums. We know that fn → f =
∑∞

1 gn a.e., and |fn| ≤
∑∞

1 |gn| = G a.e.
G is integrable (it came from the MCT) so the conditions of DCT are satisfied with G as
the dominating function. �

7. September 16

7.1. More on convergence theorems.

Proposition 7.1. If gn are integrable for all n and
∑

n

∫
|gn| < ∞. Then

∑∞
1 gn is

absolutely convergent a.a. x. Writing

f =
∑

gn

then f is integrable and ∫
f =

∑∫
gn.

Last time we had Gn(x) =
∑n

k=1 |gk(x)|. Apply the MCT to Gn ↗. See that G(x) =∑∞
1 |gn(x)| exists a.e. and is an integrable function. So f(x) exists a.a. x. Set fn(x) =

19
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1 gk(x). Apply the DCT to fn, fn → f a.e. Use |fn(x)| ≤

∑n
1 |gk(x)| ≤ G(x). That is,

fn is dominated by G for all n. Conclude f is integrable and
∫
f = lim

∫
fn.

Lemma 7.2. (Fatou’s lemma) Let fn be a sequence of non-negative functions, integrable
for all n. Suppose lim infn→∞

∫
fn is finite. Then

f(x) := lim inf
n→∞

fn(x)

is integrable, and ∫
f ≤ lim inf

n→∞

∫
fn

Proof. Lt
^
f n(x) = infk≥n fk(x). So

^
f n are increasing:

^
f n(x) ≤

^
f n+1 for all x. By

definition of lim inf,
^
f n(x)↗ f(x) for all x (for things possibly being infinite). Since

^
f n is

the infimum of functions, the first of which is fn, we have
^
f n ≤ fn and hence

∫ ^
f n ≤

∫
fn.

The
^
f n are increasing. So

lim
n→∞

∫
^
f n = lim inf

n→∞

∫
^
f n

≤ lim inf
n→∞

∫
fn <∞

By the MCT, f is integrable and∫
f = lim

n→∞

∫
^
f n ≤ lim inf

∫
fn

�

7.2. The Lebesgue space L1. Write L1(Rd,R) or just L1(Rd) or just L1 for the
integrable functions f : Rd → R. Write

N ⊂ L1

for the space of functions f which are 0 a.e.

L1 and N are both vector spaces. We can define

L1 = L1/N
to be the set of equivalence classes of integrable functions f . That is, f ∼ g iff f = g a.e.
We will write f ∈ L1 when we mean, “the equivalence class of f is in L1.”

Proposition 7.3. If f is integrable, and
∫
|f | = 0 then f = 0 a.e.; i.e. f ∈ N which

means “f = 0 in L1.”

Proof. Use the MCT. Set fn = n|f |. So fn(x) is increasing for all x. Then
∫
fn = 0

for all n (= n
∫
|f | = 0). So limn→∞ n|f(x)| exists a.e. by the MCT. So |f(x)| = 0 a.e. �
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Definition 7.4. For f ∈ L1 define the norm ||f || (or ||f ||L1) as

||f || =
∫
|f |.

(We have to be careful with equivalence classes. But if f = g a.e. then
∫
|f | =

∫
|g|, so

the norm is well-defined on L1.) We can restate what we just proved. If ||f || = 0 then
f = 0 in L1.

Proposition 7.5. || · || is a norm on the vector space L1:

(1) ||λf || = |λ| · ||f || for λ ∈ R
(2) (Triangle inequality:) ||f + g|| ≤ ||f ||+ ||g||
(3) ||f || = 0 ⇐⇒ f = 0

Proof. (1) is immediately clear, and (3) we just proved. (2) is straightforward:

||f + g|| =
∫
|f + g|

≤
∫

(|f |+ |g|

=

∫
|f |+

∫
|g|)

= ||f ||+ ||g||
�

Theorem 7.6. Suppose gn ∈ L1 for all n. Suppose

(3)
∑
||gn|| <∞.

Then there is some f ∈ L1 such that the partial sums fn =
∑n

1 gk converge in norm to f .
That is, fn ∈ L1, f ∈ L1 and ||fn−f || → 0 as n→∞. (This is metric space convergence.)

Proof. This is mainly a direct translation of what we just said. (3) means that∑∫
|gn| <∞. We saw earlier that, for all f ∈ L1 with

∑∞
1 gn(x) = f(x) a.e. (This gives

fn ∈ L1 and f ∈ L1.) To show that this converges in norm, note that if fn(x) :=
∑n

1 gk(x)
then fn(x)→ f(x) a.e. We want

∫
|fn−f | → 0. This is a consequence of the DCT. Recall

from earlier that there is some dominating function G with |fn| ≤ G a.e. and
∫
G < ∞.

So |f | ≤ G a.e. and |fn − f | ≤ 2G a.e. So apply the DCT to the functions fn − f |.
These are all dominated by 2G and |fn− f |(x)→ 0 a.a. x by what we proved today. The
conclusion of the DCT is exactly what we want:

lim

∫
|fn − f | =

∫
0 = 0

�

This is related to the completeness of L1. There are some other notions of convergence:
21
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• Convergence almost everywhere: fn(x)→ f(x) a.a. x
• Convergence in measure: for a sequence of measurable functions fn, we say that
fn → f in measure if for all ε > 0,

m{x : |fn(x)− f(x)| ≥ ε} → 0 as n→∞
• Convergence in norm (as above)

On the HW you will see that convergence in norm implies convergence in measure. Beyond
that, in full generality there are no other implications among these. You can improve this
a bit by considering only convergent subsequences.

Proposition 7.7. If fn → f in measure then there is a subsequence fn′ for n′ ∈ N ⊂ N
which converges a.e.

Example 7.8. First consider the finite sequence Sk where f1 = χ
[0, 1

k
], f2 = χ

[ 1
k
, 2
k

] · · · fk−1 =

[k−1
k , 1]. Concatenate all the Sk to get a larger sequence.

8. September 19

Proposition 8.1. If fn → f in measure on Rd then there is a subsequence {n′} ⊂ N such
that f ′n → f a.e.

Proof. Without loss of generality fn ≥ 0 for all n and fn → 0 in measure. (Just take
the difference.) Fix δ > 0. Convergence to zero in measure means that for all k there is
some nk ≥ 1 such that

m({x : fnk(x) ≥ δ}) ≤ 2−k

The point of choosing 2−k is that these numbers are summable. The nk should be increas-
ing with k. So for all k0

m
⋃
k≥k0

{x : fnk(x) ≥ δ} ≤
∑
k≥k0

2k = 2−k0+1

This union is decreasing as k0 increases. So

m(

∞⋂
k=1

⋃
k≥k0

{x : fnk(x) ≥ δ}) = lim
k0→∞

2−k0+1 = 0

That is,
m({x : lim sup

k→∞
fnk(x) ≥ δ}) = 0

which implies
lim sup
k→∞

fnk(x) ≤ δ

But δ could be anything: we can repeat this process with a smaller δ. We get a nested
series of subsequences:

{n} ⊃ {nk} ⊃ {n
(2)
k } ⊃ {n

(3)
k } ⊃ · · ·

22
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such that for all r
lim sup
k→∞

f
n
(r)
k

(x) ≤ 2−rδ

a.a.x. (The almost all thing works across the limits, because a countable union of null
sets is null.) Now look at a diagonal sequence:

n
(1)
1 , n

(2)
2 , n

(3)
3 , · · ·

We have, for a.a.x,
lim sup
k→∞

f
n
(k)
k

(x) = 0

i.e. (I think because they converge)

lim
k→∞

f
n
(k)
k

(x) = 0

Now do the converse. Write En → E as n → ∞ if limχEn = χE a.e. on Rd. More
verbosely, for all x there is some n0 (“eventually”) such that

∀n ≥ n0, x ∈ En ⇐⇒ x ∈ E
If there is some set F of finite measure such that E,En ⊂ F for all n and En → E then
m(En) → m(E). (This is because of the DCT:

∫
χEn →

∫
χE where the dominating

function is χE .)

Claim: If fn → f a.e. and Supp(fn) ⊂ F for all n where m(F ) < ∞ then fn → f in
measure. Fix ε > 0. Look at

En = {x : |f(x)− fn(x)| ≥ ε}
By hypothesis, En ⊂ F and En → ∅ as n→∞. So m(En)→ 0 as n→∞, i.e. fn → f in
measure.

�

8.1. Iterated integrals. When considering integration in R2, we have a problem
of measurability: if S ⊂ [0, 1] is a non-measurable set in R, but it is measurable after
being embedded in R2 because it is null: it is contained in the null set [0, 1] × {0}. So
if f : R2 → R then it is possible for x 7→ f(x, y) not to be measurable when y = 0 but
measurable for y 6= 0.

Theorem 8.2. (Fubini’s theorem) Let f ∈ L1(R2). Then

(1) for a.a. y the function x 7→ f(x, y) is in L1(R); so the function

F (y) =

∫
R
f(x, y) dx

is defined a.a.y.
23
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(2) Defining F (y) as above, F ∈ L1(R) and
∫
R F =

∫
R2 f . That is,∫

R
F (y) dy =

∫ ∫
f(x, y) dx dy

The statement that this is integrable a.a.y means that it is measurable for a.a.y.

Proof. We will say that f is “good” if the conclusions of Fubini’s theorem hold for
f .

(1) If R ⊂ R2 is a rectangle, then χR is good. This is straightforward:
∫
R =

width · height.
(2) If f is a step function (a finite linear combination of characteristic functions of

rectangles), then f is good. This is just because an integral of sums is the sum of
the integrals, etc. (Basically, linear combinations preserve goodness.)

(3) Monotone limits of good functions are good. Suppose {fn} is a sequence of good
functions for n ∈ N and fn ↗ f or fn ↘ f , and f ∈ L1(R2) then we claim that
f is good. We will just do the case fn ↗ f . For all n, a.a.y, x 7→ fn(x, y) is
integrable. Let A be the set of ysuch that x 7→ fn(x, y). (This is the union of
countably many bad sets, one for each n; and A has null complement.) Define

Fn(y) =

{∫
fn(x, y) dx y ∈ A

0 else

We have f1 ≤ f2 ≤ · · · by hypothesis. So for all n, we have

F1(y) ≤ F2(y) ≤ · · ·
Since fn are good, then Fn ∈ L1. Also

∫
R Fn =

∫
R2 fn. So the integrals∫

R Fn are increasing and bounded by the “constant”
∫
R2 f . By the MCT, a.a.y,

limn→∞ Fn(y) exists. That is, Fn ↗ G ∈ L1(R).
For y ∈ B, apply MCT to the functions

x 7→ fn(x, y)

(because
∫
fn(x, y) dx is bounded above by G(y)). So for all y ∈ B these functions

converge a.a.x as n 7→ ∞ to an integrable function (MCT). We know that

fn(x, y) 7→ f(x, y)

So x 7→ f(x, y) is an integrable function of x for all y ∈ B. So (1) holds for f .
To do the second part: ∫

R
G = lim

n→∞

∫
R
Fn

= lim

∫
R2

fn

=

∫
R2

f
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where MCT was invoked in the first and third lines. RecallG(y) = lim
∫
fn(x, y) dx =∫

f(x, y) dx = F (y). So ∫
R
F =

∫
G =

∫
R2f

which satisfies the second condition.

�

9. September 21

9.1. Finishing Fubini. Recall, f is “good” if f ∈ L1 and

• a.a.y ∈ R the function x 7→ f(x, y) is integrable
• F (y) :=

∫
f(x, y) dx is integrable and

∫ ∫
f(x, y) dx dy :=

∫
R F =

∫
R2 f

We showed that χR, step functions, and (a.e.) monotone limits of step are good.

Corollary 9.1. χE is good if E is

• a rectangle,
• a finite union of rectangles (this is a linear combination of characteristic func-

tions, with the intersections subtracted),
• an open set O of finite measure(a countable union of rectangles; there are some
Kn, each a finite union of rectangles, such that χKn ↗ χO)
• a Gδ set G of finite measure (find open sets On with χOn ↘ χG)
• We would like to say that we can get to any measurable set of finite measure. . . Let
E be a measurable set of finite measure. We know that E ⊂ G with G a Gδ set
such that G\E is null. χG = χE a.e. and χG is good. We want to show that χE
is good. But this is not obvious. But once this is proven, we have:
• simple
• If f ∈ L1 and g ≥ 0 then there are simple functions gn with gn ↗ f . So f is

good.
• All measurable functions: if f ∈ L1 write f = f+ − f−.

Proposition 9.2. If f is good and f ′ = f a.e. then f ′ is also good.

Proof. To see that f ′ is good, we need to know: for a.a.y, the two functions

x 7→ f(x, y)

x 7→ f ′(x, y)

are equal a.e. as functions of x. f 6= f ′ on some N ⊂ R2 null. To prove the previous
statement, we need to look at the intersection of N with the line y = b; these cross sections
need to be null a.a. y. This will be done in the following lemma. �
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Lemma 9.3. If N ⊂ R2 is null then a.a. b ∈ R the set

N b = {x : (x, b) ∈ N} ⊂ R
is null.

Proof. We will replace the null set by a slightly fatter null set. We have N ⊂ N̂

where N̂ is a Gδ set where N̂\N is null; i.e. N̂ is null. Apply Fubini to the “good”

function χ
N̂

. So
∫
R2
χ
N̂

= 0 =
∫ ∫

χ
N̂

dx dy. So
∫
χ
N̂

(x, y) dx exists a.a. y i.e. N̂y is

measurable a.a.y. And
∫
m(N̂y) dy = 0. So m(N̂y) = 0 a.a.y. Since N b ⊂ N̂ b for all b and

a subset of a null set is null, the lemma follows. �

Remark 9.4. Fubini’s theorem is not a criterion for integrability of f . Here is such a
criterion, that is often combined with Fubini’s theorem.

Theorem 9.5 (Tonelli’s theorem). Let f : R2 → R be measurable, and suppose the re-
peated integral

∫
R2 |f(x, y)| dx dy exists (i.e. a.a.y x 7→ |f(x, y)| is in L1(R) so G(y) =∫

|f(x, y)| dx exists a.e. and
∫
G <∞).

Then f ∈ L1(R2)

Proof. WLOG f ≥ 0. To show something is integrable, look at the functions that
lie below it, and show that their integrals are bounded above. That is, we must show
that there is an upper bound C such that

∫
g ≤ C for all simple g which have 0 ≤ g ≤ f

everywhere. By Fubini for g ∫
g =

∫ ∫
g(x, y) dx dy

in the sense that
∫
g(x, y) dx exists a.a.y. We have∫ ∫

g(x, y) dx dy ≤
∫ ∫

|f(x, y)| dx dy = C

�

Remark 9.6. This is false without the absolute values: the values might cancel.

9.2. Littlewood’s three principles.

Proposition 9.7. (First principle)

Any measurable set E of finite measure is “almost a finite union of rectangles”; i.e., for
all ε > 0 there is some set K that is a finite union of rectangles, such that m((E\K) ∪
(K\E)) ≤ ε. (Call this the symmetric difference, and notate it EΘK.)

Proof. First approximate from the outside: there is someO ⊃ E open withm(O\E) ≤
ε
2 . Now approximate from the inside: there are some Kn, each a finite union of rectangles,
with Kn ↗ O. Then O\Kn ↘ ∅. So m(O\Kn) → 0 since O has finite measure. So
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m(O\K) ≤ ε
2 for some K. So

EΘK ⊂ (O\E) ∪ (O\K)→ m(EΘK) ≤ ε
�

Proposition 9.8. (Third principle) If fn → f a.e. (fn measurable) and if Supp(fn),
Supp(f) ⊂ F , where F is a set of finite measure then fn converges to f almost uniformly:
that is, for all ε > 0 there is some bad set B ⊂ Rd with m(B) ≤ ε, such that

fn|Rd\B → f |Rd\B
uniformly.

Proof. fn → f in measure (proven last time that a.e. convergence =⇒ convergence
in measure if everything is in a finite-measurable set). So for all k if

En,k = {x : ∃n′ ≥ n : |fn′(x)− f(x)| ≥ 1

k
}

then limn→∞m(En,k) → 0. (x is eventually in none of these sets, a.a.x.) So there are

some nk depending on k such that m(En,k) ≤ 2−kε for n ≥ nk. So on Rd\Enk we have

|fn(x)− f(x)| ≤ 1

k

for all n ≥ nk. Set B =
⋃∞

1 Enk,k. Then m(B) ≤ ε. For all k there is some nk such that

for all x ∈ Rd\B we have |fn(x)− f(x)| ≤ 1
k for n ≥ nk.

�

10. September 23

Theorem 10.1 (Littlewood’s third principle/ Egorov’s theorem). If fn → f a.e. and fn, f
measurable and Supp(fn), Supp(f) ⊂ F where F is some set of finite measure, then for
all ε > 0, there is some B with m(B) ≤ ε such that

fn|Rd\B → f |Rd\B
uniformly as n→∞.

Theorem 10.2 (Littlewood’s second principle / Lusin’s theorem). If f : Rd → R is
measurable, and ε > 0, then there is some B ⊂ Rd with m(B) < ε such that f |Rd\B is

continuous from Rd\B → Rd. (i.e. for all x ∈ Rd\B and xn ∈ Rd\B with xn → x, n→∞
we have f(xn)→ f(x).)

Remark 10.3. Note that this does NOT say that f : Rd → R is continuous at point of
Rd\B. Take

f =

{
1 on Q ⊂ R
0 elsewhere
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Proof. It’s true for f = χ
R; for all ε you can use the rectangle minus its boundary.

It’s true for f = χ
K where K is a finite union of rectangles. It’s true if f is simple. It’s

true for f = χ
E where E is measurable of finite measure. Why? For all ε, there is some

finite union of rectangles K with
m(EΘK) < ε

Then we have χE = χ
K except on a set EΘK = B of measure < ε.

CLAIM: If fn → f a.e., all supported inside of a set F of finite measure, and it then
holds for all fn, then it holds for f . Use Egorov. For all n, there is some Bn with
m(Bn) ≤ 2−n−1ε such that fn|Rd\B continuous. ∀fn|Rn\C continuous on Rn\C where

C = ∪Bn and m(C) ≤ ε
2 . By Egorov, there is some D with m(D) ≤ ε

2 such that fn → f

uniformly on Rd\D. B − C ∪D. On Rd\B we have continuous fn converging uniformly
to f . So f |Rd\B is continuous too. So it holds for all f where Supp(f) has finite measure.

General case: exercise. (Use ε
2n ’s.)

�

Suppose we want to find a measurable subset E ⊂ [0, 1]× [0, 1] with m(E) = 1
2 , such that

for all rectangles R ⊂ [0, 1]2, m(E ∩ R) = 1
2m(R). (So E is very uniformly distributed.)

Sadly, there’s no such set. The first principle tells you that measurable sets are not so far
from a finite union of rectangles. Suppose E exists. Then for any finite union of rectangles
J ⊂ [0, 1]2, m(E ∩ J) = 1

2m(J). Littlewood’s first principle says that there is some finite
union of rectangles K such that m(EΘK) ≤ 0.01. So m(E ∩ K) and m(K) are within
0.02 of each other. That is,

m(E ∩K) ≥ m(K)− 0.01

and m(K) ≥ 0.49. There’s no way that m(E ∩K) = 1
2m(K). (This result holds for all

dimensions, not just 2.)

There’s a version of this that looks like the fundamental theorem of calculus. First some
notation.

Notation 10.4. Note that
∫
E f for E ⊂ Rd measurable means

∫
Rd f ·

χ
E . When d = 1

we use the familiar notation ∫ x

0
f(y) dy =

∫
f · χ[0,x]

Notation 10.5. L1
loc is the set of locally integrable functions: that is, the set of f such

that f is integrable on any bounded measurable set.

Theorem 10.6 (Lebesgue). Let f be locally integrable. Define

F (x) =

∫ x

0
f(y) dy

(if x < 0 this is −
∫ 0
x ). Then F is differentiable a.e.; so F ′(x) is defined a.a.x and F ′(x)

= f(x) a.a.x.
28



Math 114 Peter Kronheimer Lecture 10

Let’s use this to get another contradiction to our hypothetical evenly-distributed set E.
If f = χ

E then define F (x) =
∫ x

0
χ
E . F (x) = 1

2x and F ′(x) = 1
2 on [0, 1]. f = 0 or 1 for

all x, so this contradicts the theorem.

Can you swap the integral and the derivative, in the theorem? If F : Rd → R is continuous
and differentiable a.e., and if the function f = F ′ is locally integrable, then it does not
follow that

∫ x
0 f(y) dy = F (x)− F (0).

Counterexample: Let F be the limit of functions Fn : [0, 1] → [0, 1] where F0(x) = x,
F1(x) is 3

2x on [0, 1
3 ], is 1

2 on [1
3 ,

2
3 ], and then increases linearly to (1, 1) again on [2

3 , 1].
Now iterate this construction: replace every strictly increasing interval with a piecewise
function with three equal pieces, such that the function increases linearly on the first piece,
stays constant on the second piece, and then increases linearly to the old high point on
the last piece. We call this the Cantor-Lebesgue function. F is constant on each interval
contained in [0, 1]\C, so F ′ = 0 on the interiors of all these intervals a.e. So the indefinite
integral of the derivative =

∫
0 = 0, which is not the original function.

Now back to the theorem. It says that a.a.x ∈ R,

lim
h→0

F (x+ h)− F (x)

h
= f(x)

You can rephrase this:

lim
F (bi)− F (ai)

bi − ai
= f(x)

for any sequence of intervals [ai, bi] 3 x, with |bi − ai| → 0. (This is equivalent to it being
differentiable at that point.) Rewrite this with the aim to generalize to more dimensions:∫

[ai,bi]
f

m([ai, bi])
→ f(x)

for any [ai, bi] 3 x with |bi − ai| → 0. This suggests the following d-dimensional version:

Theorem 10.7 (Lebesgue differentiation theorem on Rd). Let f ∈ L1
loc(Rd). Then a.a.x ∈

Rd, the following holds:

lim
m(B)→0

1

m(B)

∫
B
f = f(x)

where the limit is over balls B = {y : |y−x0| < r} containing x. (i.e. for any sequence of

balls Bi 3 x with radius(Bi)→ 0, we have avg(f ;Bi)→ f(x), where avg(f ;B) =
∫
B f∫
B 1

.)

In one dimension, this implies the previous theorem (with the caveat of dealing with open
vs. closed balls). In d dimensions, it’s hard to interpret it as a statement about derivatives
per se, but that’s the spirit.

Apply this to f = χ
E where E is a measurable set. For a.a.x, we find

lim
m(B)→0
B3x

=
m(E ∩B)

m(B)
= χ

E(x) ⊂ {0, 1}
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Again, we get a contradiction to our uniformly distributed set E: if you zoom in on a
particular x, and ask how filled up your balls are, almost everywhere the answer is either
0 or 1.

11. September 26

In the homework: you can integrate f : Rd → C by treating C as R2: a+ bi = (a, b) ∈ R2.
Then the DCT says: for a sequence of integrable functions fn : Rd → C with fn → f a.e.
and dominated by a (real) integrable function f (|fn| ≤ g ∀n) we have

∫
fn →

∫
f . This

is exactly what you’d get if you applied the DCT to each part of C separately.

11.1. Hardy-Littlewood maximal function. Guy plays one baseball game per
week, and records the number of hits per week. This results in a discrete function, which
we can think of as a simple function. What is your average “around” week=n? Choose a
finite interval around n, not necessarily centered around n, and compute. What interval
does he choose to maximize this “average?” We can define a new function: h(x) is the
number of hits in week x, and h∗(x) is the “best” average over intervals containing x. We
will be able to bound the best averages given a small total integral.

Let B = {x : |x− x0| < r}; as we discussed last time, we can define the average

avg(f ;B) =

∫
B f

m(B)

for f ∈ L1
loc.

Definition 11.1. If h : Rd → R with h ≥ 0 locally integrable,

h∗(x) = sup
B3x

avg(h;B)

(This could be either nonnegative, or infinite, as when your function is y = x2.)

Theorem 11.2. If h : Rd → R is nonnegative and integrable, then for any α > 0,

m({x : h∗(X) > α}) ≤ 3d

α
‖h‖L

(3 might not be the best constant. Also note that this really only works for balls, not some
weird ellipse things.)

(So this bounds the number of weeks when his “best average” is > α.)

Corollary 11.3. If hn → 0 as n→∞ in L1 norm, then h∗n → 0 in measure.

To prove the theorem we need

Lemma 11.4. Suppose B1 · · ·BN are balls in Rd and m(
⋃N

1 Bi) = µ. (That is, the balls
may overlap.) Then there is a subcollection of these balls

Bi1 · · ·Bi`
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which are disjoint and

m(
⋃̀
k=1

Bik) ≥ µ

3d

Proof. Be greedy. Let Bi1 be the ball of largest measure. Then remove from the
collection this ball, and all those which intersect it. Let Bi2 be the largest remaining,
and so forth, continuing until there are no balls. The claim is that at least 1

9 of the total
measure is contained in these balls. At step k, the balls meeting any Bik are all contained

in B̃i, which is the ball with the same center and three times the radius. (Dilating a ball
by a factor of 3 multiplies its measure by a factor of 3d.) All of the original balls are

contained in
⋃`
k=1 B̃ik .

µ = m(

N⋃
1

Bi) ≤ m(
⋃̀
1

B̃i`) ≤
∑

m(B̃ik) =
∑̀
k=1

3dm(Bik) = 3dm(
⋃̀
k=1

Bik)

The greedy algorithm isn’t necessarily the best selection to make; you can possibly reduce
the constant 3. �

Proof. Let h be nonnegative and integrable. Fix α > 0 and let

E = {x : h∗(x) > α}
h∗(x) is a supremum, so h∗(x) > α iff there is some B 3 x with avg(h;B) > α. So

E =
⋃
{B : avg(h;B) > α}

This is an open set. Let K ⊂ E be any compact set. Use the open cover of B as above.
Then K ⊂ B1 ∪ · · ·BN , where avg(h;Bi) > α for all i. The lemma says that we can find
a subcollection Bi1 · · ·Bi` which are disjoint, so∑̀

1

m(Bik) = m(∪`1Bik) ≥ 1

3d
m(

N⋃
1

Bi)

So

m(K) ≤ m(∪N1 Bi) ≤ 3d
∑̀
k=1

m(Bik)

Now using the definition of avg, and the fact that it is < α, we have

· · · ≤ 3d
∑̀
k=1

∫
Bik

h

α
=

3d

α

∫
∪Bik

h ≤ 3d

α
‖h‖L1

To summarize, we have

m(K) ≤ 3d

α
‖h‖L1

Since E is open of bounded measure, we can take an increasing set of compact sets K
that eventually approach E, so So

m(E) ≤ 3d

α
‖h‖L1
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�

Theorem 11.5 (Lebesgue differentiation theorem). Let f be locally integrable on Rd. Then
for a.a. x ∈ Rd,

lim
B3x

m(B)→0

avg(f ;B) = f(x)

(The idea is that you can recover the value at x by looking at the average in small balls
around x.)

Proof. This holds for all x if f is continuous. Given x, you can pick δ such that on
Bδ 3 x the value of f(x) does not deviate from f(x) by more than ε. Furthermore, you
can approximate any integrable f on Rd in the L1 norm by continuous functions. That is,

Claim 11.6. There are continuous gn ∈ L1 such that∫
|f − gn| → 0

Proof. You can approximate f by simple functions, fn → f a.e., where fn are dom-
inated by |f |. This ensures that

∫
|f − fn| → 0. Simple functions are

∑
aiχEi , so we will

be done if we can approximate χEi in the L1 norm by continuous functions. We don’t
know how to do this, but we can approximate them by χK where K is a finite union of
rectangles. So, it’s enough to do this for a finite union of rectangles, or indeed just a single
rectangle.

Given ε, find some fε such that
∫
|fε − χR| → 0 as ε→ 0. For example, choose f to be 0

outside the rectangle, a steep linear function on an ε-wide border of R, and 1 inside the
rest of R.

�

Rest of proof: to be continued !

12. September 28

Theorem 12.1 (Lebesgue Differentiation). Let f be locally integrable on Rd. Then a.a.x
in Rd,

lim
B3x

m(B)→0

avg(f ;B) = f(x)

Proof. The statement is “local,” so we may replace f with a function that is zero
outside some bounded set. The proof is by contradiction, so assume the conclusion fails
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for a set of nonzero measure. This could be either because the limit is something else, or
because the limit doesn’t exist. That is, either

• lim sup B3x
m(B)→0

avg(f ;B) > f(x)

• lim inf B3x
m(B)→0

avg(f ;B) < f(x)

(If both are false, then the statement is true.) Without loss of generality assume the
first possibility holds on a set E of positive measure. That is, if Ek is the set where
lim sup avg(f ;B) > f(x) + 1

k then E = ∪Ek, so one of these Ek has positive measure as
well. On some set E′ of positive measure, lim sup avg(f ;B) > f(x) + α, where α is some
fixed quantity > 0.

We can find continuous functions gn → f , where convergence is both in the L1 norm,
and a.e. (Convergence in norm implies convergence in measure; convergence in measure
implies that a subsequence converges a.e.) The theorem holds for each gn.

So lim sup avg(f − gn;B) > f(x)− gn(x) + α. Define hn = |f − gn|.
lim sup avg(hn;B) ≥ lim sup |avg(f − gn;B)|

≥ lim sup avg(f − gn;B)

> f(x)− gn(x) + α

≥ α− |f(x)− gn(x)|
= α− hn(x)

Recall h∗n(x) = supB3x avg(hn;B) ≥ lim sup B3x
m(B)→0

avg(hn;B) ≥ α−hn(x). So for x ∈ E′

(the set of positive measure),
h∗n(x) + hn(x) ≥ α

So hn → 0 in the L1 norm, which implies that hn → 0 in measure. Using the corollary
to the Hardy-Littlewood thing, we know that this implies h∗n(n) → 0 in measure. This
contradicts the previous statement that h∗n(x) + hn(x) ≥ α. �

Why did we do this in the first place? The definition of the Hardy-Littlewood maximal
function used open balls. But you can use closed balls instead. The only difference is that
there are some open balls that don’t contain x, but the closure does. But by continuity
of measure, the average on the closed ball can be approximated by the average on open
balls that are slightly larger than it. The average of f : R→ R on [x, x+ h] is

F (x+ h)− F (x)

h

Corollary 12.2. If f : R→ R is in L1
loc and F is its indefinite integral, then F ′(x) exists

and equals f(x) a.a.x ∈ R.

We could also apply this to f = χE for E ⊂ Rd.
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Corollary 12.3 (Lebesgue density theorem). For a.a.x ∈ E,

lim
B3x

m(B)→0

m(E ∩B)

m(B)
→ 1

That is, the “density” of E at x is 1, and this fails on the “boundary.”

Theorem 12.4. If f ∈ L1
loc(Rd), then a.a.x0 ∈ Rd,

lim
B3x0

m(B)→0

avg(|f − f(x0)|, B) = 0

(If you took away the absolute values, this would be the same as before.) To clarify, this
says:

lim
B3x0

∫
B |f(x)− f(x0)| dx

m(B)
= 0

For any r ∈ Q look at h(r) = |f − r| and apply the result of the previous theorem: for all
x ∈ Gr, where (Rd\Gr) is null,

(4) lim avg(|f − r|, B) = |f(x0)− r|
Let G =

⋂
r∈QGr, so Rd\G is still null (the union of countably many null sets is null). (4)

holds for all r ∈ Q if x0 ∈ G. Given ε > 0 and x0 ∈ G we can find r ∈ Q with

|f(x0)− r| ≤ ε

2
.

Given a sequence of balls Bk with m(Bk)→ 0 x0 3 Bk we have avg(f−r;Bk) is eventually
< ε

2 for k ≥ k0. So avg(|f − f(x0)|;B) ≤ ε for k ≥ k0.

Definition 12.5. x0 ∈ Rd is a Lebesgue point of the function f if

lim
m(B)→0
B3x0

avg(|f(x)− f(x0)|;x ∈ B) = 0

So the theorem says that almost every point is a Lebesgue point. (Sometimes this is
defined without the absolute value signs.)

Week from Friday: Kronheimer will not be in class.

13. September 30

13.1. Convolution.

(f ∗ g)(x) =

∫
f(x− y)g(y) dy

For f, g ∈ L1(R) (or L1(Rd)),
y 7→ f(x− y)g(y)
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is an L1 function at y for a.a.x. (This was in the HW, and it comes out of Fubini’s
theorem.)

• f ∗ g ∈ L1

• ‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1

• If |f | ≤ C everywhere, then |f ∗ g| ≤ C‖g‖L1 for all x. (This is because the
integral is bounded by |g|.)

Define Z1 = 1
2
χ

[−1,1]. Similarly, define Zε = 1
2ε
χ

[−ε,ε]; we can write Zε = 1
εZ1(xε ). Look at

f ∗ Zε for f ∈ L1. Then

(f ∗ Zε)(x) =

∫
f(x− y)Zε(y) dy

Looking at where things are nonzero,∫
f(x+ y)Zε(−y) dy =

1

2ε

∫ ε

−ε
f(x+ y) dy

= avg(f ; [x− ε, x+ ε])→ f(x) as ε→ 0

if x is a Lebesgue point. This proves

Proposition 13.1. f ∗ Zε → f a.e. for all ε > 0

Remark 13.2. There is no g ∈ L1 such that f ∗ g = f a.e. for all f .

It is also true that f ∗ Zε → f in the L1 norm as ε→ 0.

Proof. It’s true if f = χ
[a,b]. The convolution looks like the original f , with the

interval [a − ε, a + ε] turned into an increasing line, and there is a downward line from
[b− ε, b+ ε]. So you turn a box into a trapezoid; think about Zε moving, and getting an
average on that ε-interval as you go along. It’s also true for step functions.

Given f ∈ L1 and η > 0, we can find f and a step function with

‖f − g‖L1 ≤
η

3
Find ε0 so that for all δ ≤ δ0

‖g − g ∗ Zε‖L1 ≤
η

3
‖f ∗ Zε − g ∗ Zε‖L1 = ‖(f − g) ∗ Zε‖

≤ ‖f − g‖‖Zε‖

= ‖f − g‖ ≤ η

3
�

Note that for any f ∈ L1, f ∗ Zε is continuous. F (x) =
∫ x

0 f(y) dy is continuous in x.
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13.2. Integration by parts.

Terminology 13.3. We say that F is differentiable in the L1 sense (with derivative f)
if f ∈ L1

loc and

F (b)− F (a) =

∫ b

a
f

for all a, b.

This implies that F is differentiable a.e. and has a.e. derivative f . (But the converse of
this implication is FALSE!)

Theorem 13.4. Suppose F,G are differentiable in the L1 sense, with derivative f, g ∈ L1
loc.

Then ∫ b

a
fG = −

∫
Fg + [FG]ba

Proof. Use Fubini. (Problem set.) �

Recall, from the first lecture, that we want “measure” for E ⊂ Rd to be invariant under
rigid motions. More generally, integrals are invariant under rigid motions.

Theorem 13.5. For A : Rd → Rd linear, invertible, and b ∈ Rd and f ∈ L1(Rd)∫
f(Ax+ b) dx =

1

|det(A)|

∫
f(x) dx

(A rigid motion is a transformation of determinant 1.)

Proof. Section/ course notes. �

13.3. Fourier transforms. For now, L1(Rd) denotes the integrable functions f :
Rd → C. Ditto, L1(Rd) denotes equivalence classes of such functions. Given f ∈ L1(R),
the Fourier transform is a new function

f̂(ξ) =

∫
e−2πiξxf(x) dx

We have |f | = |e−2πiξxf(x)|, and the integrand, as a function of x, is in L1.

Example 13.6. Take f = χ
[−1,1]. Then

f̂(ξ) =

∫ 1

−1
e−2πiξx dx = [

e−2πiξx

−2πiξ
]1−1

=
sin(2πξ)

πξ
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Take Z1 = 1
2
χ

[−1,1]. Then X̂1 = sin(2πξ)
2πξ (which is 1 at ξ = 0, by L’Hospital’s rule).

f̂(0) =

∫
R
f

In dim d f ∈ L1(Rd) and ξ ∈ Rd

f̂(ξ) =

∫
Rd
e−2πxξf(x) dx

Note that the Fourier transform is not necessarily integrable; for example, sin(2πξ)
πξ seen

previously. Basically, it doesn’t decay fast enough; the decay is of the order 1
|ξ| . Take the

absolute value, and try to integrate; it diverges.

Facts 13.7.

• For a constant c ∈ R, f(x+ c) has Fourier transform e2πicξ f̂(ξ). (Basically, make
a linear substitution x 7→ x− c in

∫
e−2πixξf(x+ c) dx.)

• The Fourier transform of f(Ax) is 1
|A| f̂(A−1ξ) (f ∈ L1(R)). Or, in more dimen-

sions, you could interpret A as a matrix. You figure it out.

• For all ξ, |f̂(ξ)| ≤ ‖f‖L1 , so f̂ is a bounded function of ξ.

• f̂ is continuous. (This is an application of DCT: if ξn → ξ as n → ∞, then∫
e−2πixξf(x) dx→

∫
e−2πixξf(x) dx, because it converges pointwise.)

Lemma 13.8 (Riemann-Lebesgue lemma). For f ∈ L1, f̂(ξ)→ 0 as |ξ| → ∞.

Proof. First, it’s true for f = χ
[a,b]: use the earlier calculation for χ[−1,1] and trans-

late/dilate. So, it’s true for step functions. Given f ∈ L1 and η > 0 first approximate f
by a step function g, so that ‖f − g‖L1 ≤ η

3 . ĝ(ξ) → 0 as |ξ| → ∞ (R-L lemma for step
functions), so there exists some R so that |ĝ(ξ)| ≤ η

3 for |ξ| ≥ R. For |ξ| > R,

|f̂(ξ)− ĝ(ξ)| ≤ ‖(f − g)‖L1 ≤
η

3

So |f̂(ξ)| ≤ 2η
3 for |ξ| > R. �

No class next Friday. Midterm 2 weeks from Monday.

14. October 3

Proposition 14.1.

(1) Suppose F ∈ L1(R) and is differentiable in the L1 sense with derivative (a.e.)

f(x) = d
dxF (x) ∈ L1. Then the Fourier transform of f (i.e. d̂

dxF ) is 2πiξF̂ (ξ).

(2) Suppose f ∈ L1 and xf(x) ∈ L1. Then f̂(ξ) is differentiable and d
dξ f̂(ξ) =

̂−2πixf(x).
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Proof. limR→∞ F (R) exists, because it’s limR→∞(F (R) − F (0)) = limR→∞
∫ R

0 f =∫∞
0 f . Ditto for limF (−R) : F ∈ L1 =⇒ limR→±∞ F (R) = 0.

f̂(ξ) =

∫
e−2πixξf(x)dx

= lim
R→∞

∫ R

−R
e−2πixξf(x)dx

parts
= lim

R→∞
−
∫ R

−R
(−2πiξ)e−2πixξF (x)dx+ [e−2πixξF (x)]R−R

− lim
R→∞

2πiξ

∫ R

−R
e−2πixξF (x)dx = 2πiξF̂ (xξ)

Second one:

d

dξ
f̂(ξ) = lim

h→0

1

h

(∫
(e−2πi(ξ+h)x − e−2πiξx)f(x)

)
dx

= lim
h→0

∫
e−2πixξ(

e−2πixh

xh
− 1)f(x)

=

∫
e−2πixξ(−2πi)xf(x)dx

Think about θ = xh and e−2πiθ−1
θ → −2πi as θ → 0. (Take the ratio of the arc length

to the straight line between points on a circle; this approaches 1.) Use the DCT with
2π|xf(x)| as the dominating function.

SO all of this is the Fourier transform of −2πixf(x) at ξ. �

We’re relating the integrability of xf(x) with the summability of
∑∞
−∞ n|an| where an =∫ n+1

n |f |.

14.1. Schwartz Space.

Definition 14.2. f is rapidly decreasing if for all k ≥ 0, |xkf(x)| → 0 as x 7→ ±∞ (i.e.
it beats polynomial decay in general).

Example 14.3. The Gaussian: G(x) = e−πx
2

Define S(R) to be the Schwartz space: the space of infinitely differentiable functions
f : R→ C such that f and ( d

dx)nf(x) are rapidly decreasing.

Proposition 14.4. The following are equivalent:

(1) f ∈ S(R)

(2) xkf (n)(x)→ 0 as x→ ±∞, for all k, n ≥ 0
(3) ( d

dx)n(xkf(x))→ 0 (the equivalence of this and the previous just comes from how
you differentiate things)
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(4) f is C∞ and xkf (n)(x) ∈ L1 for all n, k
(5) f is C∞ and ( d

dx)n(xkf(x)) ∈ L1 for all n, k

Proof. (2) ⇐⇒ (3) by Leibniz rule.

(4) ⇐⇒ (5) also by Leibniz.

(2) ⇐⇒ (4). As an example, if f, f ′ ∈ L1 then f(x) → 0 as x → ∞. The indefinite
integral of an L1 function approaches a constant as x→∞. Now do this a bunch of times;
it gets (2) → (4). For example, if |x2f(x)| → 0 as x → ±∞ and f is continuous, then
f ∈ L1, because 1

x2
is integrable. �

The equivalence of (4) and (5), plus the first of the two propositions, gives f ∈ S(R)

implies f̂ ∈ S(R). The key example is the Gaussian. The normalization G(x) = e−πx
2

is
set up so that the integral is 1.

Proof.

(

∫
G)2 =

∫
G(x)G(y)dxdy

=

∫
e−π(x2+y2)dxdy

=

∫
e−πr

2
rdrdθ

Now we can do this by substituting s = r2 and rdr = 1
2ds. �

To calculate the FT of G note that d
dxG(x) = −2πxG(x). Now taking the FT we have

2πiξĜ(ξ) = 1
i
d
dξ Ĝ(ξ).

d

dξ
Ĝ(ξ) = −2πiξĜ(ξ)

is not hard to solve:
Ĝ(ξ) = ce−πξ

2

for some c. But we do know that Ĝ(0) =
∫
G = 1, so the constant is 1. So

Ĝ = G

From last time, χ[− 1
2
, 1
2

] has FT sin(πξ)
πξ .

Now consider the tent function x+ 1 on [−1, 0] and 1− x on [0, 1]; alternatively,

H(x) =

{
1− |x| if |x| < 1

0 else
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We could differentiate, etc. Or regard it as χ[− 1
2
, 1
2

] ∗χ[− 1
2
, 1
2

] (just think of this as averages

on small intervals).

The FT takes convolutions to products. So

Ĥ(ξ) =

(
sinπξ

πξ

)2

This function is called the Féjer kernel. Let F1 = ( sinπx
πx )2, and in general, FR(x) =

R( sinπRx
πRx )2. (The scaling is set up so that

∫
FR =

∫
F1); so it takes the value R at 0 and

vanishes at n
R .

14.2. Inverting the Fourier transform.

Definition 14.5. For F ∈ L1(R) define the inverse Fourier transform of F to be
^
f (ξ) =

∫
e2πixξf(x) dx

Is this actually an inverse? We’ve already seen that if f ∈ L1, that does not imply that

f̂ ∈ L1. So we can’t always compute/ define (f̂)∨. Also
^
f is continuous if f ∈ L1. So we

can’t expect to recover all f directly. Eventually, we will prove:

Theorem 14.6. If f ∈ L1 and continuous and f̂ ∈ L1, then f̂∨ = f .

Note: if you have a function that looks like
∫
K(x, y)f(x) dx, then K(x, y) is referred to

as the kernel.

15. October 5

15.1. Pointwise convergence in the inversion of the Fourier transformation.
Motivation: Suppose we have

∑∞
−∞ an with |an| → 0 as |n| → ∞. Absolute convergence

is if
∑∞
−∞ |an| <∞. Convergence as a series is if sN =

∑N
−N an → a limit as N →∞.

Definition 15.1. A series is Cesaro summable if when we define

σn =
1

N

N∑
1

sn

then σN → a limit as N → ∞. This is basically taking the average value over a large
range.

This is even more susceptible to rearrangements of terms. Absolute convergence implies
convergence as a series implies Cesaro summability.

Example 15.2. Let an = (−1)n. Then sn is 1 or −1 (n even or odd). Then this is Cesaro
summable, because

∑
σn =

∑
(−1)n 1

n and the alternating harmonic function converges.
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These relate to integrability. Absolute convergence is like ordinary integrability:
∫
R |f | <

∞. Or, we could take sR =
∫ R
−R f and ask whether sR → a limit as R→∞. Or, define

σR =

∫ R

0
sr dr

and ask if σR converges to a limit as R is large. For example, the sawtooth function is
integrable in this last sense. Write

sR =

∫
F · χ

[−R,R]

σR =
1

R

∫
F ·HR

where

HR(x) =
1

r

∫ R

0

χ
[−r,r](x) dr =

{
1− |x|R if |x| < R

0 else

is the tent function.

The same implications hold as in the sum case: integrability implies sr converge implies
σR converge.

If F ∈ L1(R) then σR →
∫
F as R→∞, by the DCT.

15.2. Fourier inversion. Start with f ∈ L1(R). Construct the Fourier transform

f̂(ξ) =

∫
e−2πixξf(x)dx

But this might not be in L1. We want

f(x) =

∫
e2πixξ f̂(ξ) dx

but this might not exist. Apply the same strategies as before. Define

sR(f)(x) =

∫ R

−R
e2πixξ f̂(ξ) dx

Question: Does sR(f) → f as R → ∞ maybe a.e.? NO. You can find f such that this
happens nowhere. But we can define the Cesaro mean:

σR(f)(x) =

∫
R
e2πixξ f̂(x)HR(x) dx

This is the average of sr(x) for 0 ≤ r ≤ R.

Theorem 15.3. For f ∈ L1(R) and any point x0 in the Lebesgue set of f (i.e. for a.a.x0)
these Cesaro means converge to the correct value:

σR(f)(x0)→ f(x0) as R→∞

Corollary 15.4.
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(1) f can be recovered from its Fourier transform; i.e. if f̂ = 0 then f(x) = 0 a.e.

(2) If f ∈ L1(R) and f̂ ∈ L1(R) then we can define the inverse Fourier transform as
last time, and it’s equal to f(x).

Remark 15.5. f̂∨ is automatically a continuous function. So in order for this to work,
the starting function must be a.e. equal to a continuous function. So we can restate this:

if f ∈ L1 and is continuous, and f̂ ∈ L1, then f̂∨ = f everywhere.

Recall that H1 has Fourier transform

F1(x) =

(
sin(πx)

πx

)2

and HR has Fourier transform

FR(x) = R

(
sin(πRx)

πRx

)2

σR(f)(x0) =

∫
R

∫
e2πix0ξe−2πiyξf(y)HR(ξ) dy dξ

But |integrand| = |HR(ξ)| · |f(y)| ∈ L1(R2) and it’s absolutely integrable. So we can
apply Fubini:

· · · =
∫ ∫

e2πix0ξe−2πiyξf(y)HR(ξ) dξ dy

=

∫ (∫
e2πiξ(x−y)HR(ξ) dξ

)
f(y) dy

=

∫
ĤRf(y) dy

=

∫
FR(y − x0)f(y) dy

= FR(x0 − y)f(y) dy = (FR ∗ f)(x0)

So the theorem says

Corollary 15.6. (FR ∗ f)→ f at all Lebesgue points of f .

This should remind us of Zε ∗ f → f at Lebesgue points of f as ε→ 0, where ε is playing
the role of 1

R .

We want general conditions on the family of functions Kδ(x) to ensure that

Kδ ∗ f → f

as f → 0 at all Lebesgue points of f . Unneeded assumption: assume that Kδ is obtained
by scaling.

Kδ(x) =
1

δ
K1(

x

δ
)

We also want
∫
K1 = 1 (and K1 ∈ L1). The scaling is set up so that

∫
Kδ = 1.

Remark 15.7.
∫
F1 = 1, which is not quite obvious. (Later.)
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Look at

|(Kδ ∗ f)(x0)− f(x0)| = |
∫
Kδ(y)(f(x0 − y)− f(x0)) dy|

≤
∫
|Kδ(y)| · |f(x0 − y)− f(x0)| dy

We seek conditions on K1 such that

(5)

∫
|Kδ(y)| · |f(x0 − y)− f(x0)| dy → 0

as δ → 0.

Lemma 15.8. (5) holds if x0 is a Lebesgue point of f provided K1 satisfies

|K1| ≤
∞∑
k=1

akZrk

where ak ≥ 0 and
∑
|ak| <∞ and rk are increasing as k increases.

Recall Z1 = 1
2
χ

[−1,1] and Zr1 = 1
2r1
χ

[−1,1] so 1
2

∑∞
1

ak
rk

is a pyramidal step function where

the step gaps are 1
2
a1
r1
, 1

2
a2
r2

. Since
∑
ak <∞ we have

∑
akZrk ∈ L1 by MCT. In (5)

K1 ≤
∞∑
1

akZrk(y)

so

LHS ≤
∫
|f(x0 − y)− f(x0)| · (

∞∑
1

akZδrk) dy

=

∞∑
k=1

ak

∫
|f(x0 − y)− f(x0)| · Zδrk(y) dy

=
∞∑
1

ak · A(δrk)

where A(r) is the average value of |f(x0 − y) − f(x0)| for y ∈ [−r, r]. (An integrable
function times something bounded is an integrable function. So by the MCT we can
interchange the two things. )

Next time we will finish the proof by showing that∑
akA(δrk)→ 0

as δ → 0.
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16. October 12

We had an L1 function f : R → C, and x0 was a Lebesgue point. We had defined the
averages:

A(r) =
1

2r

∫ x0+r

x0−r
|f(x)− f(x0)| dx

We were looking at expressions of the form

α(δ) =
∞∑
k=1

akA(δrk)

where
∑
|ak| <∞ and rk increasing.

Lemma 16.1. α(δ)→ 0 as δ → 0

Proof. A(r) is continuous on r > 0 (indefinite integral is a continuous function of
the endpoints). Also A(r) → 0 as r → 0 (this is a corollary of being a Lebesgue point).
As r → ∞, A(r) → |f(x0)| (you’re taking the average value on a shrinking set, so the
error is decreasing). So A(r) extends to a continuous function on [0,∞), with A(0) = 0
and A(r) ≤ M (it approaches |f(x0)|, and you should think of f → 0 as r → ∞ because
it is integrable).

So the sum ∑
akA(δrk)

as a function of δ, is uniformly convergent, and the kth term is ≤ akM for all δ. So it
defines a continuous function on [0,∞) at δ nd is zero at δ = 0. That is,

lim
δ→0

∑
akA(δrk) = 0

Recall where this came from. If K1 is a function which satisfies K1 ≤
∑
akZrk (where∑

|ak| <∞ and the rk are increasing), and

Kδ(x) =
1

δ
K1(

x

δ
)

then ∫
|f(x0 − u)− f(x0)||Kδ(y)| dy → 0 as δ → 0

K1 lies under a summable simple function, and the further Kδ get increasingly spiky, and
go to zero on most of the real line. �

Proposition 16.2. If Kδ = 1
δK1(xδ ) and K1 satisfies |K1| ≤ J where J is bounded,

integrable, and a decreasing function of |x| then the same conclusion holds:∫
|f(x0 − u)− f(x0)||Kδ(y)| dy → 0 as δ → 0

The idea is that any such J is ≤
∑
akZrk for suitable summable coefficients ak and

increasing rk. Why? If you make the original step functions by dividing up the real line
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into 0 < r1 < r2 < · · · , use the same divisions ri but make the boxes just as large as
necessary for J to fit inside. (The difference between this step function and the original
ones will go to zero.) Since

∫
J < ∞ then

∑
|ak| < ∞; this is equivalent to saying that

the box function has finite integral, equivalently the ak are summable.

Corollary 16.3. If K1 satisfies these hypotheses, and
∫
K1 = 1, then (f ∗ Kδ)(x0) →

f(x0) for all Lebesgue points x0. (The
∫
K1 = 1 hypothesis is to ensure that you’re taking

properly normalized averages.)

Corollary 16.4. For the Fejer kernel FR, assume
∫
F1 = 1; then we have

f ∗ FR → f

as R→∞ at Lebesgue points.

Recall

F1 =

(
sinπx

πx

)2

≤

{
1

(πx)2
if x ≥ 1

constant if x ≤ 1

Hence σR(f)→ f a.e. (at Lebesgue points)

σR =

∫
e2πixξ f̂(ξ)HR dξ

where HR was the tent function with support [−R,R] and apex 1. Convergence happens,
in particular, at all points of continuity of f :

σk(f)(x0)→ f(x0)

What’s so great about HR? We could look instead at

γR(f)(x)

∫
e2πixξ f̂(ξ) e−π(x/R)2︸ ︷︷ ︸

G(x/R)

dξ

We could have done the same thing for these: instead of FR (the Fourier transform of the
tent), use GR, the transform of the Gaussian. Also, we want to scale the Gaussian:

GR(x) = R ·G1(Rx)

γR(f) = f ∗GR

(To see that this expression converges, recall that f̂(ξ) is bounded, so you can integrate
on [−R,R].) Our general criterion about ≤ J tells us

f ∗GR → f

at Lebesgue points. What’s important is the shape of the tent-function or its replacement:
it has to be integrable, etc.

Earlier, we compared ∫
f(x0 − y)FR(y) dy → f(x0)∫

(f(x0 − y)− f(x0))FR(y) dy
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so why can you move f(x0) inside? FR has some integral. . . Suppose the first thing con-
verged to mf(x0) instead. If m 6= 1 we can prove

σR(f)→ mf

But then you could take the inverse Fourier transform, and this m would crop up again!

(f̂)∨ = mf . We know that Ĝ = G = G∨, so there’s no magic constant m.

Remark 16.5. We’ve only talked about the one-dimensional case for Fourier inversion.
But, replacing multiplication by dot product, we can do this in d dimensions:

f̂(ξ) =

∫
Rd
e−2πiξ·xf(x) dx

Define

H1(ξ) =

{
1− |ξ| if |ξ| ≤ 1

0 else

Look at Cesaro means:

σR(f) =

∫
e2πix·ξ f̂(ξ)HR(ξ) dξ

Does σR(f) → f a.e.? This is not guaranteed if d ≥ 3. Look at Ĥ: this is the Fejer
kernel in d = 1: what was important is that it was integrable (there was an 1

x2
in the

denominator). It’s also in L1 for d = 2, but for d = 3 it doesn’t decay fast enough: Ĥ /∈ L1.
So we don’t have an integrable J dominating the Fejer kernel. In fact, the theorem is false
for d ≥ 3.

If you have f = χE , and ask whether σR(f) → f on E (i.e. you’re asking whether it
→ 1). You could have a problem at points when the normals all focus inwards. In higher
dimensions, these oscillate wildly as R increases. So the tent function doesn’t work. . . but
the Gaussian does.

γR(f)(x)→ f(x)

does converge at Lebesgue points.

γR(f) =

∫
e2πix·ξ f̂(ξ) · e−π|ξ/R|2 dξ = f ∗GR

where GR = RG(Rx). This works because GR is integrable.

17. October 17

Theorem 17.1. Let f : R → C be in L1 and x− ∈ R a Lebesgue point, and Kδ a family
of functions δ ∈ (0, 1] on δ = δ1 · · · δ2, · · · with δk → 0 then

(f ∗Kδ)(x0)→ f(x0)

provided
∫
Kδ = 1 for all δ, there exists J such that

|Kδ(x)| ≤ 1

δ
J(
x

δ
)

for all x, δ where J is integrable, bounded (a consequence of the other conditions since the
maximum is at zero), and a decreasing function of |x|.
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We can also do this in d dimensions: f : Rd → C, and just change the condition on J to

|Kδ(x)| ≤ 1

δd
J(
x

δ
)

For example, take J = min(A, |x|−d−0.001) (i.e. it’s cut off so as to avoid the asymptote).
Instead of Kδ = 1

δK1(xδ ) we have

Kδ(x) ≤ A/δd

or in the example

Kδ(x) ≤ C

δd
|x
δ
|−(d+0.001)

(Last time we were assuming that the boundedness was in Kδ, but it just needs to be
bounded above by some J that satisfies the conditions, as above.)

17.1. Fourier series. Unless otherwise stated, “periodic” means that f satisfies

f(x) = f(x+ 1)

for all x. Equivalently, you could think of f : R/Z → C or R. Write T = R/Z. Write
L1(T) for the set of measurable functions f which are periodic with∫ 1

0
|f | <∞

Similarly to the real case, we have an L1-norm

‖f‖L1(T) =

∫ 1

0
|f |

Now do Fourier analysis. e2πinx is periodic.

Definition 17.2. Define the Fourier coefficients of f ∈ L1(T) to be

f̂(n) =

∫ 1

0
f(x)e−2πinx dx

for n ∈ Z.

The idea is to think of f(x) as being recovered from
∑∞
−∞ f̂(n)e2πinx. If we can write

f(x) =
∑∞
−∞ ane

2πinx where the sum is absolutely convergent, then the coefficients an
have to be given by that formula:

f̂(m) =

∫ n

0
(
∑

ane
2πinx)e−2πimx dx

By the DCT we can interchange the sum with the integral:

f̂(m) =
∞∑

n=−∞

∫ 1

0
an(e2πi(n−m)) dx

=
∑
n

anδn=m = am
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where δn=m =

{
1 n = m

0 else
.

Proposition 17.3 (Properties of f̂(n)).

(1) |f̂(n)| ≤ ‖f‖L1(T)

(2) f̂(n) → 0 as n → ±∞ (This is the Riemann-Lebesgue lemma for the Fourier
series world; you obtain it by direct computation in the step function case, and
then take limits.)

(3) Suppose F is periodic and differentiable in the L1 sense with derivative f (i.e. F

is an indefinite integral F (x) =
∫ x

0 f + C where f ∈ L1(T) and
∫ 1

0 f = 0). Then

f̂(n) = 2πinF̂ (n). f̂(0) =
∫ 1

0 f = 0.

F̂ (n) =

∫ 1

0
F (x)e−2πinx dx

= −
∫ 1

0
f(x)

e−2πinx

−2πin
dx+

[
F (x)e−2πinx

]1
0

=
1

2πin
f̂(n)

So if a function has a derivative in the L1 sense, then this means it decays faster.

F̂ (n) =
1

2πin
f̂(n)

If F is k times continuously differentiable, then

nk|F̂ (n)| → 0

as n→∞. In particular, this ensures that the Fourier series is summable.

We can also think of L1(T) as containing functions f ∈ L1 that are supported in [0, 1].

17.2. Square wave.

f =

{
1 [−1

4 ,
1
4 ]

−1 [1
4 ,

3
4 ]

f̂(n) =

{
0 n even

2(−1)
n−1
2

nπ n odd

Taking the partial sums, you get a bumpy thing where the straight y = 1 region should
be, etc. As you add more terms, the height of the bumps stays the same, but they get
more frequent.

17.3. Triangle wave. This is the indefinite integral of the square wave. In the
Fourier approximation, the corners are slightly rounded. So the Fourier coefficients are
the indefinite integral of the previous ones, and so they decay as 1

cn2 .
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17.4. Cesaro sums. Define

(snf) =
n∑

−m=−n
f̂(m)e2πimx

and the Cesaro means:

(σnf) =
1

n
(s0f + · · · sn−1f)

Theorem 17.4. If f ∈ L1(T) and x0 is a Lebesgue point of f then

(σnf)(x0)→ f(x0)

as n→∞.

This is easier with the hypothesis that f is continuous. Very hard:

Theorem 17.5. If f is continuous and periodic, then snf → f a.e. as n→∞.

Corollary 17.6. If x0 is a Lebesgue point of f , and (snf)(x0) → c as n → ∞ (i.e. if
the Fourier series does converge) then c = f(x0) (i.e. then the Fourier series converges to
the right thing).

We know that snf(x0) → c implies σnf(x0) → f(x0) (i.e. convergence of partial sums
implies the convergence of the Cesaro means to the same limit).

(snf)(x) =
n∑

m=−n

(∫ 1

0
f(y)e−2πimy dy

)
e2πimx

=

∫ 1

0

(
n∑
−n

e2πim(x−y)

)
︸ ︷︷ ︸

Dn(x−y)

f(y) dy

= (Dn ∗T f)(x)

where (g ∗T f)(x)) =
∫ 1

0 g(x− y)f(y) dy. By Fubini’s theorem, this might not exist for all
x, but it exists for a.a.x.

Dn(y) =

n∑
−n

e2πimy =
sin(π(2n+ 1)y)

sin(πy)

This is the Dirichlet kernel.

σnf =
1

n
(s0f + · · ·+ sm−1f)

=
1

n
(D0 + · · ·+Dn−1) ∗ f

= Fn ∗ f
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where Fn is the Fejer kernel

Fn =
1

n

n−1∑
0

sin(π(2m+ 1)y)

sin(πy)
=

1

n

(
sin(πny)

sin(πy)

)2

Proving the theorem comes down to a statement about convolutions:

(Fn ∗ f)(x0)→ f(x0)

if x0 is Lebesgue point. The Fejer kernel is periodic.
∫ 1

0 Fn = 1 because it is the average
of Dn’s, and those integrate to 1 (look at definition). For example take x0 = 0. We claim
that ∫ 1

2

− 1
2

Fn(y)f(y) dy → f(0)

as n→∞. So we can forget about everything outside [−1
2 ,

1
2 ] and we can instead consider

F̃n = χ
[− 1

2
, 1
2

]Fn

f̃n = χ
[− 1

2
, 1
2

]fn

So now the previous claim is ∫
R
F̃n(y)f̃(y) dy → f(0)

This follows from today’s first theorem. The parameter that was previously δ → 0 is now
n→∞; set δ = 1

n and we have an inequality

|F̃n(x)| ≤ 1

δ
J(
x

δ
)

We could define

J(x) =

{
A |x| ≤ 1

A|x|−2 |x| ≥ 1

so
∫
R J <∞. The difference between this Fejer kernel and the old one is having sinπy in

the denominator, instead of πy.

18. October 19

We have seen for f ∈ L1(T) and (snf) =
∑n
−n f̂(m)e2πimx, σnf = 1

n

∑n−1
0 snf that

σn → f a.e.

Theorem 18.1 (Dini’s Criterion). Let f ∈ L1(T) and x0 ∈ R. Suppose that

f(x)− f(x0)

x− x0

is an integrable function of x on [x0 − 1
2 , x0 + 1

2 ]. Then

(snf)(x0)→ f(x0)

as n→∞.

Remark 18.2.
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• It’s enough to test integrability on [x0 − δ, x0 + δ]
• The hypothesis holds if f is differentiable at x0 (the quotient is bounded in a

neighborhood of x0 because the quotient is convergin to f ′(x0). Or , if f is
continuous at x0 and the left and right derivatives exist.)
• If f is Hölder continuous at x0 with exponent α ∈ (0, 1). What?

Definition 18.3. A function is Hölder continuous at x0 with exponent α if

|f(x)− f(x0)| ≤ C · |x− x0|α

for x ∈ [x0 − δ, x0 + δ].

(For example, f(x) =
√
|x| with any exponent α ≤ 1

2 .) Dini’s criterion is:

C · |x− x0|α

|x− x0|
= C · |x− x0|−1+α

so it’s OK where α < −1 (?).
• Instead of the normal Dini criterion, look at

f(x)− f(x0)

sin(π(x− x0))

because we can bound the derivatives in the interval [−1
2 ,

1
2 ]: 2y ≤ sin(πy) ≤ πy.

Proof. We will use the last criterion.

(snf)(x0) = (f ∗T Dn)(x0)

=

∫ 1
2

−1
2

f(x0 − y)Dn(y) dy

y 7→−y
=

∫ 1
2

−1
2

f(y + x0)
sin((2n+ 1)πy)

sin(πy)
dy

=

∫ 1
2

− 1
2

(f(x0 − y)− f(x0))Dn(y) dy

=

∫ 1
2

− 1
2

(
f(y + x0)− f(x0)

sin(πy)
) sin((2n+ 1)πy) dy

=

∫
R
h(y) sin((2n+ 1)πy) dy

where h(y) = (f(y+x0)−f(x0)
sin(πy) ) · χ[− 1

2
, 1
2

](y). The criterion just asks for h to be integrable.

This approaches zero as n → ∞ by the Riemann Lebesgue lemma, because ξ̂ → 0 as
|ξ| → ∞. �

Note that the converse is not true, and continuity is not enough of a hypothesis here.
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18.1. Poisson summation formula. The idea is that
∞∑

n=−∞
f(n) =

∞∑
n=−∞

f̂(n)

but the left hand side doesn’t even make sense, because you can change finitely many
values of f and get the same Fourier transform.

Given f ∈ L1(R) we can try to form a periodic function F by

F (x) =
∞∑

n=−∞
f(x+ n)

Does the RHS converge? Because the functions are periodic, look at [0, 1]. Define

fn(x) =

{
f(x+ n) x ∈ [0, 1]

0 else∫ 1
0 |fn| =

∫ n+1
n |f | so

∑
n

∫ 1
0 |fn| =

∑
n

∫ n+1
n |f | and the RHS converges to

∫
R |f |. This

means that
∑
‖fn‖L1 < ∞. Recall that this implies the partial sums of

∑
fn converge

a.e. and in L1 norm, to some F ∈ L1([0, 1]). So F (x) makes sense (the RHS is defined for
a.a.x.)

Let F ∈ L1(T). Suppose that
∑∞
−∞ f(x+ n) converges at x = 0; call this F (0). The LHS

in the Poisson summation formula is F (0). On the RHS,

f̂(n) =

∫ ∞
−∞

f(x)e−2πixn dx

=
∞∑

m=−∞

∫ 1

0
fm(x)e−2πinx dx

=

∫ 1

0
(
∑
m

fm(x))e−2πinx dx

because the partial sums
∑M

m=−M fm converge in the L1 norm to
∑
fm = F . SO this is

· · · =
∫ 1

0
F (x)e−2πinx dx = F̂ (n)

The RHS of the PSF (without further hypotheses) is just
∑
F̂ (n), the Fourier coefficients

of the periodic function F ∈ L1(T). So the PSF is trying to say

F (0) =

∞∑
−∞

F̂ (n)

This holds for any F ∈ L1(T) satisfying Dini’s criterion at x0 = 0. To recap:

Theorem 18.4 (Poisson summation formula). If
∑∞
−∞ f(n) converges, and f satisfies

Dini’s criterion at x = 0, then
∞∑
−∞

f(n) =
∞∑
−∞

f̂(n)
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Example 18.5. Let f(x) = e−π(x/R)2 . Recall ξ̂ = Re−π(Rx)2 . We get that∑
n

e−π(n/R)2 = R
∑
n

e−π(Rn)2

for R > 0. Change coordinates so that R = 1√
t
. So this turns into∑

n

e−πn
2t =

1√
t

∞∑
−∞

e−πn
2/t

Writing θ(t) for the LHS, this can be written θ(t) = 1√
t
θ(1

t ). This is a version of Jacobi’s

identity for θ.

We can apply the PSF to e−π(Rx)2e2πiax. The Fourier transform just gets translated by a.∑
e−πn2te

2πina =
1

Nt

∑
e−

π(n−a)2
t

Now the LHS is a function of a and t, and the RHS is a different expression for the same
thing. This is the fundamental solution of the heat equation.

19. October 21

19.1. Norms and Banach spaces. Let F be either R or C today. X will be a
(possibly infinite-dimensional) vector space over F.

Definition 19.1. A norm on X is a function X → R, x 7→ ‖x‖, such that

(1) ‖x‖ = 0 ⇐⇒ x = 0
(2) ‖λx‖ = |λ|‖x‖ for all λ ∈ F, x ∈ X
(3) (Triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

It follows from (2) and (3) that the norm is always nonnegative. (We will use |f | to mean
absolute value, not norm.)

Definition 19.2. A normed vector space is a pair (X, ‖ · ‖) of a vector space with a norm
on it.

Definition 19.3. The distance between x, y is d(x, y) = ‖x − y‖. This makes X into a
metric space. So we have notions of open and closed that come from X being a metric
space: closed balls are

B(x; δ) = {y : ‖x− y‖ ≤ δ}
S is open iff for all x ∈ S, there is some δ > 0 such that B(x; δ) ⊂ S.

It is possible for a space to have two different norms ‖‖ and ‖‖′ on X; we say these are
equivalent if there are constants C1, C2 > 0 such that C1‖x‖ ≤ ‖x‖′ ≤ C2‖x‖. Equivalent
norms define the same topology.
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Example 19.4. C0 is the set of sequences {(an)n∈N : an ∈ F} which converge to zero as
n→∞. This is a vector space. The norm on this space is

‖(a)‖C0 = sup
n
|an|

`∞ = {(an) : an ∈ F, n ∈ N, sup
n
|an| <∞}

where the norm is ‖a‖∞ = supn |an|.

`p = {(an) :
∑
n

|an|p <∞}

where the norm is ‖(a)‖`p = (
∑
|an|p)

1
p . Why is this a vector space? We need

∑
|an +

bn|p <∞. We also need the triangle inequality:(∑
|an|p

) 1
p

+
(∑

|bn|p
) 1
p ≥

(∑
|an + bn|p

) 1
p

This is the Minkowski inequality.

It doesn’t matter if the sequences are indexed by N or Z, or any countable set. To avoid
confusion, you can write `p(N) to mean the N-indexed ones, etc.

Example 19.5. Let Ω be a compact metric space. Then define C(Ω) to be the set of
continuous functions f : Ω→ F. We use the supremum norm: ‖f‖ = supω∈Ω |f(ω)|.

Let C0(Rd) be the set of continuous functions f : Rd → F such that f(x)→ 0 as |x| → ∞.
We again take the supremum norm: ‖f‖ = supRd |f |.
Example 19.6. We have already seen L1. For p ≥ 1 define Lp(Rd) to be the space
of equivalence classes of measurable functions f : Rd → F such that

∫
|f |p < ∞. Use

the norm ‖f‖p =
(∫
|f |p

) 1
p . Later, we will check Minkowski’s inequality, which will give

the triangle inequality. (As before use Lp for the functions themselves, and Lp for the
equivalence classes.)

We can also define L∞(Rd) to be the set of equivalence classes of functions f : Rd → F
which are measurable and essentially bounded, i.e. there is some null set N for which
f |Rd\N is bounded. Equivalently, f is equivalent to a bounded function. For norm use the
essential supremum

‖f‖∞ = sup{M : |f | ≤Ma.e.}
(Even when the function is actually bounded, we still use the essential supremum norm.)

Example 19.7. X = F is a one-dimensional vector space, where ‖x‖ = |x| (absolute value
or complex modulus, depending on F).

Fn can be a normed space, with norms (
∑
|xi|p)

1
p (if p = 2 this is the usual Euclidean

norm) or max |xi|, which is like the `∞ norm. You can also take an ellipse, and consider
the norm that makes it “a ball of radius 1.”
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All the norms given have the additional property that they are complete.

Definition 19.8. A sequence xn, for n ∈ N and xn ∈ Xn, is Cauchy if:

∀ε > 0, ∃n0 such that ∀n, n′ ≥ n0, ‖xn − xn′‖ ≤ ε
A sequence is convergent if there is some x ∈ X such that ‖xn − x‖ → 0 as n→∞.

A metric space is complete if every Cauchy sequence in X is convergent.

A Banach space is a complete, normed space.

All of our examples above are complete. But this is not entirely obvious: it’s easy to see
this for the ones based on the sup norm, but for the others you have to do something; we
will do this when we do the Minkowski inequality.

19.2. A criterion for completeness.

Definition 19.9. A series
∑∞

0 tn, for tn ∈ X (a normed space), is called absolutely
summable, if

∑∞
0 ‖tn‖ < ∞. A series is convergent if the partial sums sn =

∑n
0 tm are a

convergent sequence.

Proposition 19.10. A normed space X is complete iff every absolutely summable series
is convergent.

Having partial sums converge is NOT the same as being Cauchy.

Proof. (Just the “if” direction.) Let xn be a Cauchy sequence in X, xn ∈ N. For each
such j there exists some nj such that n, n′ ≥ nj then ‖xn−xn′‖ ≤ 2−j . Arrange nj ≤ nj+1.
Consider xn1 , xn2 , · · · . Write tj = xnj −xnj−1 , where t1 = xn1 . So the sequence of partials

sums of (tj) is the sequence (xnj ). We have ‖tj‖ ≤ 2−(j−1) for j > 1 so
∑
‖tj‖ <∞. Now

use the hypothesis:
∑J

j=1 tj → x ∈ X as J → ∞. That is, xnJ → x ∈ X as J → ∞. So
we have shown that there is a convergent subsequence.

The next claim is that a Cauchy sequence with a convergent subsequence is itself conver-
gent, to the same limit.

�

20. October 24

20.1. Young’s inequality. This is a version of the “arithmetic - geometric mean.”

Theorem 20.1 (Young’s inequality). For 0 ≤ λ ≤ 1 and a, b > 0:

aλb1−λ ≤ λa+ (1− λ)b
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Proof. Take logs of both sides:

λ log a+ (1− λ) log b ≤ log(λa+ (1− λ)b)

This is a statement that the graph of the logarithm restricted to [a, b] lies above the line
joining the two points. Analytically, this is because the second derivative is negative. �

Theorem 20.2 (Hölder’s inequality). If p > 1 and q > 1 are dual exponents (i.e. 1
p + 1

q =

1) and if f ∈ Lp(Rd) and g ∈ Lq(Rd) then fg ∈ L1(Rd) and∣∣∣∣∫ fg

∣∣∣∣ ≤ ‖f‖p · ‖g‖q
If p = q = 2 this is called Cauchy-Schwartz.

Proof. Without loss of generality we may take ‖f‖p = 1 and ‖g‖q = 1, and f, g ≥ 0.
Write a = fp and b = gq.∫

fg =

∫
a

1
p b

1
q

≤
∫ (

1

p
a+

1

q
b

)
Y oung, λ =

1

p

=
1

p

∫
a+

1

q

∫
b

=
1

p

∫
fp +

1

q

∫
gq

=
1

p
+

1

q
= 1 = ‖f‖p‖g‖q

�

Theorem 20.3 (Triangle inequality for Lp). If 1 ≤ p ≤ ∞ and f, g ∈ Lp then f + g ∈ Lp
and

‖f + g‖p ≤ ‖f‖p + ‖g‖p

This doesn’t work for p < 1. Assume p <∞.

Proof. Let q be the dual exponent. Suppose f, g ≥ 0 (worst case scenario).

‖f + g‖pp =

∫
(f + g)p =

∫
f(f + g)p−1 +

∫
g(f + g)p−1

≤
(∫

fp
) 1
p
(∫

(f + g)(p−1)q

) 1
q

+

(∫
gp
) 1
p
(∫

(f + g)(p−1)q

) 1
q

= (‖f‖p + ‖g‖p)
(∫

(f + g)p
) p−1

p

pq = p+ q

= (‖f‖p + ‖g‖p)‖f + g‖p−1
p

So we get
‖f + g‖p ≤ ‖f‖p + ‖g‖p
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�

Thus Lp(Rd) is a normed space.

Theorem 20.4. Lp(Rd) is a complete normed (i.e. Banach) space.

This is kind of the whole point of defining the Lebesgue integral (as opposed to the
Riemann integral.)

Proof. By last time, it’s enough to show that all absolutely summable series are
convergent. So let fn ∈ Lp for all n ∈ N and consider

∑
n fn and suppose that∑

n

‖fn‖p = C <∞

Let sn =
∑n

m=1 fm. We must show that there is some s ∈ Lp such that sn → s in the Lp

norm. First apply the DCT. Let tn =
∑n

m=1 |fm|. Then tn are in Lp (since f ∈ Lp and
it’s a sum of Lp functions). Minkowski’s inequality says that ‖tn‖p ≤

∑n
m=1 ‖fm‖p. In

particular, (∫
tpn

) 1
p

≤ C

so
∫
tpn ≤ Cp. Now apply the MCT to tpn: these are integrable for each n, and they are

an increasing sequence, pointwise, by definition. So there is some limit tp, where tpn ↗ tp

and
∫
tp ≤ Cp. That is, for a.a.x,

∞∑
m=1

|fm(x)| ≤ t(x) <∞

This says that
∑∞

1 fn(x) exists for a.a. x: that is, there is some s such that sn(x)→ s(x)
a.a.x. and |s| ≤ ‖t‖ which implies s ∈ Lp.

This gives convergence a.e., not convergence in norm. Just apply the DCT to see that
the convergence is also in norm. Look at |sn − s|p: this converges to zero a.e. and
|sn − s|p ≤ (2t)p, which is integrable. So by the DCT,∫

|sn − s|p → 0

This is the same as ‖sn − s‖pp → 0 as n→∞. (This proof is identical to the one for L1.)

�

20.2. Separability. Take a metric space X, e.g. a normed space. Recall that if
S ⊂ X is a subset, then the closure S is defined as:

x ∈ S ⇐⇒ ∃xn ∈ S ∀ns.t.xn → x as n→∞

Definition 20.5. X is separable if it has a countable dense subset S. (A dense subset is
one such that S = X.)
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R2 is closed in R3. But in general, in a normed space, linear subspaces need not be closed:
it may be a proper subset that is dense.

Observation: If there is a countable set {xn : xn ∈ X,n ∈ N} whose linear span is
dense, then X is separable. (A span is all finite linear combinations a1xn1 + · · ·+ akxnk .)
The countable dense subset is just all linear combinations a1xn1 + · · · + akxnk with the
restriction that the ai’s in some countable dense subset like Q ⊂ R or Q +

√
−1Q ⊂ C.

Example 20.6. In Lp, 1 ≤ p <∞, the following subspaces are dense:

• The functions f of bounded support (i.e. those which vanish outside a ball of
finite measure). These are dense by the DCT: if p = 1, for example, every function
can be approximated by a function of bounded support by just cutting it off on
[−N,N ]. The other cases are similar.
• The bounded functions of bounded support (well, essentially bounded after ap-

plying the equivalence relation that you’re allowed to change things on a null
set). Again, approximate f by cutting it off at y = N , for increasing N .
• Simple functions

∑n
1 aiχEi , where Ei are measurable subsets of finite measure

• The step functions
∑
aiχRi , where Ri are rectangles.

• The functions
∑
aiχRi where ai ∈ Q or Q+

√
−1Q, depending on which field we’re

using, and the step functions on rectangles Ri whose corners have rational (etc.)
coordinates. This is a countable dense set, but is not a linear subspace. This
example shows that Lp is separable for 1 ≤ p < ∞. (But L∞ is not separable:
this is on the homework. For example, χ[−

√
2,
√

2] is approximated by χ
[−1.4,1.4],

etc., but the L∞ norm of this difference is 1.)
• In Lp the infinitely differentiable, or C∞, functions of bounded support are dense

in Lp also. For example, take step functions with rounded corners.

21. October 26

Definition 21.1. Let X,Y be normed vector spaces over R or C. A linear transformation,
a.k.a. a linear operator T : X → Y is bounded if there exists M ≥ 0 such that for all
x ∈ X:

‖Tx‖Y ≤M · ‖x‖X
The operator norm of T is the least such M ; that is,

‖T‖ = inf{M ≥ 0 : ‖Tx‖ ≤M‖x‖ ∀x}

= sup{‖Tx‖
‖x‖

: x 6= 0}

= sup{‖Tx‖ : ‖x‖ = 1}
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Example 21.2. If X = Rn then ‖x‖ = x · x = xtx. All linear maps T : X → X are
bounded:

‖Tx‖2 = (Tx)t(Tx) = xt(T tT )x

= xt

λ1

. . .

λ2

x

=
∑
i

λi|xi|2 ≤ (max{λi})‖x‖2

‖T‖ =
√

max{λi}

Example 21.3. The multiplication operator T : Lp → Lp where T : f 7→ gf for some
fixed g ∈ L∞. Since g is essentially bounded, there is some M such that |g(x)| ≤ M for
a.a.x, and so ‖Tf‖p ≤M · ‖f‖p. This is the statement that

∫
|fg|p ≤ (ess.sup.|f |)p

∫
|f |p.

If T is bounded, then ‖T‖ ≤ ‖g‖L∞ .

Lemma 21.4. Let X,Y be normed spaces, with Y a Banach space. Let X ′ ⊂ X be a dense
linear subspace; this inherits a norm from X. Suppose T ′ : X ′ → Y is bounded. Then
there exists a unique way to extend this to a bounded operator T : X → Y . This has the
property that ‖T‖ = ‖T ′‖.

Proof. Given x ∈ X, choose a sequence x′n ∈ X ′ for n ∈ N, where x′n → x. Claim: if
(x′n) is Cauchy, then (T ′x′n) is Cauchy in Y . We want ‖T ′x′n − T ′x′m‖ → 0 as n,m→∞.
But this is true, because ‖T ′x′n−T ′x′m‖ ≤M‖x′n−x′m‖. So there is y ∈ Y with T ′x′n → y,
because Y is complete. Define Tx = y.

We need to check that this is well-defined: y depends only on x, not the chosen sequence
x′n → x. Checking linearity is straightforward: T (x1 +x2) = T (x1) +T (x2). We also need
to check that ‖Tx‖ ≤M‖x‖ where M = ‖T ′‖.

‖Tx‖ = |y| = lim‖T ′x′n‖ ≤ limM‖x′n‖ = M · ‖x‖
�

The Fourier transform is an operator on X = L2(R,C). Remember the Schwartz space
S contains functions that decay faster than any polynomial. The Fourier transform is an
operator on the Schwartz space.

Lemma 21.5 (Plancherel identity). For f ∈ S
‖Ff‖L2 = ‖f‖L2
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Proof. Remember ‖f‖2L2 =
∫
|f |2 =

∫
ff . For f, g ∈ S:∫

(Ff)g =

∫
Ff(y)g(Y ) dy

=

∫ ∫
f(x)e2πixyg(y) dy dx

=

∫ ∫
f(x)e2πixyg(y) dx dy

=

∫
f(x)(F−1g)(x) dx

In the case where g = Ff , remember that the inverse Fourier transform is actually the
inverse in Schwartz space, so we get

‖Ff‖L2 = ‖f‖L2

�

S is a dense subset of L2, and F : S → L2 is a bounded linear operator with norm 1
(by Plancherel). By Lemma 21.4, there is a unique extension F : L2 → L2 that is also
bounded, and of norm 1. The Schwartz space is dense in L2: given f ∈ L2 there exist
fn ∈ S such that fn → f in the L2 norm. According to the lemma, to define Ff , we do
Ff = limFfn where the limit means convergence in L2. This is important because you
can’t just use the formula ∫

f(x)e−2πixξ dx

because the inside might not be integrable.

We can also define F−1 : L2 → L2 in the same way: by using the definition of this inverse
on Schwartz space. F−1 ◦ F = Id on S; by a straightforward limit argument similar to
the uniqueness statement, F−1 · F = Id on L2. (This is because it i a bounded operator
on L2.)

Example 21.6. If f = χ
[− 1

2
, 1
2

] then (Ff)(x) = sin(πx)
πx := g(x) ∈ L2. But we’re not allowed

to use the formula for the Fourier transform; you have to check that this is the same as
what you get by taking the limit of Schwartz functions.

Theorem 21.7. The Fourier transform on S extends to an isometry (i.e. it preserves the
norm)

F : L2(R;C)→ L2(R;C)

with inverse F−1.

There is a similar story for Fourier series. Let X = L2(T;C). Let X ′ ⊂ X be the set of
functions (trigonometric polynomials) whose Fourier series are finite:

f =

n∑
−n

amem(x) where em(x) = e2πimx
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So am = f̂(m) here. There is a map X ′ → `2(Z;C) = {(am)m∈Z :
∑
|am|2 < ∞} given

by

FT : f =

n∑
−n

amem 7→ (am)m∈Z

(So you’re just mapping the function to the sequence of its Fourier coefficients.) Since we
were considering finite sums,

‖f‖2L2(T) = ‖FTf‖2

i.e. ∫ 1

0
|f |2 =

∫ 1

0

n∑
m1=−n

n∑
m2=−n

am1am2em1em2

=
∑∑

am1am2

∫ 1

0
em1em2

=

n∑
m=−n

|am|2 = ‖(am)‖2`2

So F : X ′ → `2 is bounded. Furthermore, X ′ ⊂ L2(T) is dense: we have seen that
C∞ ⊂ L2(T) is dense. If f ∈ C∞, then the Fourier coefficients decay rapidly, and so the
partial sums sn(f)→ f uniformly, hence in L2. This gives a new conclusion:

Proposition 21.8. The map FT : X ′ → `2(Z;C) extends to all of X = L2(T;C). So there
is a map

FT : L2(T;C)→ `2(Z;C)

However, there is no need to do this: we could have define f 7→ (am)m∈Z, and f being
square integrable allows us to write

am =

∫ 1

0
f(x)e−2πimx dx

If it is square integrable on [0, 1], then it is simply integrable on [0, 1] (see problem set).
Unlike the case earlier, this formula simply works. This map has an inverse, by the same
argument as in the previous case. In particular, FT is an isometry of Banach spaces.

22. October 28

Let X and Y be normed spaces. Then define L(X,Y ) to be the space of all bounded linear
operators. Then this is a vector space. Let T1, T2 ∈ L(X,Y ).

(T1 + T2)(x) = T1(x) + T2(x)

(λT1)(x) = λ(T1x)

are also in L(X,Y ). Sums and scalar multiples are also bounded:

‖T1 + T2‖ ≤ ‖T1‖+ ‖T2‖
‖λT1‖ = |λ|‖T1‖
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This shows that the operator norm is a norm on L(X,Y ).

As a special case, consider Y = F.

Definition 22.1. The dual space is

X∗ = L(X,F)

For a bounded linear functional α : X → F in X∗ use the operator norm:

‖α‖ = sup
x 6=0

|α(x)|
‖x‖

Proposition 22.2. X∗ is a Banach space: it is complete. In fact, for any complete space
Y , L(X,Y ) is complete.

Proof. Let Tn ∈ L(X,Y ) for n ∈ N be a Cauchy sequence. For ε > 0 there is some
n(ε) such that ‖Tn − Tm‖ ≤ ε for all n,m ≥ n(ε). We want to find a limit; i.e., find
T ∈ L(X,Y ) such that ‖Tn − T‖ → 0. Fix x ∈ X. For n ∈ N, Tnx ∈ Y is a Cauchy
sequence in Y , because

(Tn − Tm)x = ‖Tnx− Tmx‖Y ≤ ‖Tn − Tm‖‖x‖ ≤ ε‖x‖
for n,m ≥ n(ε). So we can say that

Tnx− Tmx→ 0

as n,m→∞. Because Y is complete, there is a limit: define Tx ∈ Y as Tx = limn→∞ Tnx.
We need to check that T is linear: T (x1 + x2) = Tx1 + Tx2, and similarly for scalar
multiples (this is straightforward). We also need that T is bounded: this is because ‖Tn‖
is a Cauchy sequence, and hence bounded. Finally, we need to show that ‖T − Tn‖ → 0
(we’ve already shown that this converges pointwise, but we need convergence in norm).
Look at ‖(T − Tn)(x)‖Y . For n ≥ n(ε)

‖(Tn − Tn(ε))‖ ≤ ε‖x‖
which implies

(T − Tn(ε))(x) ≤ ε‖x‖
And similarly, ‖(T − Tm)(x)‖ ≤ ε‖x‖ for m ≥ n(ε) i.e. ‖T − Tm‖ ≤ ε for m ≥ n(ε). (The
point is that the n(ε) do not depend on x.) �

Example 22.3. If X = RN or CN , every linear map X → R or C is bounded. So X∗

contains all linear maps RN → R or CN → C.

Let X = c0 (the space of sequences that converge to zero). Claim: X∗ is isometrically
isomorphic to `1 (the space of sequences where

∑
|an| <∞). (There is a bijective 1-1 linear

map that preserves norms.) Given a ∈ `1, we get α : c0 → R given by α(b) =
∑∞

1 anbn.
Note ∑

|anbn| ≤ (sup
n
|bn|

∞∑
1

|an|)

= ‖b‖`∞‖a‖`1
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So α(b) makes sense and α : c0 → R is bounded. So |α(b)| ≤ ‖a‖`1 · ‖b‖`∞ . We’ve shown
that α ∈ X∗ = c∗0, and ‖α‖ ≤ ‖a‖`1 . In fact, equality holds, because

‖a‖`1 = sup
|α(b)|
‖b‖∞

=
sup |

∑
anbn|

‖b‖∞
as we see by taking b such that

bn =

{
sign(an) if n ≤ N
0 else

Summary: for all b, |α(b)| ≤ ‖a‖`1‖b‖`∞ , and you can achieve the worst case by taking b
as defined above.

Given a = (an) ∈ `1 we’ve defined α in c∗0 :

αa : c0 → R where b 7→
∑

anbn

and we showed that ‖αa‖ = ‖a‖`1

Now do the converse. Given α ∈ c∗0 we must show that there is some a ∈ `1 such that
α = αa; that is, α(b) =

∑
anbn for all b ∈ c0. Given α set an = α(en) where en is the

standard nth basis vector. Then
N∑
1

|an| =
N∑
1

an · sign(an)

= α(

N∑
1

sgn(an)en)

= α((±1, · · · ,±1︸ ︷︷ ︸
N

, 0, · · · , 0))

≤ ‖a‖ · 1

So a = (an) is in `1. Is α = αa?

α(en) = αa(en) =⇒ α(b) = αa(b) ∀b ∈ (c0)fin

(c0)fin ⊂ c0, where (c0)fin are the sequences which are zero eventually. Now (c0)fin is

dense in c0, hence α = α0a for all b ∈ c0. Given b ∈ c0, define b(N) as the sequence{
bn if n ≤ N
0 else

‖b− b(N)‖ = sup
n
|bn − bn(N)

= sup
n>N
|bn| → 0

This is the only part that fails for `∞ instead of c0; `∞ ⊃ c0, and so its dual space is much
larger.
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Example 22.4. For 1 ≤ p <∞, I claim that the dual space of `p is `q, where q is the dual
exponent. (If p = 1 then q =∞, and otherwise, 1

p + 1
q = 1.) In particular, (`1)∗ ∼= `∞ but

(`∞)∗ is something bigger than `1.

23. October 31

For 1 < p <∞ abbreviate Lp = Lp(Rd;F), where F refers to either R or C. With 1 = 1
p+ 1

q

and a ∈ Lq we get an element α ∈ αa : Lp → F which maps b 7→
∫
ab for b ∈ Lp (the

integrability is Minkowski’s inequality). α is certainly linear, because the integral is linear.
Also, α is bounded, because |α(b)| ≤ ‖a‖Lq‖b‖Lp (this is Hölder’s inequality). So there is
a map I : Lq → (Lp)∗ that sends a 7→ α. I is linear; this is just because of the linearity of
the integral:

I(λ1a1 + λ2a2) = λ1I(a1) + λ2I(a2)

since
αλ1a1+λ2a2(b) = λ1αa1(b) + λ2αa2(b)

Theorem 23.1 (Riesz representation theorem for Lp). I is an isometric isomorphism
from Lq to (Lp)∗.

Proof. The first claim is that I preserves norms. If a 7→ α ∈ (Lp)∗ we must show
that ‖a‖Lq = ‖α‖dual. Define the dual space norm

‖α‖ = sup
b∈Lp,b 6=0

|α(b)|
‖b‖p

= sup
|
∫
ab|
‖b‖

≤ ‖a‖q Hölder

The thing we’re trying to prove is that this last ≤ can be replaced with equality.

Claim 23.2 (Converse to Hölder’s inequality). If a ∈ Lq then

sup
b

|
∫
ab|
‖b‖p

= ‖a‖q

where the supremum is taken over all b measurable, bounded, and of bounded support (not
a.e. zero). If a /∈ Lq then the supremum on the left is ∞.

64



Math 114 Peter Kronheimer Lecture 23

(We know the case ≤ above.) Fix N large, and take F = R. Set ã = a ·χB(N) ·χE(n) where

E(N) = {|a| ≤ N} and B(N) is a ball of radius N . Set b̃ = sign(ã)|ã|q−1.

|
∫
ab̃|
‖b̃‖p

=
|
∫
ãb̃|
‖b̃‖p

=

∫
|ãq|/

(∫
|ã
) 1
p

=

∫
|ã|q(∫
|ãq|
)1− 1

q

= ‖ã‖q
In the claim, the supremum is ≥ supN ‖ã‖q = ‖a‖q (or infinity, if a /∈ Lq).

Claim 23.3. I is surjective: given bounded α ∈ (Lp)∗, we can find a ∈ Lq such that
α(b) =

∫
ab for all b ∈ Lp.

We will do this with F = R and p an even integer. We will take p = 4 and q = 4
3 . If we’ve

proven it for all even integers p, then you can show it works for anything < p, and hence

it works everywhere. Given α : L4 → R; we want to find a ∈ L
4
3 . Consider the function

(not linear!) which takes Γ : L4 → R via u 7→ ‖u‖44−α(u). We can get rid of the absolute
value signs: Γ(u) :

∫
u4−α(u). We’ll show that Γ is bounded below, and there exists some

U∗ ∈ L4 where Γ achieves its infimum. The derivative is zero here (think critical points,
etc.) Given this, consider any v ∈ L4 and the path ut = u∗ + tv where the parameter is
t ∈ R. We have Γ(ut) ≥ Γ(u0) = Γ(u∗) for all t.

Γ(ut) =

∫
u4
∗ + 4t

∫
u3
∗v + 6t2

∫
u2
∗v

2 + 4t3
∫
u∗v

3 + t4
∫
v4 − α(u∗)− tα(v) := P (t)

P (t) is a quartic polynomial in t. Achieving the minimum at t = 0 means P ′(0) = 0 so
the linear term 4t

∫
u3
∗v − tα(v) has to be zero. So we need

4

∫
u3
∗v − α(v) = 0

for all v ∈ L4. Write a = 4u3
∗. Then(∫

av

)
− α(v) = 0

for all v ∈ L4. That is, I(a) = α. (As a sanity check, note that a ∈ L
4
3 : it goes as the

cube of something in L4, a.k.a. |a|
4
3 = 4

4
3 |u∗|4.)

Why is Γ bounded below? Γ(u) = ‖u‖44 − α(v) ≥ X4 − M · X where X = ‖u‖4 and

M = ‖α‖. It achieves its minimum at
(
M
4

) 1
3 by one-variable calculus. So it has some

finite infimum.
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Let Γ0 = infu∈L4 Γ(u). There’s a sequence un ∈ L4 with Γ(un) ↘ Γ0 (the point is it
approaches Γ0 and is not below it). If (un)n is Cauchy in L4 then we’re done, because we
can set u∗ to be the limit. Γ is continuous, so Γ(u∗) = lim Γ(un) = Γ0.

So the claim is that un is Cauchy; this is a property of convexity. Given ε > 0 we have
for n,m ≥ n(ε)

Γ0 ≤ Γ(un) and Γ(um) ≤ Γ0 + ε

Given u0, u1 and knowing Γ(u0) and Γ(u1) in Γ0,Γ0 + ε we will show what ‖u0 − u1‖L4

goes to zero as ε→ 0. Look at the path from u0 to u1 in L4:

ut = u0 + t(u1 − u0)

We have Γ0 ≤ Γ(u1) ≤ Γ0 + ε for all t ∈ [0, 1]. (The first inequality is the fact that Γ0

is the infimum; the second inequality is by convexity of Γ(ut):
d2

dt2
Γ(ut) = 12

∫
u2

0u
2
1 ≥ 0).

Γ(ut) we have seen is a degree 4 polynomial in t, and its values on [0, 1] lie in a narrow
interval [Γ0,Γ0 + ε].

Next time: ‖u0 − u1‖L4 is small.

�

24. November 2

Γ : L4 → R, ‖u‖44 − α(u), Γ0 = infu Γ(u). There is some u∗ such that Γ0 = Γ(u∗). If
u0, u1 ∈ L4 have Γ(u0)−Γ0 and Γ(u1)−Γ0 both less than ε > 0 then ‖u0− u1‖4 is small.

We were showing that ‖u0 − u1‖4 ≤ (Cε)
1
4 . Set

ut = u0 + t(u1 − u0) ∈ L4 for t ∈ [0, 1]

and P (t) = Γ(ut)− Γ0. If

P (t) =

∫
u4

0 + · · ·+ t4
∫

(u1 − u0)4 − α(u0)− tα(u1 − u0)

is a quartic polynomial. Turns out that P ′′(t) ≥ 0 (proof last time sort of wrong); the L4

norm is a convex function, and α(u) is a linear thing. 0 ≤ P (0), P (1) ≤ ε so 0 ≤ P (t) ≤ ε
for all t, by convexity. This implies that all the coefficients are small (these are determined
by five points). The coefficient of t4 is

44

4!
(P (0)− 4P (

1

4
)) + 6P (

1

2
)− 4P (

3

4
) + P (1) ≤ 3

4
ε

This coefficient is ‖u0 − u1‖44 ≤ 3
4ε.

This completes the proof for L4; for L2n, the same thing works:

Γ(u) = ‖u‖2n2n − α(u) for u ∈ L2n

Claim: If we can do Lp then we can prove Riesz representation theorem for Lp
′

for p′ ≤ p.
Start with some ball B ⊂ Rd a ball, so Lp

′
(B) contains functions on Rd supported on B,
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with the Lp
′

norm. We showed on the HW that Lp(B) ⊂ Lp′(B). So given α ∈ (Lp
′
)∗ seek

a ∈ Lq′ as follows. α gives also a bounded linear functional Lp(B) → R, by restriction.
There exists a ∈ Lq (where q is the dual exponent) such that α(b) =

∫
ab for all b ∈ Lp.

We have |
∫
B ab| ≤ M · ‖b‖p′ as long as b ∈ Lp(B); in particular, it works if b ∈ L∞(B).

By the converse to Hölder’s inequality, a ∈ Lq and ‖a‖q′ ≤ M . We’ve only done this on
bounded balls, but you can take larger and larger balls, and then claim that the limit is
an actual Lq

′
function. See Kronheimer’s notes.

24.1. Hahn-Banach theorem. We have seen that (Lp)∗ ∼= Lq, and taking the dual
again gets something isomorphic to Lp. You don’t always get back to where you start:
(c0)∗∗ ∼= `∞. These are not isomorphic because one is separable and the other is not.
Given a normed space X, do there exist any bounded linear functionals on X?

Theorem 24.1 (Hahn-Banach theorem). Let X be a normed (not necessarily complete)
space, and V ⊂ X a linear subspace; so V inherits a norm. Let α : V → R be a bounded
linear functional. Then there exists α : X → R which extends α to all of X, and such that
‖α‖ = ‖α‖.

Proof. Start with a basic case: X is spanned by V , together with a single extra
vector x1. Assume we have α : V → R. Then α : X → R is α(λx1 + v) = λc+α(v), where
c is a real number we have to choose: c = α(x1). We have to choose this carefully to make
the norm work out. We already know ‖α‖ ≥ ‖α‖. Without loss of generality ‖α‖ = 1. We
need |λc+ α(v)| ≤ ‖λx1 + v‖ for all λ ∈ R and v ∈ V . Scaling by λ doesn’t do anything;
we just need |c+ α(v)| ≤ ‖x1 + v‖, which is really

−‖x1 + v‖+ α(v) ≤ ‖x1 + v‖
−‖x1 + w‖ − α(w) ≤ c ≤ ‖x1 + v‖ − α(v)

This is OK as long as −‖x1 + w‖ − α(w) ≤ ‖x1 + v‖ − α(v) for all v, w ∈ V . This
is a consequence of ‖α‖ = 1 and the triangle inequality: it says that α(v) − α(w) ≤
‖x1 + v‖+ ‖x1 +w‖ is true for all v, w. But the LHS is ≤ ‖v −w‖ becuase ‖α‖ = 1; now
use the triangle inequality.

Iterating this process gets us the Hahn Banach theorem in the finite-dimensional case. It
is also enough to deal with the case where X is separable: choose x1, · · · , xN , · · · whose
span is dense in X, and extend one step at a time: X0 = V , X1 = span(V ∪ {x1}),
Xn = span(Xn−1 ∪ {xn}), and X∞ = ∪Xn. Extend α to αn : Xn → R for all n.
α∞ : X∞ → R extends to all of X, because X∞ was assumed to be dense in X. The
norm is preserved at every step along the way, and the extension of α∞ to all of X also
preserves norm, by lemma 21.4.

For the non-separable case, use Zorn’s lemma. Given V, α define a partial extension to be
a pair (W,β) with β ∈ W ∗ and β|V = α and ‖β‖ = ‖α‖. We get a partial order on these
pairs: we say that (W,β) ≤ (W ′, β′) if W ′ ⊃W and β′|W = β. To check the hypotheses of
Zorn’s lemma, we need every chain in this poset (i.e. every collection of (Wi, βi) for i ∈ I
on which ≤ is a total order) has an upper bound. In this case, this is W =

⋃
i∈IWi and β

defined by β|Wi = βi. Zorn’s lemma now says that there is a maximal partial extension:
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one that is not < any other partial extension. This must be W = X, because otherwise
you could throw in another vector and extend it further. �

Corollary 24.2. If x ∈ X (a normed space) and x 6= 0 then there exists α ∈ X∗ such
that ‖α‖ = 1 and satisfying α(x) = ‖x‖.

Proof. Take V = span(x). Define α0 : V → R, where α0(λx) = λ‖x‖. This is
bounded, since ‖α0‖ = 1. Apply Hahn-Banach, and we are done, because we can extend
α0 to something of norm 1 that still maps λx 7→ λ‖x‖. �

Corollary 24.3. For x ∈ X, x 6= 0,

‖x‖ = sup
|α(x)|
‖α‖

= sup
α∈X∗,‖α‖=1

|α(x)|

25. November 4 – from Ben Whitney’s notes

25.1. Corollaries of Hahn-Banach Theorem.

• If x ∈ X (a normed space) and x 6= 0, then there exists α ∈ X∗ with ‖α‖ = 1 and
α(x) = ‖x‖. (Proof last time.)

• ‖x‖ = supα∈X∗,‖α‖=1|α(x)|. Compare this with the definition ‖α‖ = supx∈X,‖x‖=1|α(x)|.

• If X is a normed space, V ⊂ X is a closed linear subspace, and x1 6∈ V , then there
exists α ∈ X∗ with α|V = 0, α(x1) = 1, and ‖α‖ = 1

δ , where δ = infv∈V {‖x1−v‖} > 0.
Start by defining α1 : span({x1} ∪ V ) → F by α(λx1 + v) = λ. This is bounded in
(span({x1} ∪ V ))∗. Indeed,

‖α1‖ = sup
λ∈F\{0}
v∈V

{
|α1(λx1 + v)|
‖λx1 + v‖

}

= sup
v∈V

{
|α1(x1 + v)|
‖x1 + v‖

}
= sup

v∈V

{
1

‖x1 + v‖

}
=

1

δ

By the Hahn-Banach theorem, there exists α ∈ X∗ with α|span({x1}∪V ) = α1 and

‖α‖ = ‖α1‖ = 1
δ .

Let X be a normed space. Compare X to X∗∗. An element of X∗∗ is a bounded linear

functional ξ : X∗∗ → F. There’s a map X → X∗∗ sending x 7→ ^
x defined by

^
x : α 7→ α(x),

i.e.
^
x(α) := α(x) for α ∈ X∗.
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^
x is linear:

^
x(α1 + λα2) = (α1 + λα2)(x)

= α1(x) + λα2(x)

=^ α1 + λ
^
x(α2)

Thus
^
x : X∗ → F is a linear map. We must show that it is bounded. We want an M with

|^x | ≤M‖α‖ for all α ∈ X∗. But

|^x(α)| = |α(x)|
≤ ‖x‖ · ‖α‖
≤M‖α‖

where M = ‖x‖. So
^
x is bounded.

‖^x‖ = sup
α∈X∗
‖α‖=1

{|^x(α)|}

= sup
x∈X∗
‖α‖=1

{|α(x)|}

= ‖x‖
using one of the corollaries to the Hahn-Banach theorem we did earlier today. Then map

^: X → X∗∗ is linear. We need to check that (x1 + λx2)^ =
^
x1 + λ

^
x2.

(x1 + λx2)^(α) = . . . =
^
x1(α) + λ

^
x2(α)

which is easy to check. Summary: there’s a linear map (called the canonical map) ^: X →
X∗∗ sending x → ^

x which preserves norms (which implied injectivity and boundedness).
But it’s possible that ^ is not surjective.

Definition 25.1. X is reflexive is ^: X → X∗∗ is surjective. (Then, based on what
we’ve seen before, ^ is an isometric isomorphism. Then X is, like X∗∗, complete.)

c0 is not reflexive: the dual of c0 is `1, and the dual of `1 is `∞. c0 is separable but `∞ is
not. Now consider Lp(Rd;F) with 1 < p < ∞. If q is the dual exponennt, then the dual
space of Lp (Lp)∗ ' Lq. Similarly, the dual of Lq is (Lq)∗ ' Lp. Is it reflexive? We must

show that every bounded linear functional ξ : (Lq)∗ → F has the form
^
b for some b ∈ Lp,

i.e. has the form α 7→ α(b) (α ∈ (Lp)∗) for some b.

There is an isometric isomorphism Lq → (Lp)∗ sending a 7→ αa, where αa(c) =
∫
ac

(c ∈ Lp). To veryify for the αas, we check that every bounded linear functional Lq → F
has the form a 7→

∫
ab for some b. This is the Riesz Representation Theorem for Lq.

We will show on the problem set that if X∗ is reflexive, then X is reflexive, and if X is
not reflexive, then neither is X∗∗.
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25.2. Dual Transformations. Let T : X → Y be a bounded linear operator
between normed vector spaces. There there is a dual (or “transpose”) operator T ∗ :
Y ∗ → X∗. Given β ∈ Y ∗, i.e. β : Y → F bounded and linear, define T ∗(β) ∈ X∗,
i.e. T ∗(β) : X → F, by T ∗(β) = β ◦ T . As the composite of two bounded linear
operators, T ∗(β) is bounded and linear, and therefore included in X∗. Unwrapping:
T ∗(β)(x) = (β ◦ T )(x) = β(T (x)). We have ourselves a map of sets T ∗ : Y ∗ → X∗.
We need to check that T ∗ is linear and bounded.

T ∗(β1 + λβ2)(x) = (β1 + λβ2)(T (x)) = β1(T (x)) + λβ2(T (x)) = T ∗(β)(x) = λT ∗(β2)(x)

We now want to show that T ∗ is bounded, and that furthermore ‖T ∗‖ = ‖T‖.
‖T ∗‖ = sup

β∈Y ∗
‖β‖=1

{‖T ∗β‖}

= sup
β∈Y ∗
‖β‖=1

 sup
x∈X
‖x‖=1

{|(T ∗(β))(x)|}


= sup

β∈Y ∗
‖β‖=1

 sup
x∈X
‖x‖=1

{|β(T (x))|}


= sup

x∈X
‖x‖=1

 sup
β∈Y ∗
‖β‖=1

{|β(T (x))|}


= sup

x∈X
‖x‖=1

{‖T (x)‖}

by the second corollary to the Hahn-Banach theorem. This is ‖T‖ by definition.

26. November 7

On X = Lp(Rd), 1 < p < ∞, define T : X → X which takes (Tf)(x) = f(Ax) where
A is an invertible d × d matrix. There’s a transpose operator T ∗ : X∗ → X∗. Via Riesz
representation, this is S : Lq → Lq, S = I−1 ◦ T ∗ ◦ I (where I · Lq ∼= (Lp)∗.) We have, for
g ∈ Lq and f ∈ Lp,∫

g(Tf) =

∫
g(x)f(Ax)dx =

1

|detA|

∫
g(A−1y)f(y)dy =

∫
(Sg)f

So (Sg)(y) = 1
| detA|g(A−1y). Fix G ∈ L1(Rd).

Consider T : L1 → L1, with f 7→ G ∗ f . Then the dual linear transformation T ∗ : (L1)∗ →
(L1)∗ is, via the Riesz representation theorem, an operator S : L∞ → L∞. For a ∈ L∞,
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b ∈ L1, ∫
a(Tb) =

∫
a(G ∗ b)

=

∫ ∫
a(x)G(x− y)b(y)dydx

=

∫ ∫
a(x)G(x− y)b(y)dxdy

=

∫
(G̃ ∗ a)b G̃(x) = G(−x)

So the operator S takes b 7→ G̃ ∗ b. If we define K(x, y) = G(x− y) then

(G ∗ b)(x) =

∫
K(x, y)b(y)dy

(G̃ ∗ b)(x) =

∫
K(y, x)b(y)dy

The swapping of the variables is reminiscent of the swapping of indices in the transpose
of a matrix.

26.1. Hilbert Spaces. X is an inner product space over R or C: i.e. a vector space
X with ( , ) : X ×X → F such that

• x 7→ (x, y) is linear in x for y fixed

• (x, y) = (y, x), which implies that (x, x) ∈ R
• (x, x) ≥ 0 with equality iff x = 0

Define ‖x‖ by ‖x‖2 = (x, x). This is indeed a norm: it satisfies the triangle inequality. If
x ⊥ y (i.e. (x, y) = 0) then we have “Pythagoras”:

‖x+ y‖2 = ‖x‖2 + ‖y‖2

Definition 26.1. A Hilbert space is an inner product space X which is complete as a
normed space (with norm as above).

In Stein and Shakarchi, Hilbert spaces are also required to be separable.

Example 26.2.

• Cn with the usual inner product (x, y) =
∑n

i=1 xiyi
• `2 with (x, y) =

∑∞
i=1 xiyi (the previously defined norm comes from this inner

product)
• L2(Rd) with (a, b) =

∫
ab

26.2. Orthonormal systems.

Definition 26.3. {ei : i ∈ I} is orthonormal if ‖ei‖ = 1 and (ei, ej) = 0 if i 6= j.
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Example 26.4. X will be a Hilbert space.

• In L2(T), en(x) = e2πinx for n ∈ Z is an orthonormal system
• In `2, if δn is the sequence with 1 in the nth spot and zero elsewhere, then these

form an orthonormal system

If an ∈ F is a series of coefficients, and en are orthonormal and if
∑∞

1 |an|2 < ∞ then

sN =
∑N

1 anen is Cauchy in X, hence convergent. For N ≥M then

‖sN − sM‖2 = ‖
N∑

M+1

anen‖2 =
N∑

M+1

|an|2 ≤
∞∑

M+1

|an|2 → 0 as M →∞

by Pythagoras. Cauchy sequences have a limit here; so if s =
∑∞

1 anen then

‖s‖2 = lim ‖sN‖2 =
∞∑
1

|an|2

Note that the statement
∑∞

1 |an|2 < ∞ is independent of the order of the terms. So the
limit s is characterized by two properties:

• s ∈ X̃ := closure of the span of the en (because it is a limit of things in the span)
• (s, en) = an for all n (because (sN , en) = an for N ≥ n)

These properties uniquely characterize s: if s, s′ satisfied both then (s− s′, en) = 0 for all

n, so (s − s′, y) = 0 for all y ∈ the span of en’s; now (s − s′, x) = 0 for all x ∈ X̃. But

s − s′ ∈ X̃ so (s − s′, s − s′) = 0. Let en for n ∈ N be an orthonormal system in X, a
Hilbert space. Take x ∈ X. Take x ∈ X. Set an = (x, en) and look at

∑∞
1 anen. Does

it converge? Look at the partial sums sN =
∑N

1 anen and ‖sN‖2 =
∑N

1 |an|2; we said
convergence happens iff

∑
|an|2 converges. We have (x − sN ) ⊥ en. So (x − sN ) ⊥ sN

because sN is a linear combination of the eN . Now x = (x− sN ) + sN , and the parts are
orthogonal, so

‖x‖2 = ‖x− sN‖2 + ‖sN‖2

So ‖sN‖2 ≤ ‖x‖2 with equality iff x = sN , i.e.
∑N

1 |an|2 ≤ ‖x‖2 with equality iff x = sN .
We have just proven

Proposition 26.5 (Bessel’s inequality, finite case).

N∑
1

|(x, en)|2 ≤ ‖x‖2

with equality iff x =
∑N

1 (x, en)en.

So our original sum
∑∞

1 anen converges, because
∑∞

1 |an|2 ≤ ‖x‖2 <∞.

Let x̃ =
∑∞

1 anen ∈ X̃. We have (x− x̃) ⊥ en for all n, which implies that (x− x̃) ⊥ y for

all y in the span of the en, and hence (x− x̃) ⊥ y for all y ∈ X̃. So this is the projection
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to X̃. I claim that x = x̃ iff x ∈ X̃: if x ∈ X̃ then (x, en) = (x̃, en) for all n. (Now use an
argument like before to show x = x̃.)

Proposition 26.6 (Bessel’s inequality).
∞∑
1

|(x, en)|2 ≤ ‖x‖2

with equality iff ‖x− x̃‖2 = 0, iff x ∈ X̃, iff x =
∑∞

1 (x, en)en ∈ X.

All these statements are independent of the ordering of the orthonormal system.

Definition 26.7. An orthonormal system en for n ∈ N is complete if the closure of the
span of the en is all of X. Equivalently, for all x ∈ X, x =

∑∞
1 (x, en)en; also equivalently,

no x ∈ X, x 6= 0 is ⊥ to en for all n (use the previous expression for x).

27. November 9

27.1. Orthonormal systems. Example: in L2(T), en(x) = e2πinx form a complete

orthonormal system: f ⊥ en =⇒ f = 0 in L2(T) (i.e. f̂(n) = 0 ∀n =⇒ f = 0). With

our new notation, f̂(n) = 〈f, en〉 and f =
∑∞

n=−∞ f̂(n)en, with the sum converging in

L2(T). Parseval’s identity says ‖f‖22 =
∑
|f̂(n)|2 for f ∈ L2(T).

One can always find orthonormal systems by the Gram-Schmidt process. Start with
a linearly independent set f0, f1, · · · in a Hilbert space X. We can find orthonormal
e0, · · · , en with the same span as f0, · · · , fn and (fi, ei) real and > 0. Define e0 = f0

‖f0‖ ,

and define en = En
‖En‖ where En = fn −

∑n−1
i=1 (fn, ei)ei.

In L2([−1, 1]) take fn(x) = xn. These are linearly independent; using Gram-Schmidt, we
can get polynomials en of degree n that are orthonormal. We end up with

en = Pn ·
√

2

2n+ 1

where the polynomials Pn are called the Legendre polynomials. These en are a complete
orthonormal system. Now look at the orthonormal system en = e2πinx. If 〈f, en〉L2[−1,1] =
0 for all n then since Fourier transform can be written

〈f,
n∑
0

1

m!
(2πicx)m〉 = 0

∫ 1
−1 f(x)e−2πicx dx = 0 for all c implies that the fourier transform is zero, so f = 0 in

L2([−1, 1]).

Now look at X = L2(D) where D is the unit disk in R2. If fn = xn then

〈fn, fm〉 =

∫
xn+m2

√
1− x2 dx
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Gram Schmidt produces a series of orthonormal en. These are related to the Chebyshev
polynomials Un of the second kind:

en =
Un√
π

‖1‖L2 =
√
π; U0 = 1, U1 = 2x, U2 = 4x2 − 1

Apply Gram-Schmidt to fn = xne−πx
2/2 inX = L2(R). For example, ‖f0‖2 =

∫
e−πx

2
= 1.

We get en(x) = hn(x)e−πx
2/2 where hn are the Hermite functions. These form a complete

linear system: if 〈f, en〉 = 0 for all n then 〈f, polyn(x)e−πx
2/2〉 = 0 for all polynomials;

this implies 〈f, e2πiξxe−πx−2/2〉 = 0 for all ξ. So∫
f(x)e−πx

2/2e−2πiξx dx = 0

Since ̂f(x)e−πx2/2 = 0 then f(x)e−πx
2/2 = 0, which implies that f = 0.

In general, if X is a separable Hilbert space, then X contains a complete orthonormal
system: take any countable set (fn) whose span is dense, throw away elements until the
elements are linearly independent, and then apply Gram-Schmidt.

In the non-separable case, we can have an orthonormal system ei where the indices i
might be uncountable. If x ∈ X then 〈x, ei〉 6= 0 only for countably many indices. This is
a consequence of Bessel’s inequality

N∑
n=1

|〈x, ein〉|2 ≤ ‖x‖2

which implies that the number of indices i ∈ I with |〈x, en〉|2 ≥ ε is ≤ ‖x‖2/ε. (Union
together the finite sets corresponding to ε = 1

n , and you get a countable set.) As last time,
if x ∈ X we get x̃ =

∑
i∈I(x, ei)ei. Then ‖x̃‖ ≤ ‖x‖.

In a complete orthonormal system, if x ⊥ ei for all i then x = 0, and span(ei : i ∈ I) is
dense. Either of these criteria are equivalent to having equality in Bessel’s inequality. In
general, to get a complete orthonormal system, we have to use Zorn’s lemma. The first
condition says that you can’t take a complete orthonormal system and make it bigger.
So, complete means “maximal,” in the sense of not being contained in any strictly larger
orthonormal system. Now Zorn’s lemma just works. (But mainly, we only care about
separable Hilbert spaces, and we don’t need Zorn’s lemma.)

Theorem 27.1 (Riesz representation theorem for Hilbert spaces). Given a Hilbert space
X and a bounded linear functional α : X → C there exists a ∈ X such that α(x) = (x, a)1

for all x ∈ X.

|α(x)| ≤ M · ‖x‖ where M = ‖a‖. This uses Cauchy-Schwartz, which says |〈x, y〉| ≤
‖x‖‖y‖; this is a special case of Bessel’s inequality:

∑1
n=1 |〈x, en〉|2 ≤ ‖x‖2.

1Our inner products are linear in the first spot and conjugate linear in the second.
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Proof. Use an orthonormal system. . . or define

Γ : X → R where Γ(x) = ‖x‖2 −Re(α(x))

This is bounded below: Γ ≥ ‖x‖2 −M · ‖x‖ ≥ −M
4 where M = ‖α‖. We have to show

that it achieves its infimum, Γ0. Take a sequence xn ∈ X with Γ(xn)→ Γ0 and show that
this is a Cauchy sequence. If Γ(xn) and Γ(xm) are both in [Γ0,Γ0 + ε]

1

4
‖xn − xm‖2 =

1

2
(‖xn‖2 + ‖xm‖2)− ‖xn + xm

2
‖2

=
1

2
(Γ(xn) + Γ(xm))− Γ

(
xn + xm

2

)
α terms cancel because it’s linear

≤ (Γ0 + ε)− Γ0 = ε

So ‖xn − xm‖ ≤
√

4ε once Γ(xn),Γ(xm) ≤ Γ0 + ε. Let x∗ = limxn. Look at x∗ + tv for
t ∈ R, v ∈ X. In the infimum, the derivative is zero:

0 =
d

dt
Γ(x∗ + tv)|0

= (x∗, v) + (v, x∗)−Re(α(v)))

That is, for all v ∈ X, Re(2(v, x∗)− α(v)) = 0. Apply this to iv as well, getting that the
imaginary part is also zero. That is, α(v) = (v, 2x∗) for all v. So a = 2x∗, and this is the
Riesz representation theorem. �

We get a map I : X → X∗, with a 7→ αa, where αa(x) = (x, a). This is injective; the
Riesz representation theore m says that it is surjective. This is not a complex linear map:
I(λa) 6= λαa; instead, I(λa) = λαa (this is because the λ ends up in the second spot of
(x, a), which is the conjugate linear one). So the natural map I : X → X∗ is conjugate
linear.

28. November 14

28.1. More about Hilbert spaces.

Proposition 28.1. If X is a Hilbert space, and V ⊂ X is a closed linear subspace, then
X = V ⊕ V ⊥, where V ⊥ = {w : (w, v) = 0 ∀v ∈ V }.

Proof. It is certainly true that V ⊥ is a vector space, and V ∩ V ⊥ = {0}. The
interesting part is to show that every element x ∈ X can be written x = v + w for v ∈ V
and w ∈ V ⊥. Equivalently, there is some v ∈ V such that x − v is ⊥ to all elements
of V . Use the Riesz representation theorem for the Hilbert space V : consider the map
α : V → C which sends u 7→ (u, x) (where x is fixed). But Riesz says that there is some
v ∈ V such that α(u) = (u, v) for all u ∈ V . That is, (u, x − v) = 0 for all u ∈ V . So
x− v ∈ V ⊥. �

Remark 28.2. If X is a Banach space and V ⊂ X is a closed linear subspace, there may
be no closed subspace W ⊂ X such that X = V ⊕W . If V does have such a W , V is
called complemented.
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28.2. Baire Category theorem.

Lemma 28.3. Let X be a complete metric space. Let S1 ⊃ S1 ⊃ · · · be nested closed sets
in X with εn = diam(Sn)→ 0 as n→∞. The intersection

⋂
Sn is one point. (Recall the

diameter is supx,y∈Sn d(x, y).)

Proof. It’s pretty clear that there can’t be two points in the intersection, because
otherwise there would be a positive distance between them. Choose xn ∈ Sn for all n.
For m,m′ ≥ n then d(xm, xm′) ≤ εn. So these are Cauchy. Let x = limxm. Then x ∈ Sn
because Sn is closed and xm ∈ Sn for m ≥ n. So x ∈

⋂
Sn. �

Theorem 28.4 (Baire category theorem). Let X be a complete metric space. Let Gn for
n ∈ N be a collection of open and dense subsets. Then G =

⋂
Gn is also dense in X.

Proof. Given E ⊂ X open, we must show that E ∩ G is nonempty. E ∩ G1 is
nonempty because G1 is dense, and it’s open because G1 is open. So G1 ∩ E contains
an open metric ball S1 = B(x0, ε) = {x : d(x0, x) < ε}. By making ε smaller, we can
arrange for the closed ball S∗1 ⊂ G1∩E. Now look at S1∩G2, which is open and nonempty
as in the previous intersection. There is an open ball S2 = B(x1, ε2). We can arrange
for ε2 ≤ ε1

2 . We can also arrange for S∗2 ⊂ S1 ∩ G2. Continuing this process, we get
S2 ⊂ S∗2 ⊂ Sn−1 ∩ Gn for each n, with diam(S∗n) → 0. By the lemma, there is some
x ∈

⋂
S∗n ⊂

⋂
Sn−1, so x ∈

⋂
Gn and x ∈ E. So x ∈ E ∩G. �

Definition 28.5. In X a set K is called nowhere dense if for all balls B ⊂ X, K ∩ B is
not dense in B (i.e. it’s not dense in any ball). Equivalently, closure(K) does not contain
any ball. Equivalently, X\closure(K) is open and dense.

Theorem 28.6 (Baire category theorem, restated). If Kn for n ∈ N is a nowhere dense
set for all n, then the complement of

⋃
Kn is dense in X.

Set K∗n = closure(Kn), and set Gn = X\K∗n. The Gn are open and dense, by one of the
definitions above. Then

⋂
Gn is dense, i.e. X\

⋃
K∗n is dense, so X\

⋃
Kn is dense.

Definition 28.7. K ⊂ X is meager if it is a countable union of nowhere dense subsets
(i.e. looks like the

⋃
Kn above).

Theorem 28.8 (Baire category theorem, again). The complement of a meager set is non-
empty.

For example, Rn is not a countable union of proper, affine subspaces. (So you can’t fill up
all of R2 with countably many lines.)

28.3. Uniform boundedness principle.

Theorem 28.9. Let X be a Banach space, Y a normed space, and E ⊂ L(X,Y ) be a
subset of bounded linear operators. Suppose that , for every x ∈ X, there exists Mx ≥ 0
such that ‖Tx‖ ≤ Mx for all T ∈ E. Then there exists some M such that ‖T‖ ≤ M for
all T ∈ E.
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Proof. For each n ∈ N let Kn ⊂ X be the set

Kn = {x ∈ X : ‖Tx‖ ≤ n ∀T ∈ E}
This is closed: ‖Tx‖ ≤ n is a closed condition, and ∀T ∈ E implies an intersection.
If n ≥ Mx then x ∈ Kn. So for all x there is some n such that x ∈ Kn. That is,
X = ∩∞1 Kn. By the Baire category theorem, there is some n such that Kn is not nowhere
dense. That is, the closure (well, Kn itself) contains a ball – a closed ball, if we like. So
Kn ⊃ B∗(x0; ε) = {x : ‖x − x0‖ ≤ ε}. For any x ∈ X look at x0 + ε x

‖x‖ . It is in Kn

because it is in the ball B(x0, ε). So for all T ∈ E,∥∥∥∥T (x0 + ε
x

‖x‖
)

∥∥∥∥ ≤ n
So by the triangle inequality,∥∥∥∥T (ε

x

‖x‖
)

∥∥∥∥ ≤ ‖Tx0‖+ n ≤Mx0 + n

So for all T ∈ E, for all x ∈ X ‖Tx‖ ≤ 1
ε (Mx0 + n)‖x‖. So

‖T‖ ≤ 1

ε
(Mx0 + n)

�

29. November 16

29.1. Uniform Boundedness. We were considering a subspace E ⊂ L(X,Y ).

Theorem 29.1 (Uniform boundedness principle). If X is a Banach space and αn ∈ X∗
for n ∈ N, and if for all x, (|αn(x)|)n is bounded by Mx, then ‖αn‖ is bounded. That is, if
for all n there is some xn ∈ X with ‖xn‖ ≤ 1 and |αn(xn)| unbounded then there is some
x with |αn(x)| is unbounded as n→∞.

Application 29.2. There exists a continuous periodic function f ∈ C(T) such that the

Fourier series
∑
f̂(n)e2πin does not converge at x = 0. Indeed, the partial sums

sn(f) =
n∑
−n

f̂(n)e2πinx

have |sn(f)(0)| an unbounded sequence.

Remark 29.3. When we regard C(T) as a Banach space, we usually do so by embedding
it in L∞(T) so the norm is ‖f‖ = sup |f |.

Proof. Define αn : C(T)→ C a bounded linear functional by αn(f) = sn(f)(0). We
want to find fn ∈ C(T) with sup |fn| ≤ 1 and |sn(fn)(0)| → ∞. (Once we have found such,
the uniform boundedness principle implies that there is some f with |αn(f)| unbounded,

which is what we want.) Recall that sn(f) = Dn ∗T f . So sn(f) =
∫ 1

0 f(x)Dn(x)dx. Let
gn(x) = sign(Dn(x)). (The domain of Dn can be broken up into five places where the
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sign is alternating.)∫ 1

0
gnDn =

∫ 1

0
|Dn| =

∫ 1

0

| sin(π(n+ 1)x)|
sin(πx)

dx

≥
∫ 1

0

| sin(π(n+ 1)x)|
πx

=

∫ n+1

0

| sin(πy)|
πy

dy

≥
(

1

π

∫ 1

0
sin(πy)dy

)
×
n+1∑

0

1

m

=
2

π2

n+1∑
1

1

m
≥ 2

π2
log(n+ 2)→∞

We were trying to find continuous functions with sup |fn| ≤ 1 such that
∫ 1

0 fnDn → ∞;
just approximate gn by continuous functions. �

This isn’t all that rare: the functions with (snf)(0) divergent are a comeager set in C(T)
(that is, the complement of a meager set).

29.2. Weak convergence. IfX is a Banach space, xn → x usually means ‖xn−x‖ →
0; this is “strong” convergence, a.k.a. “convergence in norm.” What about other notions
of convergence?

Definition 29.4 (Weak convergence). A sequence (xn)n converges weakly to x ∈ X if for

every α ∈ X∗, α(xn)→ α(x). In this case write xn
w→ x.

Example 29.5. If X is a Hilbert space and xn is an orthonormal sequence, then xn 6→ 0

in norm. But xn
w→ 0 because for all a ∈ X, (xn, a)→ 0 as n→∞. Indeed, from Bessel’s

inequality
∑∞

1 |(xn, a)|2 ≤ ‖a‖2.

Definition 29.6 (Weak-* convergence). Let αn for n ∈ N be a sequence in the dual space

X∗ where X is a Banach space. We say that αn
w∗→ α if for all x ∈ X, αn(x) → α(x) as

n→∞.

Remark 29.7. For a sequence αn ∈ X∗, αn
w∗→ α iff for all ϕ ∈ X∗∗, ϕ(αn) → ϕ(α) as

n→∞. If X is reflexive, then this is equivalent to αn
w→ α.

Proposition 29.8. Let X be a Banach space and suppose αn
w∗→ α in X∗. Then ‖αn‖ is

a bounded sequence.

Proof. Use the uniform boundedness principle. If (αn)n is not a bounded sequence,
then there exists x such that |αn(x)| is not a bounded sequence. So αn(x) 6→ α(x), which

implies αn 6
w∗→ α. �
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Proposition 29.9. Let X be a separable Banach space. Let αn ∈ X∗ be a bounded
sequence: ‖αn‖ ≤ M for all n. Then there is some α ∈ X∗ and a subsequence nk with

αnk
w∗→ α.

Proof. Choose in X a countable dense set xk. By hypothesis αn(x1) is a bounded

sequence. So there is some subset N(1) ⊂ N with

lim
n∈N(1)

n→∞

αn(x1) = λ1

Find a convergent subsequence: there is some N(1) ⊂ N(1) such that αn(x2) → λ2 as

n ∈ N(2), n→∞. Keep doing this. Diagonalize to get N′ ⊂ N such that for all k, αn(xk)
is convergent as n ∈ N′. It follows that αn(x) is convergent for n ∈ N′, and all x ∈ X.
Indeed, it’s Cauchy: given ε > 0 find k such that ‖x − xk‖ ≤ ε

3M . Find n0 such that
∀n′,≥ n0 where n′, n ∈ N′ we have |αn(xko− αn′(xk)) ≤ ε

3 . ‖αn‖ ≤M so

|αn(xk)− αn(x) ≤M‖xk − x‖ ≤
ε

3

So |αn(x)− αn′(x)| ≤ ε for n, n′ ≥ n0.

Now define
α(x) = lim

n→∞
n∈N

αn(x)

Need to check that this is a bounded linear functional. And αn
w∗→ α because αn(x)→ α(x)

for all x. �

Corollary 29.10. Let X (hence X∗) be a reflexive, separable Banach space. If xn ∈ X
is a bounded sequence, then there is a weakly-convergent subsequence xn′

w→ x for n′ ∈ N′,
n′ →∞.

Example 29.11. Look at `1 as the dual space of c0. Let en = (0, · · · , 0, 1, 0, · · · ) ∈ `1 be
the sequence with a single 1 in the nth spot. The en do not converge to zero in the strong

sense, because ‖en − 0‖ = 1. But en
w∗→ 0, because for all a ∈ c0, en(a) = an → 0 as

n→∞.

en 6
w→ 0: the dual of `1 is isomorphic to `∞. Consider in `∞ the sequence b = (1, · · · , 1).

As an element of (`1)∗, b(en) is the nth term of b (recall the
∑
anbn definition. . . ). But

b(en) 6→ 0 as n→∞, so the sequence is not weakly convergent.

30. November 18

Theorem 30.1. Let X,Y be Banach spaces, let T ∈ L(X,Y ) be a surjective bounded linear
operator. Then T is an “open mapping”: i.e. if G ⊂ X is an open set, then T (G) is open
in Y .
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Proof. Let Ur ⊂ X be the open ball {x : ‖x‖ < r} and Vr = {y : ‖y‖ < r} ⊂ Y .
We will start by proving that TU1 contains Vε for some ε > 0. TUn are an increasing
sequence of closed subsets. Because X =

⋃
Un, Y = T (X) implies Y =

⋃
n TUn, and

Y =
⋃
n TUn because it is closed. By the Baire Category theorem, some TUn contains an

open ball V = {y : ‖y − y0‖ < 2ε} ⊂ Y . By scaling, without loss of generality we can
assume that this ball is contained in TU1. Define V2ε = V − {y0} ⊂ Y (subtraction, not
set minus). Then

V2ε ⊂ TU1 − TU1 ⊂ TU2

so Vε ⊂ TU1.

Now I clam that TU1 ⊂ TU2. Let y ∈ TU1. There exists x1 ∈ U1 such that ‖y−Tx1‖ < ε
2 .

So y − Tx1 ∈ V ε
2
⊂ TU 1

2
. Using the same argument, there is some x2 ∈ U 1

2
such that

‖y − Tx1 − Tx2‖ < ε
4 so y − Tx1 − Tx2 ∈ V ε

4
. Continuing this for all n we get

(6) xn ∈ U2−(n−1) with ‖y − Tx1 − · · · − Txn‖ < 2−nε

Set x =
∑
xn which exists because X is complete and

∑
‖xn‖ < 2 = 1 + 1

2 + · · · Indeed
x ∈ U2 and ‖y − Tx‖ = 0 from (6). So y ∈ TU2. Now see TU2 ⊃ Vε. By scaling,
TUδ ⊃ Vε· δ

2
. So if U is a neighborhood of 0 ∈ X, then TU contains some Vε′ .

So now let G ⊂ X be open. Consider y = Tx for some x ∈ G. We must show that
TG contains a ball around y. U = G − x (again group minus, not set minus!) is a
neighborhood of 0 in X. So TU = TG − Tx contains Vε′ , a ball around the origin in Y .
So TG ⊃ Vε′ + Tx = Vε′ + y. �

Corollary 30.2. If X,Y are Banach spaces and T : X → Y is bounded, linear, and
bijective, then the inverse map T−1 : Y → X is also bounded.

Proof. The open mapping theorem says that T−1 is continuous; but continuous ⇐⇒
bounded for linear operators on Banach spaces. We saw that TU1 ⊃ V ε

2
, so T−1(V ε

2
) ⊂

TU1, a.k.a. T−1(V1) ⊂ U 2
ε
. This means that T−1 sends things of norm ≤ 1 to things of

norm ≤ 2
ε :

‖T−1‖ ≤ 2

ε
�

Example 30.3. Let F : L1(T) → c0(Z) be the Fourier series operator sending f 7→
(f̂(n))n. This is a bounded linear map: ‖F‖ ≤ 1 because supn |f̂(n)| ≤ ‖f‖L1 , which
means ‖F(f)‖c0 ≤ ‖f‖L1 . This is injective because the function can be recovered a.e.
from its coefficients.

We will show that F is not surjective. If F were bijective, then F−1 would be bounded
by Corollary 30.2. So

‖F−1a‖L1 ≤ c · ‖a‖c0 = c · sup
n
|a(n)|
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for a ∈ c0(Z) and some constant c. For f ∈ L1(T),

‖f‖L1(T) ≤ c · sup
n
|f̂(n)|

Take f = Dk (the kth Dirichlet kernel). It turns out that ‖f‖L1(T) ∼ c′ · log k, but f̂(n)

is (· · · , 0, 1, · · · , 1, 0, · · · ) where the ones are from indices −k to k. So supn |f̂(n)| = 1.
There is no such constant c that is independent of f , so we have a contradiction.

If T : X → Y is bijective with T−1 ∈ L(Y,X), then X and Y are isomorphic Banach
spaces. But they might not be isometric spaces.

Question 30.4. Is L1(T) ∼= c0(Z) as Banach spaces?

No. L1(T)∗ = L∞(T) but c0(Z)∗ = `1(Z). `1(Z) is separable, while L∞(T) is not. L1(T)
cannot be isomorphic to c0(Z) are not isomorphic, because their duals are not isomorphic.

Here is a reformulation of the open mapping theorem:

Theorem 30.5 (Closed graph theorem). Let X and Y be Banach spaces, and T : X → Y
be a linear map (not necessarily bounded). Suppose T has closed graph: Γ(T ) := {(x, Tx) :
x ∈ X} is closed in X × Y . Then T is bounded.

If xn → x and yn → y, and yn = Txn for all n (i.e. (xn, yn) ∈ Γ(T )) then closed-ness
shows that (x, y) ∈ Γ(T ), i.e. y = Tx. Note that this is not quite the same as continuity:
we had to assume the yn converged to something to begin with. (Think about f : R→ R
where x 7→ 1

x and 0 7→ 0. f has closed graph but is not continuous.)

X × Y is a Banach space when given the norm ‖(x, y)‖X×Y = ‖x‖ + ‖y‖. (Convergence
of (xn, yn)n means (xn)n and (yn)n both converge.)

Proof. Γ(T ) ⊂ X×Y is a closed linear subspace of a Banach space, so it is a Banach
space. Let π : Γ(T ) → X be the projection (x, Tx) 7→ x. This is a bounded, linear,
bijective map. (To see boundedness, note that ‖x‖ ≤ ‖(x, y)‖ so ‖π‖ ≤ 1.) By Corollary
30.2, π−1 : X → Γ(T ) is bounded too: this is the map x 7→ (x, Tx). So there is some M
such that ‖(x, Tx)‖ ≤M · ‖x‖ for all x, or equivalently

‖x‖+ ‖Tx‖ ≤M · ‖x‖
and there is some M ′ such that ‖Tx‖ ≤M · ‖x‖. �

31. November 21

31.1. Measure theory. Let X be any set. A collection of subsets M ⊂ P(X)
(where P(X) is the collection of all subsets) is a σ-algebra if:
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(1) ∅ ∈M
(2) M is closed under complements (so X ∈M )
(3) M is closed under countable unions.

Example 31.1. • M = {∅, X}
• M = P(X)
• M = L(Rd) (Lebesgue-measurable subsets)
• M = all subsets E ⊂ X such that either E is countable or X\E is countable.
• If M1 and M2 are σ-algebras, then M1 ∩M2. Actually, any intersection of Mα

works.

Given any collection S ⊂ P(X) of subsets of X, we can look at the intersection of all
σ-algebras M containing S. This is called the σ-algebra generated by S. For example, in
R if you take S = ([0, 2], [1, 3]) you end up with a finite set of intervals like [0, 1), [1, 2], (2, 3]
etc.

Example 31.2. B(Rd) is the σ-algebra generated by the open sets (this is the same as
the σ-algebra generated by the rectangles). We know B ⊂ L, but the inclusion is strict.

What is B? You have

(0) all open sets and all closed sets,
(1) all countable unions of sets from step (0), and all countable intersections of sets

from step (0)
(2) etc. from steps zero and one. . .

But maybe you could have a set from step (0), a set from step (1), etc. and then union
them together, or intersect them; this set is not in any step (n). This suggests considering
a step (ω), and keep going.

Definition 31.3. A measurable space is a pair (X,M ) where M ⊂P(X) is a σ-algebra.

A measure space is a triple (X,M , µ) where X and M are as above, and µ : M → [0,∞]
satisfies

(1) µ(∅) = 0
(2) (Countable additivity) If E ∈M and E =

⋃∞
1 Ek is a countable union of disjoint

sets, then µ(E) =
∑
µ(Ek)

Example 31.4. • (Rd,L, λ), where λ is Lebesgue measure. Or, consider (Rd, B, λ).
• (X,P(X), γ) is a measure space, where γ is the counting measure:

γ(E) =

{
# of elements if E if E is finite

∞ otherwise

• There are other Borel measures on R: (R, B, µ)
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Definition 31.5. In (X,M , µ) call E ∈ M a null set if µ(E) = 0. Then (X,M , µ)
is complete if every subset E′ of a null set is measurable (i.e. is in M ). (This implies
µ(E′) = 0.)

(Rd,L, λ) is complete, but (Rd, B, λ) is not: the Cantor set is a Borel null set, but “most”
of its subsets are not Borel sets. (The cardinality of the subsets of the Borel sets is larger
than the cardinality of the Borel sets)

Warning 31.6. In the usual measure, we did not distinguish between open and closed
intervals; these had the same measure because points had measure zero. But that might
not be the case in an arbitrary measure space.

Let F : R→ R be a non-decreasing function, and tweak it by defining

F̃ = lim
ε→0

F (x+ ε)

(So if you have a jump discontinuity, in F̃ you get the higher point in the jump.) For

(a, b] ⊂ R define µ(a, b] = F̃ (b)− F̃ (a). This defines a measure on B. What is the measure
of a point?

µ({b}) = µ(
⋂
ε>0

(b− ε, b]) = lim
ε>0

(b− ε, b] = F̃ (b)− lim
ε>0

F̃ (b− ε)

So this is the size of the jump discontinuity on F , if there is one, at this point.

An outer measure on a set X is a map

µ∗ : P(X)→ [0,∞]

satisfying

• µ∗(∅) = 0
• (Countable subadditivity): If E ⊂

⋃∞
k=1 then µ∗(E) ≤

∑∞
k=1 µ∗(Ek).

Every outer measure (X,µ∗) gives rise to a measure space (X,M , µ), by Caratheodory’s
construction (i.e. the same one we used to get Lebesgue measure out of the original outer
measure). E ∈M if, for all A ⊂ X, we have

µ∗(A ∩ E) + µ∗(A ∩ Ec) = µ∗(A)

In this case, we say that µ(E) = µ∗(E). We need to check that M is a σ-algebra, and
that µ is countably additive. This involves the same proofs as the rectangle-outer-measure
case.

Fact 31.7. (X,M , µ) as constructed by Caratheodory’s construction is complete.

But how do you construct an outer measure? Let S ⊂P(X) be any collection of subsets
of X, with ∅ ∈ S.2 Suppose µ0 : S → [0,∞] is any map taking ∅ 7→ 0. For any E ⊂ X

2This is in analogy with S being the set of rectangles used to construct outer measure before.
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define
µ∗(E) = inf

E=∪Ek
Ek∈S, k∈N

∑
µ0(Ek)

There may be no covers {Ek}; in this case, take the infimum to be ∞. (i.e. use the
convention inf{} =∞) This is an outer measure, by the proof of countable subadditivity
in the Lebesgue measure case.

Proposition 31.8. µ∗ is an outer measure.

Does this agree with the original µ0? No; elements of S might not belong to M , and if
they do, the measure might not be the same as before.

32. November 28

RECALL (X,M , µ) was a measure space, where M was a σ-algebra and µ was a countably
additive measure. We also had an outer measure space (X,µ∗) where µ∗ : P(X)→ [0,∞]
is defined on all subsets of X (whereas µ is only defined on the σ-algebra). We required
it to have countable subadditivity:

µ∗(E) ≤
∞∑
1

µ∗(Ei) if E ⊂ ∪∞1 Ei

Let S be any collection S ⊂ P(X) containing the empty set, and specify any function
µ0 : S → [0,∞] that takes ∅ 7→ 0 (where S is analogous to the collection of rectangles in
our original construction of Lebesgue measure).

Construction 32.1. Given µ0 and a collection S, define for E ⊂ X,

µ∗(E) = inf
E=

⋃
Ri

∞∑
i=1

µ0(Ri)

This is an outer measure.

From a measure, we can construct a measure from Caratheodory’s construction. However,
by the time we’ve gotten a real measure µ, there might not be any measurable sets, and
maybe µ0(E) 6= µ(E).

Why did this work before? Intersecting a rectangle with a half-space makes two disjoint
sets where the volume is additive. Ditto volume is additive when you consider intersections
of rectangles. We also proved:

Proposition 32.2. If R ⊂ Rn and R ⊂
⋃
i=1∞Ri then vol(R) ≤

∑
vol(Ri). (It is enough

to check this when ⊂ is =. This required Heine-Borel.)

Definition 32.3. A collection of sets A ⊂P(X) is a ring of sets if they are closed under
finite unions and intersections, and under relative complements (that is, if R1, R2 ∈ A then
R1\R2 ∈ A). Equivalently, if R1, R2 ∈ A we need R1∩R2 ∈ A and (R1\R2)∪(R2\R1) ∈ A.
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(Think of intersection as multiplication and symmetric differences as addition; then this
is actually a ring, where zero is the empty set, and 1 is the whole set X if it is in the ring).

Definition 32.4. A pre-measure is a ring of sets A and a map µ0 : A → [0,∞] with
µ0(∅) = 0 that is finitely additive under disjoint unions, and satisfies:

if R ⊂
⋃∞

1 Ri for R,Ri ∈ A then µ0(R) ≤
∑∞

1 µ0(Ri)

In our original setting, A is the finite unions and relative complements of rectangles.

Theorem 32.5. If (X,A, µ0) is a space with a pre-measure, and if µ∗ is the resulting outer
measure, and (X,M , µ) is the resulting measure space by Caratheodory’s construction,
then A ⊂M and µ(R) = µ0(R) for all R ∈ A.

This works like before with the rectangles.

Example 32.6. Let F : R→ R be non-decreasing, and right-continuous (i.e. limy↘x F (y) =
F (x) for all x). Let A consist of all finite unions of half-open intervals (a, b]. Define
µ0((a, b]) = F (b)− F (a). Finite additivity comes from the fact that (a, b] ∪ (b, c] = (a, c],
and countable additivity works as expected. If (a, b] ⊂

⋃∞
1 (ak, bk] then we need to check

that F (b)− F (a) ≤
∑

(F (bk)− F (ak)).

Given ε > 0, and using semi-continuity choose δ > 0 such that F (a + δ) ≤ F (a) + ε.
Choose δk > 0 such that F (bk + δk) ≤ F (bk) + 2−kε. Then

[a+ δ, b] ⊂
∞⋃
1

(ak, bk + δk) =⇒ [a+ δ, b] ⊂
N⋃
1

(ak, bk + δk)

for some N . So

(a+ δ, b] ⊂
N⋃
1

(ak, bk + δk]

which implies

F (b)− F (a+ δ) ≤
N∑
1

(F (bk + δk)− F (ak))

F (b)− F (a) ≤
∞∑
1

(F (bk)− F (ak)) + 2ε

So we get a measure space (R,M , µF ) with M ⊃ B (the Borel subsets). Hence this re-
stricts to a Borel measure space. We call µF the Lebesgue-Stieltjes measure corresponding
to F .

Example 32.7. If F = χ
[0,∞) then

µF =

{
1 if 0 ∈ E
0 else
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If f is locally integrable over R and nonnegative, then define F such that F (b)− F (a) =∫ b
a f . In that case, µF (E) =

∫
f · χE . If f(x) = e−πx

2
then µF (R) = 1.

Given a measure space (X,M , µ) as before we can define the integral
∫
X f dµ for f : X →

R a measurable function: that is, a function such that f−1(U) ∈ M if U is open. For

elementary functions g =
∑N

1 aiχEi , for Ei ∈M of finite measure, define∫
g dµ =

N∑
1

aiµ(Ei)

For f ≥ 0 define ∫
f dµ = sup

g≤f
g elementary

∫
g dµ

For all f , define ∫
f =

∫
f+ −

∫
f−

We have the monotone convergence theorem and the dominated convergence theorem in
this case. We get a Banach space L1(X,M , µ) of integrable functions f modulo a.e. zero
functions.

Example 32.8. If X = N and µ is the counting measure µ(E) = #E and M = P(N),
then L1(X,M , µ) = `1. (Functions on N are just sequences, and we need them to have
finitely many nonzero values, else the sum is infinite!)

Definition 32.9. A measure space (X,Mµ) is called σ-finite if X can be covered by
countably many E ⊂M with µ(E) <∞.

An example of a space that is not σ-finite is R with the counting measure (you can’t cover
it with countably many finite sets).

Example 32.10. Let (X,M , σ) arise from a pre-measure (X,A, µ0). Let Aσ be all the sets
obtained as countable unions of elements of A, and let Aσσ be all countable intersections
of Aσ sets. Let E ∈ M be of finite measure. Given ε > 0 we can find Oε ⊃ E with
µ(Oε) ≤ µ(E) + ε that is an element of Aσ (in the Lebesgue case, a countable union
of rectangles), and such that µ(Oε\E) ≤ ε. If (Mµ) is σ-finite, then for any E ∈ M
there exists Oε ∈ Aσ such that µ(Oε\E) ≤ ε. (Same proof as in Lebesgue case: use 2−kε
argument.)

Proposition 32.11. Assume our space is σ-finite. For E ∈ M there is some G ∈ Aσσ
with G ⊃ E and µ(G\E) = 0.

Proof. Put G =
⋂∞
n=1O 1

n
so G ∈ Aσσ. Then G ⊃ E and µ(G\E) ≤ 1

n for any n. �
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33. November 30

33.1. Product measure. Let (X1,M1, µ1) and (X2,M2, µ2) be two measure spaces.
Let X = X1 × X2. On X, define a rectangle to be a product E1 × E2, where Ei ∈ Mi.
Let A contain all finite unions of such rectangles. Note A is a ring, because it is closed
under intersections, unions, and differences. Define µ0 : A → R by µ0(E1 × E2). Check
that this is a well-defined, finitely additive map. Furthermore, it is a pre-measure: if
E ⊂ X1 ×X2 is a rectangle, and E1 × E2 = E =

⋃∞
i=1E1,i × E2,i is a decomposition into

disjoint rectangles, then we want this to be countably additive:

µ1(E1)µ2(E2) =
∑

µ1(E1,i)µ2(E2,i)

See Stein-Shakarchi; the proof uses the monotone convergence theorem on both Xi. (Con-
sider the measure on cross-sections {x} × E2.)

So this gives rise to a measure space (X,M , µ), called the product measure space. If you
start with Lebesgue measure on R, this gives rise to Lebesgue measure on R2.

Suppose X =
∏
i∈I Xi, where I is a perhaps uncountable indexing set. Do not consider

arbitrary products
∏
i∈I Ei, for Ei ∈ M . You run into problems defining µ0(

∏
Ei) =∏

µi(Ei): you can’t take an infinite product of real numbers. To fix this, require each
(Xi,Mi, µi) to be a probability space: a measure space where µi(Xi) = 1. (Euclidean space
is not a probability space; the unit cube is.) Instead of considering arbitrary products, say
that a rectangle will be a product

∏
i∈I Ei where Ei = Xi for all but finitely many i. So

the infinite product makes sense, because all but finitely many of the factors are 1. This is
a finite intersection of half-spaces. Let A be the collection of all finite unions of rectangles.
Having defined µ0(rectangle), we can define µ0 : A → R by linearity. (Check this is well-
defined.) We need to check that this is a pre-measure (i.e. countable additivity). Get
from µ0 a measure space (X,M , µ).

33.2. Push-forward. Let (X,M , µ) be a measure space, and Y be a set. Let X
π→ Y

be any map, and consider the collection N ⊂ P(Y ) of subsets F ⊂ Y with measurable
preimage in X. N is a σ-algebra. Define

ν : N → [0,∞] ν(F ) = µ(π−1(F ))

Then (Y,N , ν) is a measure space. If (Xi,Mi, µi) are probability spaces and (X,M , µ)
is the product, look at πi : X → Xi. The push-forward of µ by πi is a measure on Xi, and
this is an extension of µi: you get some N and ν as defined above, such that N ⊃ Mi

and ν|Mi
= µi. If you apply this to the Borel sets, you get the Lebesgue measurable spaces

back.

33.3. The language of probability.

Theorem 33.1 (Wiener). If bm, for m ∈ Z are random variables that are C-valued,
independent, and each standard normal (mean = 0, standard deviation =1), then with
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probability 1, the series ∑
m 6=0

bm
m
e2πimt

is the Fourier series of a continuous function σ(t). Also, with probability 1, σ(t) satisfies
Dini’s criterion for all f , so the Fourier series converges.

Let (Ω,M ,P) be a probability space: a measure space such that P(Ω) = 1. A measurable
subset of Ω (i.e. an element of M ) is called an event. The probability of E is its measure
P(E). If P(E) = 1, then we say that E is almost sure.

A random variable is a measurable function a : Ω→ R or C. So a−1(U) ∈M if U is open.
If a ∈ L1, then the expected value E(a) of a is

∫
Ω a.

If a random variable a has mean µ, then the variance of a is E((a−µ)2). Not every a has
a mean, and not every a has a variance. In order for this to exist, we need a ∈ L2. The
standard deviation is

√
variance.

If a1, a2 ∈ L2 (hence in L1 because the space has finite measure) with E(ai) = µi then the
covariance is

Cov(a1, a2) = E((a1 − µ1)(a2 − µ2))

If a1, · · · , an all have expected value zero and V ar(ai) = 1 and Cov(ai, aj) = 0, then the
ai are orthonormal in L2(Ω,R).

34. December 2

Recall we had a probability space Ω. For a random variable a, the distribution function
is a function F : R → R where F (λ) = P(a ≤ λ), where λ ∈ R. For example, a is a

standard normal random variable if its distribution function is F (λ) = 1√
2π

∫ λ
−∞ e

−x
2

2 dx.

If F (λ) =
∫ λ
−∞ f for some f ∈ L1(R) then f is called the density function for a. If a is a

standard normal random variable, then E(a) = 0 and V ar(a) = 1. For every probability
measure P we have a Lebesgue-Stiltjies measure on R.

Random variables a1, · · · , aN are independent if for all λ1, · · · , λn ∈ R,

P

(
N⋂
1

{ai ≤ λi}

)
=

N∏
1

P(ai ≤ λi)

Lemma 34.1. Suppose a1, · · · , aN are independent standard normal random variables (IS-

NRV) and bm =
∑N

1 λnman where (λmn) is an orthogonal matrix (so the covariance is
zero). (ISNRV implies that the ai are orthonormal in L2. The bn are also an orthonormal
set, because they are a transformation by an orthogonal matrix.) Then the b1, · · · , bN are
also ISNRV.
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ISNRV means: for all Borel sets U ⊂ RN , denote x = (x1, · · · , xN ). Then

P((a1, · · · , aN )

∫
U) =

1

(2π)
N
2

∫
U
e−|x|

2/2dx1 · · · dxN

This is rotation-invariant.

Lemma 34.2. If ai for i ∈ N are ISNRV (i.e. any finite subcollection is), let H ⊂ L2(Ω)
be the closure of their span. Let (bi)i be another complete orthonormal system in H. Then
the bi are ISNRV.

(Proof in Kronheimer’s notes. Take a limit of the previous case.) If a is a standard normal
random variable, then

P(a ≥M) =

∫ ∞
M

e−x
2
2√

2π
dx ≤ e−M2/2

For a sequence of random variables, you might want a function that is ≥ all but finitely
many of them.

Proposition 34.3. Fix β > 1. Let an be standard normal random variables. Then with
probability 1,

|an| ≤
√

2β log(n)

for all but finitely many n.

Lemma 34.4 (Borel-Cantelli). If
∑∞

1 P(En) <∞ then
∞⋂
N=1

⋃
n≥N

En = 0

That is, with probability 1, only finitely many occur.

Proof of Proposition. Let En be the event

|an| >
√

2β log(n)

P(En) ≤ 2n−β so
∑

2n−β <∞. Apply the Borel-Cantelli lemma. �

We were considering
∑

m 6=0 bm(ω) e
2πimt

m , and wanted this to converge for all ω to a con-

tinuous function. e2πimt

m looks like the antiderivative of e2πimt, which is an orthonormal
collection. Let

L2(T)′ = {f ∈ L2 :

∫ 1

0
f = 0}

We have an orthonormal system em where em(t) = e2πimt. Let εm be the antiderivative of
em with constant chosen so that

∫
em = 0. Let (dn)n be the complete orthonormal system

in L2(T)′

d1(x) = χ
[0, 1

2
] − χ[ 1

2
,1]

d2 =
√

2χ[0,0.25] −
√

2χ[0.25,0.5]

d3 = aχ[0.5,0.75] − aχ[0.75,1]
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d4 = 2χ[0,0.125] − χ[0.125,0.25]

The indefinite integrals δ̃n =
∫ t

0 dn(s)ds, δn(t) = δ̃n(t)− cn where cn =
∫ 1

0 δ̃n For n large,

δ̃n is just a small triangle.

Proposition 34.5. If an are ISNRV then with probability 1,
∞∑
1

anδn(t)

converges uniformly to a continuous function of t. (Actually, the function is Hölder con-
tinuous.)

With probability 1, an satisfies the relation above. For 2m ≤ n < 2m+1, the support of
the δn do not overlap. Do stuff; it’s not hard.

Say that b is a C-valued SNRV if <(b) and =(b) are ISNRV. In Lemma 34.3, take an to
be independent and C-valued. For a.a. ω ∈ Ω,

∞∑
1

an(ω)δn(t)

converges to σ(t) : [0, 1]→ R. Look at the Fourier coefficients σ̂(m). (Remember that σ(t)
depends on ω.) By uniform convergence, and using the fact that δn is an antiderivative,
write

σ̂(m) =

∞∑
n=1

an(ω)δ̂n(m)

∞∑
n=1

an(ω)
d̂n(m)

2πim

If λnm = d̂n(m) is a change of basis matrix between two complete orthonormal systems
in L2(T)′.

σ̂(m) =
∞∑
n=1

λnm
an(ω)

2πim

Because this is Hölder continuous, it satisfies Dini’s criterion. So its Fourier series con-
verges pointwise. (Recall, σ depends on ω, so this is “with probability 1” – there is some
null set in Ω where this does not work.) So with probability 1,

σ(t) =
∑

σ̂(m)e2πimt

=
∞∑
n=1

∑
m 6=0

λnm
an(ω)

2πim
e2πimt

=
∑
m 6=0

bm(ω)
e2πimt

2πim

where bm =
∑
λnman. Because the an are ISNRV, so are the bm (it’s just a change of

basis).
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Take a linear combination of δn with random coefficients; you get a Brownian path.
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	1. August 31
	2. September 2
	3. September 7
	4. September 9
	5. September 12
	6. September 14
	7. September 16
	8. September 19
	9. September 21
	10. September 23
	11. September 26
	12. September 28
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