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Chapter 4.2: the SVD and the spectral norm and condition number

The spectral norm and the SVD. Recall the singular value decomposition, A = UΣV T .

Theorem 1. For any matrix A ∈ Rn×m, define the induced 2-norm ||A||2 = maxx 6=0
||Ax||2
||x||2 . (We

have previously defined this solely for m = n, but there is nothing to prevent us from extending this
definition to any m,n.)

Then ||A||2 = σ1, where σ1 is the largest singular value of A.

Proof. Recall that {v1, . . . , vm} is an orthonormal basis for Rm, and {u1, . . . , un} is an orthonormal

basis for Rn. Let x ∈ Rm, x 6= 0, then there exist constants ci with 1 ≤ i ≤ m such that x =
m∑
i=1

civi.

Note that since A = UΣV T , AV = UΣ, and Avi = σiui for all 1 ≤ i ≤ m.
Calculating, we obtain that

||x||22 = 〈
n∑
i=1

civi,
m∑
i=1

civi〉 =
m∑

i,j=1

cicjv
T
i vj ,

and due to the orthonormality of the set {v1, . . . , vm},

||x||22 =
m∑
i=1

c2i , or ||x||2 =

√√√√ m∑
i=1

c2i .

Similarly, we show that

Ax = A

(
n∑
i=1

civi

)
=

m∑
i=1

ciAvi =
m∑
i=1

ciσiui ,

and ||Ax||2 =

√
m∑
i=1

c2iσ
2
i .

But then

||Ax||2
||x||2

=

√∑m
i=1 c

2
iσ

2
i√∑m

i=1 c
2
i

≤

√∑m
i=1 c

2
iσ

2
1√∑m

i=1 c
2
i

= σ1 ,

where the inequality in the above is based on the fact that σ1 is the largest singular value. Thus,
by taking the maximum, we obtain also that

||A||2 = max
x 6=0

||Ax||2
||x||2

≤ σ1 .

On the other hand, by making x = v1, and hence Ax = Av1 = σ1u1, we obtain that

σ1 =
||Av1||2
||v1||2

≤ max
x 6=0

||Ax||2
||x||2

= ||A||2 .

These two inequalities taken together show the desired conclusion.



We thus have an expression of the induced 2-norm (also known as the spectral norm) for any
matrix, as the largest singular value of the matrix.

The SVD of the inverse and condition numbers. For an n × n square, invertible matrix
(r = n), is A = UΣV T (then U, V,Σ are all n× n), A−1 = V Σ−1UT , and note that this means the
singular values of A−1 are 1

σn
≥ 1

σn−1
≥ . . . ≥ 1

σ1
, and thus

||A−1||2 =
1

σn
.

Thus,

Theorem 2. For an n× n invertible matrix A, in the 2-norm,

κ(A) = ||A||2 · ||A−1||2 =
σ1
σn

.

Low-rank approximation. Let us write A as the sum of rank-one matrices (as we have seen in
the previous lecture),

A =
r∑
i=1

σiuiv
T
i .

We will denote by Ak the truncated sum Ak =
k∑
i=1

σiuiv
T
i .

Theorem 3. For any k = 1, . . . , r, let Vk be the set of all n×m matrices of rank at most k. Then,
with the notation above,

σk+1 = ||A−Ak||2 = min
B∈Vk

||A−B||2 .

That is, among all n ×m matrices of rank k or less, Ak is “closest” to A, and the difference in
norm is σk+1.

Remark 1. Note that when m = n, {0} ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn−1 ⊂ Vn = Rn×n, and that Vn−1 is
the set of all singular matrices (if a matrix is singular, then its rank is at most n− 1.)

The proof for this theorem is in the textbook (4.2.15), and I invite you all to take a look.
Although it’s a bit long, it is quite elegant.

As a consequence, we have the following two results.

Corollary 1. If A is square and full-rank (m = r = n) and B is a matrix for which ||B−A||2 < σn,
then B is full-rank.

Corollary 2. If A is square and non-singular (m = n = r and σn > 0), let B be the matrix that
is singular and closest to A in 2-norm (so that ||A−B||2 is minimal among all singular matrices).
Then, with the notations above, B = An−1 and

||A−An−1||2
||A||2

=
1

κ(A)
.

Note that the second corollary shows that the result we got in 2.3 about the distance to singu-
larity and the condition number is, in fact, tight.


