Lecture Notes, Math 170A, Spring 2020

Chapter 4.2: the SVD and the spectral norm and condition number

The spectral norm and the SVD. Recall the singular value decomposition, A = ULV,

Theorem 1. For any matric A € R"™"™, define the induced 2-norm ||Al|z = max,o H|I|i\||2‘2 (We
have previously defined this solely for m = n, but there is nothing to prevent us from extending this
definition to any m,n.)

Then ||Al|2 = o1, where o1 is the largest singular value of A.

Proof. Recall that {v1,..., v} is an orthonormal basis for R™, and {uy,...,u,} is an orthonormal
m
basis for R". Let z € R™, x # 0, then there exist constants ¢; with 1 < i < m such that z = > ¢;v;.
i=1
Note that since A = UXVT, AV = UY, and Av; = oyu; for all 1 <i < m.
Calculating, we obtain that
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and due to the orthonormality of the set {vy,..., v},
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Similarly, we show that
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But then
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where the inequality in the above is based on the fact that o; is the largest singular value. Thus,
by taking the maximum, we obtain also that
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On the other hand, by making x = vy, and hence Az = Av; = o1uy, we obtain that
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These two inequalities taken together show the desired conclusion. O



We thus have an expression of the induced 2-norm (also known as the spectral norm) for any
matrix, as the largest singular value of the matrix.

The SVD of the inverse and condition numbers. For an n X n square, invertible matrix
(r=mn),is A=UXVT (then U,V,¥ are all n x n), A~! = VE~1UT, and note that this means the

singular values of A~! are é > ﬁ > ... > a%v and thus
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Thus,

Theorem 2. For an n X n invertible matriz A, in the 2-norm,
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A(A) = |[All2 - ATl = = -
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Low-rank approximation. Let us write A as the sum of rank-one matrices (as we have seen in

the previous lecture),
,
A= E JiuiviT .
i=1

k
We will denote by Ay the truncated sum Ay = > Jiuivf .
i=1

—

Theorem 3. For any k =1,...,r, let V), be the set of all n x m matrices of rank at most k. Then,
with the notation above,
o =][|A-A = min ||[A— Bl .
e = 14— Adlla = min [|4 = Bl

That is, among all n X m matrices of rank k or less, Ay is “closest” to A, and the difference in
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Remark 1. Note that when m =n, {0} CVy CVy C ... C Vy—1 C V, = R™™ and that V,—1 is
the set of all singular matrices (if a matriz is singular, then its rank is at most n —1.)

The proof for this theorem is in the textbook (4.2.15), and I invite you all to take a look.
Although it’s a bit long, it is quite elegant.
As a consequence, we have the following two results.

Corollary 1. If A is square and full-rank (m = r = n) and B is a matriz for which ||B—Al|s < o,
then B is full-rank.

Corollary 2. If A is square and non-singular (m =n =r and o, > 0), let B be the matrix that
is singular and closest to A in 2-norm (so that ||A — B||2 is minimal among all singular matrices).
Then, with the notations above, B = A,_1 and
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Note that the second corollary shows that the result we got in 2.3 about the distance to singu-
larity and the condition number is, in fact, tight.



