Lecture Notes, Math 170A, Spring 2020

Chapter 4.2: the SVD and the spectral norm and condition number

The spectral norm and the SVD. Recall the singular value decomposition, $A=U \Sigma V^{T}$.
Theorem 1. For any matrix $A \in \mathbb{R}^{n \times m}$, define the induced 2 -norm $\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}$. (We have previously defined this solely for $m=n$, but there is nothing to prevent us from extending this definition to any m, n.)

Then $\|A\|_{2}=\sigma_{1}$, where σ_{1} is the largest singular value of A.
Proof. Recall that $\left\{v_{1}, \ldots, v_{m}\right\}$ is an orthonormal basis for \mathbb{R}^{m}, and $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis for \mathbb{R}^{n}. Let $x \in \mathbb{R}^{m}, x \neq 0$, then there exist constants c_{i} with $1 \leq i \leq m$ such that $x=\sum_{i=1}^{m} c_{i} v_{i}$.

Note that since $A=U \Sigma V^{T}, A V=U \Sigma$, and $A v_{i}=\sigma_{i} u_{i}$ for all $1 \leq i \leq m$.
Calculating, we obtain that

$$
\|x\|_{2}^{2}=\left\langle\sum_{i=1}^{n} c_{i} v_{i}, \sum_{i=1}^{m} c_{i} v_{i}\right\rangle=\sum_{i, j=1}^{m} c_{i} c_{j} v_{i}^{T} v_{j}
$$

and due to the orthonormality of the set $\left\{v_{1}, \ldots, v_{m}\right\}$,

$$
\|x\|_{2}^{2}=\sum_{i=1}^{m} c_{i}^{2}, \quad \text { or }\|x\|_{2}=\sqrt{\sum_{i=1}^{m} c_{i}^{2}} .
$$

Similarly, we show that

$$
A x=A\left(\sum_{i=1}^{n} c_{i} v_{i}\right)=\sum_{i=1}^{m} c_{i} A v_{i}=\sum_{i=1}^{m} c_{i} \sigma_{i} u_{i}
$$

and $\|A x\|_{2}=\sqrt{\sum_{i=1}^{m} c_{i}^{2} \sigma_{i}^{2}}$.
But then

$$
\frac{\|A x\|_{2}}{\|x\|_{2}}=\frac{\sqrt{\sum_{i=1}^{m} c_{i}^{2} \sigma_{i}^{2}}}{\sqrt{\sum_{i=1}^{m} c_{i}^{2}}} \leq \frac{\sqrt{\sum_{i=1}^{m} c_{i}^{2} \sigma_{1}^{2}}}{\sqrt{\sum_{i=1}^{m} c_{i}^{2}}}=\sigma_{1},
$$

where the inequality in the above is based on the fact that σ_{1} is the largest singular value. Thus, by taking the maximum, we obtain also that

$$
\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} \leq \sigma_{1} .
$$

On the other hand, by making $x=v_{1}$, and hence $A x=A v_{1}=\sigma_{1} u_{1}$, we obtain that

$$
\sigma_{1}=\frac{\left\|A v_{1}\right\|_{2}}{\left\|v_{1}\right\|_{2}} \leq \max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\|A\|_{2} .
$$

These two inequalities taken together show the desired conclusion.

We thus have an expression of the induced 2-norm (also known as the spectral norm) for any matrix, as the largest singular value of the matrix.

The SVD of the inverse and condition numbers. For an $n \times n$ square, invertible matrix $(r=n)$, is $A=U \Sigma V^{T}$ (then U, V, Σ are all $\left.n \times n\right), A^{-1}=V \Sigma^{-1} U^{T}$, and note that this means the singular values of A^{-1} are $\frac{1}{\sigma_{n}} \geq \frac{1}{\sigma_{n-1}} \geq \ldots \geq \frac{1}{\sigma_{1}}$, and thus

$$
\left\|A^{-1}\right\|_{2}=\frac{1}{\sigma_{n}} .
$$

Thus,
Theorem 2. For an $n \times n$ invertible matrix A, in the 2 -norm,

$$
\kappa(A)=\|A\|_{2} \cdot\left\|A^{-1}\right\|_{2}=\frac{\sigma_{1}}{\sigma_{n}} .
$$

Low-rank approximation. Let us write A as the sum of rank-one matrices (as we have seen in the previous lecture),

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

We will denote by A_{k} the truncated sum $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}$.
Theorem 3. For any $k=1, \ldots, r$, let \mathcal{V}_{k} be the set of all $n \times m$ matrices of rank at most k. Then, with the notation above,

$$
\sigma_{k+1}=\left\|A-A_{k}\right\|_{2}=\min _{B \in \mathcal{V}_{k}}\|A-B\|_{2} .
$$

That is, among all $n \times m$ matrices of rank k or less, A_{k} is "closest" to A, and the difference in norm is σ_{k+1}.

Remark 1. Note that when $m=n,\{0\} \subset \mathcal{V}_{1} \subset \mathcal{V}_{2} \subset \ldots \subset \mathcal{V}_{n-1} \subset \mathcal{V}_{n}=\mathbb{R}^{n \times n}$, and that \mathcal{V}_{n-1} is the set of all singular matrices (if a matrix is singular, then its rank is at most $n-1$.)

The proof for this theorem is in the textbook (4.2.15), and I invite you all to take a look. Although it's a bit long, it is quite elegant.

As a consequence, we have the following two results.
Corollary 1. If A is square and full-rank $(m=r=n)$ and B is a matrix for which $\|B-A\|_{2}<\sigma_{n}$, then B is full-rank.

Corollary 2. If A is square and non-singular ($m=n=r$ and $\sigma_{n}>0$), let B be the matrix that is singular and closest to A in 2-norm (so that $\|A-B\|_{2}$ is minimal among all singular matrices). Then, with the notations above, $B=A_{n-1}$ and

$$
\frac{\left\|A-A_{n-1}\right\|_{2}}{\|A\|_{2}}=\frac{1}{\kappa(A)} .
$$

Note that the second corollary shows that the result we got in 2.3 about the distance to singularity and the condition number is, in fact, tight.

