Math 20C - Calculus and Analytic Geometry - Spring 2021

Goal: Develop calculus in 2D & 3D

Some Class Details:

- Course links are on the CANVAS page.

Links:

1. Course website:
 (syllabus: contact info/schedule)

2. Discord Site:
 (A good place to ask questions)

3. Gradescope Site:
 (where quizzes will be released)

4. Zoom Links:
 (class, discussion, S1, office hours...)

Note: Press record
#5. WEBASSIGN:

(Where the HW happens.)

YOUR GRADE:

50% HOMEWORK SCORE.
50% QUIZ SCORE.

HOMEWORK SCORE:

= AVG OF TOP 8 HW 70s
(aka: drop the lowest)

QUIZ SCORE:

= the higher of

#1. AVG QUIZ %
OR #2. \(\frac{2}{3} \) (AVG of TOP 4 QUIZ %) + \(\frac{1}{3} \) (FINAL %).

QUESTIONS?
VECTORS in 2D & 3D

2D.

\[\text{"y-coord."} = b \]
\[(a,b) = P. \]
\[a = \text{"x-coordinate"}. \]

For any point \((a,b)\) we make the vector from \((0,0)\) to \((a,b)\).
COMMON CONFUSION.

What is the difference between points and vectors?

A point: A spot in 2D/3D.
A vector: A magnitude & direction.
EVEN WORSE.

We will use the notation $(1,2,3)$ to refer to both

AND

this point

AND

this vector.

It you find that confusing or dishonest THAT IS OK.
SOME NOTATION.

The set of real numbers is denoted by \(\mathbb{R} \).

The set of pairs of real numbers is denoted by \(\mathbb{R}^2 \).

Triples of real numbers (respectively \(n \)-tuples) are denoted by \(\mathbb{R}^3 \) (resp. \(\mathbb{R}^n \)).

VECTOR ADDITION.

GEOMETRICALLY IN 2D.

(SIMILARLY IN 3D)
THE FORMULA (IN 3D).

\vec{v} = (-1, 2, \pi)
\vec{w} = (2, 1, 1)
\vec{v} + \vec{w} = (1, 4, \pi + 1)

(ADD EACH COORDINATE).

COMMENT. You can't add 2D & 3D vectors (or scalar + vector).

MULTIPLYING VECTORS.

METHOD #1 SCALAR MULTIPLICATION.

Let \(\vec{v} \in \mathbb{R}^2 \), AND let \(\lambda \in \mathbb{R} \).

(NOTATION \(\in \) means "in", read it as "let \(\vec{v} \) be an element in \(\mathbb{R}^2 \)".)
Scalar multiplication given a vector

\[\lambda \vec{v} \in \mathbb{R}^2 \]

FORMULA. If \(\vec{v} = (a, b) \) then

\[\lambda \vec{v} = (\lambda a, \lambda b) \in \mathbb{R}^2 \]

(Multiply each coord. by \(\lambda \))

GEOMETRICALLY.

(A) If \(\lambda > 0 \).

\(\lambda \) times longer in same direction.
(B) If \(\lambda \leq 0 \).

A times larger in opposite direction.

(Similar in 3D).

Lines in 2D & 3D.

Need
1. A point
2. A direction

gives a line.
Every other point on L has the form $\overline{w} + t\overline{v}$ for some $t \in \mathbb{R}$.

(why??)
We can parametrize L by the function:

$$f(t) = \overline{w} + t\overline{v}.$$

(Works for any line through a point \overline{w} with direction \overline{v})

In our example:

$$f(t) = (2,1) + t(2, -1).$$

$$= (2,1) + (2t, -t).$$

$$= (2+2t, 1-t).$$

This line has x-intercept when $1-t=0$ so $t=1$.

$$f(1) = (4,0)$$

x-intercept.