Math 31CH Spring 2018 Written Homework 5, due 6/01/2018 in HW box in the basement of AP\&M by 4 pm

Reading

Read Sections 8.5-8.6 of the text.

Exercises to submit on Friday 6/1

These problems involve the concept of orientation. Recall that we take the following as our definition: An orientation on a k-manifold $M \subseteq \mathbb{R}^{n}$ is given by a smooth k form ω on \mathbb{R}^{n} which is nowhere-zero on M in the following sense: for each $p \in M$ and basis $\vec{v}_{1}, \ldots, \vec{v}_{k}$ of the tangent space $T_{p} M$, we have $\omega(p)\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right) \neq 0$. When this holds, the basis $\vec{v}_{1}, \ldots, \vec{v}_{k}$ of $T_{p}(M)$ is called positive when $\omega(p)\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)>0$ and negative when $\omega(p)\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)<0$. Note that which bases are called positive and which negative depends on the choice of form. When M has an orientation, we call it orientable. The following problems are a series; each continues with the notation of the previous ones.
A. Let $M \in \mathbb{R}^{n}$ be a smooth $(n-1)$-dimensional manifold which is defined as a level set $F=0$ of a smooth function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $D F(p)$ has rank 1 for all $p \in M$.

For each $p \in M$, show that $\vec{n}(p)=D F(p)^{T} /\left\|D F(p)^{T}\right\|$ is a nonzero normal unit vector for M at p; in other words, $\vec{n}(p)$ is in the orthogonal complement to the tangent
space $T_{p} M$. Show that $\vec{n}: M \rightarrow \mathbb{R}^{n}$ is a smooth function, in other words, the unit normal vectors vary smoothly as we move around the manifold.
B. Find a smooth $(n-1)$-form ω which is nowhere-zero on M and such that the corresponding orientation given by this form can also be described as follows: given a basis $\vec{v}_{1}, \ldots, \vec{v}_{n-1}$ of the tangent space $T_{p} M$ of M at p, then the basis is positive if and only if the matrix whose first column is \vec{n}_{p} and whose remaining columns are $\vec{v}_{1}, \ldots, \vec{v}_{n-1}$ in that order has positive determinant. Conclude that M is orientable.
C. Prove that the form ω found in (B) also has the following property: for each $p \in$ $M, \omega(p) \in \Lambda^{n-1}\left(\mathbb{R}^{n}\right)^{*}$ is the function that assigns to each basis $\vec{v}_{1}, \ldots, \vec{v}_{n-1}$ of $T_{p}(S)$ the signed (n-1)-dimensional area of the parallelepiped they span. By signed area we mean this is equal to the area if $\vec{v}_{1}, \ldots, \vec{v}_{n-1}$ is a positive basis for the orientation found in (B), and it is minus the area if it is a negative basis for the orientation.
D. Because of part (C), $\int_{M} \omega$ represents the ($n-1$)-dimensional surface area of M. Now let $n \geq 1$ and let $S^{n-1} \subseteq \mathbb{R}^{n}$ be the ($n-1$)-dimensional unit sphere consisting of points $\left\{\vec{x} \in \mathbb{R}^{n} \mid\|\vec{x}\|=1\right\}$, which is the level set over 0 of $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $F\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}-1$. Find the $(n-1)$-dimensional surface area of S^{n-1} for $n=2,3,4$.
E. Let $B^{n}=\left\{\vec{x} \in \mathbb{R}^{n} \mid\|\vec{x}\| \leq 1\right\}$ be the unit ball in \mathbb{R}^{n}. Show that for any $n \geq 1$, the $(n-1)$-dimensional surface area of S^{n-1} is equal to n times the n-dimensional volume of B^{n}. For example, when $n=2$, the unit circle has 1-dimensional surface area (length) equal to 2π, which is 2 times the 2 -volume (area) π of the unit disc. (Hint: Stoke's theorem, which is in Section 8.5. We won't cover this in class until Wednesday 5/30.)

