
Math 31CH Spring 2018 Written Homework 5, due

6/01/2018 in HW box in the basement of AP&M

by 4 pm

Reading

Read Sections 8.5-8.6 of the text.

Exercises to submit on Friday 6/1

These problems involve the concept of orientation. Recall that we take the following

as our definition: An orientation on a k-manifold M ⊆ Rn is given by a smooth k-

form ω on Rn which is nowhere-zero on M in the following sense: for each p ∈M and

basis ~v1, . . . , ~vk of the tangent space TpM , we have ω(p)(~v1, . . . , ~vk) 6= 0. When this

holds, the basis ~v1, . . . , ~vk of Tp(M) is called positive when ω(p)(~v1, . . . , ~vk) > 0 and

negative when ω(p)(~v1, . . . , ~vk) < 0. Note that which bases are called positive and

which negative depends on the choice of form. When M has an orientation, we call

it orientable. The following problems are a series; each continues with the notation

of the previous ones.

A. Let M ∈ Rn be a smooth (n − 1)-dimensional manifold which is defined as a

level set F = 0 of a smooth function F : Rn → R such that DF (p) has rank 1 for all

p ∈M .

For each p ∈ M , show that ~n(p) = DF (p)T/||DF (p)T || is a nonzero normal unit

vector for M at p; in other words, ~n(p) is in the orthogonal complement to the tangent
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space TpM . Show that ~n : M → Rn is a smooth function, in other words, the unit

normal vectors vary smoothly as we move around the manifold.

B. Find a smooth (n− 1)-form ω which is nowhere-zero on M and such that the

corresponding orientation given by this form can also be described as follows: given

a basis ~v1, . . . , ~vn−1 of the tangent space TpM of M at p, then the basis is positive

if and only if the matrix whose first column is ~np and whose remaining columns are

~v1, . . . , ~vn−1 in that order has positive determinant. Conclude that M is orientable.

C. Prove that the form ω found in (B) also has the following property: for each p ∈
M , ω(p) ∈ Λn−1(Rn)∗ is the function that assigns to each basis ~v1, . . . , ~vn−1 of Tp(S)

the signed (n-1)-dimensional area of the parallelepiped they span. By signed area we

mean this is equal to the area if ~v1, . . . , ~vn−1 is a positive basis for the orientation

found in (B), and it is minus the area if it is a negative basis for the orientation.

D. Because of part (C),
∫
M
ω represents the (n−1)-dimensional surface area of M .

Now let n ≥ 1 and let Sn−1 ⊆ Rn be the (n − 1)-dimensional unit sphere consisting

of points {~x ∈ Rn
∣∣ ||~x|| = 1}, which is the level set over 0 of F : Rn → R given by

F (x1, . . . , xn) = x21 + · · ·+ x2n − 1. Find the (n− 1)-dimensional surface area of Sn−1

for n = 2, 3, 4.

E. Let Bn = {~x ∈ Rn
∣∣ ||~x|| ≤ 1} be the unit ball in Rn. Show that for any n ≥ 1,

the (n − 1)-dimensional surface area of Sn−1 is equal to n times the n-dimensional

volume of Bn. For example, when n = 2, the unit circle has 1-dimensional surface

area (length) equal to 2π, which is 2 times the 2-volume (area) π of the unit disc.

(Hint: Stoke’s theorem, which is in Section 8.5. We won’t cover this in class until

Wednesday 5/30.)
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