Name and PID:

\qquad

Instructions:

- Write your Name and PID.
- You may not use any electronic devices, textbooks, or notes. If you violate these instructions or communicate in any way with any other student during this exam, you will receive a zero on the exam, and the zero will not be dropped.
- You must justify your work (legibly) to receive credit.
- You may NOT use homework problems (without proof) in your solutions.

Good Luck!

Problem	Score	Out of
1		5
2		10
3		10
4		10
5		10
6		10
Total		55

Problems:

1. [5 points] Evaluate

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{3}\right) d x d y
$$

by first changing the order of integration.
2. [10 points]
(a) Let D be the region in \mathbb{R}^{3} inside the paraboloid $z=x^{2}+y^{2}$, above the plane $z=1$, and below the plane $z=4$. Compute the volume of D.
(b) Let W be the region in \mathbb{R}^{3} between the half-cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=1$. Compute the volume of W.
3. [10 points] Use an appropriate change of variables to calculate

$$
\iint_{R} x y d x d y
$$

over the region R bounded by the curves of $x y=1, x y=3, y=x^{2}$, and $y=3 x^{2}$.
4. [10 points] Let P be a 3 -parallelogram in \mathbb{R}^{4} with sides $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ emanating from the same vertex. Suppose that $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ have lengths 1,2 , and 3 respectively, and that the angle between any pair of them is $\pi / 3$. Find the 3 -dimensional volume of P.
5. [10 points] Let A be an $n \times n$ matrix and let $\lambda_{1}, \ldots, \lambda_{n}$ be its (not necessarily distinct) eigenvalues. Prove that

$$
\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}
$$

You may use the fact that any polynomial $p(z)=z^{n}+c_{n-1} z^{n-1}+\ldots+c_{0}$ can be factorized as $p(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right)$ where $z_{1}, \ldots z_{n}$ are the zeros of the polynomial.
6. [10 points] For any 2×2 matrices A, B, C, D denote by M the 4×4 matrix given by

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

Now, let Δ be the function given by $\Delta(M)=\operatorname{det} A \operatorname{det} D-\operatorname{det} B \operatorname{det} C$. Show that $\Delta(M)$ is NOT $\operatorname{det} M$.

