Name and PID: _____

Instructions:

- Write your Name and PID.
- You may not use any electronic devices, textbooks, or notes. If you violate these instructions or communicate in any way with any other student during this exam, you will receive a zero on the exam, and the zero will not be dropped.
- You must justify your work (legibly) to receive credit.
- You may NOT use homework problems (without proof) in your solutions.

Good Luck!

Problem	Score	Out of
1		5
2		10
3		10
4		10
5		10
6		10
Total		55

Problems:

1. [5 points] Evaluate

$$\int_0^1 \int_{\sqrt{y}}^1 \sin(x^3) dx dy$$

by first changing the order of integration.

- 2. [10 points]
 - (a) Let D be the region in \mathbb{R}^3 inside the paraboloid $z = x^2 + y^2$, above the plane z = 1, and below the plane z = 4. Compute the volume of D.
 - (b) Let W be the region in \mathbb{R}^3 between the half-cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 1$. Compute the volume of W.
- 3. [10 points] Use an appropriate change of variables to calculate

$$\int \int_R xy \ dxdy$$

over the region R bounded by the curves of xy = 1, xy = 3, $y = x^2$, and $y = 3x^2$.

4. [10 points] Let P be a 3-parallelogram in \mathbb{R}^4 with sides $\vec{v}_1, \vec{v}_2, \vec{v}_3$ emanating from the same vertex. Suppose that $\vec{v}_1, \vec{v}_2, \vec{v}_3$ have lengths 1, 2, and 3 respectively, and that the angle between any pair of them is $\pi/3$. Find the 3-dimensional volume of P. 5. [10 points] Let A be an $n \times n$ matrix and let $\lambda_1, ..., \lambda_n$ be its (not necessarily distinct) eigenvalues. Prove that

$$\det(A) = \prod_{i=1}^{n} \lambda_i.$$

You may use the fact that any polynomial $p(z) = z^n + c_{n-1}z^{n-1} + ... + c_0$ can be factorized as $p(z) = (z - z_1)(z - z_2)...(z - z_n)$ where $z_1, ..., z_n$ are the zeros of the polynomial.

6. [10 points] For any 2×2 matrices A, B, C, D denote by M the 4×4 matrix given by

$$M = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right].$$

Now, let Δ be the function given by $\Delta(M) = \det A \det D - \det B \det C$. Show that $\Delta(M)$ is NOT det M.