MATH 31CH MIDTERM 1 SOLUTIONS

(1) (a) This is just a straightfoward calculation using cofactors. We will proceed downward from the first column.

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cccc}
0 & -2 & 1 & 1 \\
1 & 0 & 1 & -1 \\
2 & 1 & 0 & 0 \\
0 & -1 & 2 & 1
\end{array}\right]\right) & =-1\left|\begin{array}{ccc}
-2 & 1 & 1 \\
1 & 0 & 0 \\
-1 & 2 & 1
\end{array}\right|+2\left|\begin{array}{ccc}
-2 & 1 & 1 \\
0 & 1 & -1 \\
-1 & 2 & 1
\end{array}\right| \\
& =-1(1)+2(-4)=-9 .
\end{aligned}
$$

(b) We perform a change of basis with the transformation $g(u):=A u=$ $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$. That is, we think of the coordinates x_{1}, x_{2}, x_{3} as functions of the coordinates of u. Under this transformation we have $x_{3}=$ $2 u_{1}+u_{2}$. Therefore

$$
\begin{aligned}
\int_{\mathbb{R}^{4}} \mathbb{1}_{P} x_{3}\left|d^{4} x\right| & =|-9| \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} 2 u_{1}+u_{2} d u_{1} d u_{2} d u_{3} d u_{4} \\
& =\frac{27}{2}
\end{aligned}
$$

(2) Recall from the definition of integrable that we need to show $\lim _{N \rightarrow \infty} U_{N}(f)-$ $L_{N}(f)=0$. As such, we need to show given $\varepsilon>0$ that there exists $M \in \mathbb{N}$ so that for $N>M U_{N}(f)-L_{N}(f)<\varepsilon$. Since A is compact, f is uniformly compact over A. Namely, there exists $\delta>0$ so that whenever $\|x-y\|<\delta$ we have $|f(x)-f(y)|<\varepsilon$. We would like to choose N so that the diameter of the dyadic cubes is less than δ to ensure $\left|M_{C}(f)-m_{C}(f)\right|<\varepsilon$. One can check that the diameter of a n-dimensional dyadic cube in the N-th dyadic partition is $\frac{\sqrt{n}}{2^{N}}$. Therefore, we choose $N>\log _{2}\left(\frac{\sqrt{n}}{\delta}\right)$. For such N, we have

$$
\begin{aligned}
U_{N}(f)-L_{N}(f) & =\sum_{C \in D_{N}}\left(M_{C}(f)-m_{C}(f)\right) \operatorname{vol}(C) \\
& \leq \varepsilon \sum_{C \in \mathcal{D}_{N}} \operatorname{vol}(C)
\end{aligned}
$$

A is bounded so there exists some $\alpha \in \mathbb{R}$ so that $A \subset[0, \alpha]^{n} \subset \mathbb{R}^{n}$. It follows that $\sum_{C \in D_{N}} \operatorname{vol}(C) \leq \alpha^{n}$ for all $N \geq 2$. Hence $U_{N}(f)-L_{N}(f)<\varepsilon \alpha^{n}$. Taking ε to zero yields the claim.
(3) We use spherical coordinates. Because we are only integrating over the first octant we have $\theta, \varphi \in[0, \pi / 2]$.

$$
\int_{A}\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}\left|d^{3} x\right|=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{3} \cos \varphi d \rho d \varphi d \theta=\frac{\pi}{8}
$$

(4) This just amounts to invoking Fubini's theorem. Note that $\frac{\sin (x)}{x}$ is a continuous function on our (compact) region so it is indeed integrable. Therefore, Fubini applies.

$$
\int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin (x)}{x} d x d y=\int_{0}^{\pi} \int_{0}^{x} \frac{\sin (x)}{x} d y d x=\int_{0}^{\pi} \sin (x) d x=2 .
$$

