Math 31CH Spring 2017 Homework 6, due $5 / 17 / 2017$ in HW box in the basement of AP\&M by 5 pm

1 Upcoming exam

The midterm exam will cover up through Section 6.4, concentrating on material from Homeworks 4-6 and Sections 5.3, 6.1-6.4.

2 Exercises to submit on Wednesday 5/17

2.1 Exercises from the text

Section 6.3: $\# 3,4,6,8,11$
Section 6.4: \#1, 4, 7

3 Exercises not from the text to submit on Wednesday $5 / 17$

1. Let $M \in \mathbb{R}^{n}$ be a k-dimensional manifold. Suppose there is a continuous function $f: M \rightarrow\left(\mathbb{R}^{n}\right)^{k}$, where we write $f(\vec{x})=\left(\vec{v}_{1}(\vec{x}), \vec{v}_{2}(\vec{x}), \ldots, \vec{v}_{k}(\vec{x})\right)$. Assume that for each $\vec{x},\left\{\vec{v}_{1}(\vec{x}), \ldots, \vec{v}_{k}(\vec{x})\right\}$ is a basis for $T_{\vec{x}}(M)$. Show that there is a unique orientation of M such that for each $\vec{x} \in M$, the ordered basis $\left\{\vec{v}_{1}(\vec{x}), \ldots, \vec{v}_{k}(\vec{x})\right\}$ of $T_{\vec{x}}(M)$ is direct, in other words gets assigned the value 1.
2. Let $M \in \mathbb{R}^{n}$ be a k-dimensional manifold. Suppose that $\gamma: U \rightarrow \mathbb{R}^{n}$ is a parametrization of M in the sense of Definition 3.1.18 in the text. Note this is not a "relaxed" parametrization as in Definition 5.2.3, but it is equivalent to a relaxed parametrization in which the set X of bad points is empty. Assume further that the function $\gamma^{-1}: M \rightarrow U$ is continuous.

Show that there is a unique orientation of M such that for each $\vec{u} \in U$, the ordered basis $\vec{D}_{1} \gamma(\vec{u}), \ldots, \vec{D}_{k} \gamma(\vec{u})$ is direct in $T_{\gamma(\vec{u})}(M)$.

