Math 31CH Spring 2017 Homework 4, due 5/3/2017 in HW box in the basement of AP\&M by 5 pm

1 Reading

Read Sections 6.1,6.2.

2 Exercises to submit on Wednesday 5/3

2.1 Exercises from the text

Section 5.3: \#1, 3, 5, 6, 8, 15, 20.
Hints and comments:
\#1: What the problem means is that your curve is the image of the function $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $f(t)=\left[\begin{array}{l}r(t) \cos \theta(t) \\ r(t) \sin \theta(t)\end{array}\right]$ as t goes from a to b. A similar comment applies to $\# 3$.
\#6: We did not do an example in class of integrating a function on a k-dimensional manifold with respect to k-dimensional volume, we only did examples of finding the k-dimensional volume. The function case is not really any harder, see Definition 5.3.2.
\#15: In problems where you have a paramterization, it is tedious to prove that the parameterization really does satisfy Definition 5.2 .3 of a "relaxed" parametrization. So you need not do this for every problem. However, this is the point of $\# 15(\mathrm{a})$ so for that one do justify as well as you can that Definition 5.2.3 is satisfied.
\#20: Recall that $|A|$ indicates the length of a matrix A, i.e. its length as a vector in \mathbb{R}^{4} once we indentify 2×2 matrices with \mathbb{R}^{4}.

