Math 31CH Spring 2017 Homework 2, due 4/19/2017 in HW box in the basement of AP\&M by 5 pm

1 Reading

Read Sections 4.8, 4.9, 4.10, 5.1

2 Exercises to submit on Wednesday 4/19

2.1 Exercises from the text

Section 4.8: \#1(Matrix A only), 2, 8, 11, 14, 18
Remark: For \#14, we didn't cover the Cayley-Hamilton theorem in class, so please first read the statement in the text (Theorem 4.8.27). Also read Theorem 4.8.26 and freely use that statement in your proof of \#14(c).

Section 4.9: \#1, 3, 4 .

2.2 Exercise not from the text

1. Let A be the 3 -parallelogram in \mathbb{R}^{3} which is spanned by the three vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the function given by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{ll}
x_{1} x_{2} x_{3} & \left(x_{1}, x_{2}, x_{3}\right) \in A \\
0 & \left(x_{1}, x_{2}, x_{3}\right) \notin A
\end{array} .\right.
$$

Find

$$
\int_{\mathbb{R}^{3}} f(x, y, z)\left|d^{3} \vec{x}\right| .
$$

