## 1. Some definitions and formulas

Theorem 1.1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear transformation, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an integrable function. Then $f \circ T$ is integrable, and

$$
\int_{\mathbb{R}^{n}} f(\vec{y})\left|d^{n} \vec{y}\right|=|\operatorname{det} T| \int_{\mathbb{R}^{n}} f(T(\vec{x}))\left|d^{n} \vec{x}\right|
$$

Theorem 1.2. Let $X$ be a compact subset of $\mathbb{R}^{n}$ with boundary $\partial X$ of volume 0 ; let $U \subset \mathbb{R}^{n}$ be an open set containing $X$. Let $\Phi: U \rightarrow \mathbb{R}^{n}$ be a $C^{1}$ mapping that is injective on $(X-\partial X)$ and has Lipschitz derivative, with $[D \Phi(\vec{x})]$ invertible at every $\vec{x} \in(X-\partial X)$. Set $Y=\Phi(X)$.

Then if $f: Y \rightarrow \mathbb{R}$ is integrable, $(f \circ \Phi)|\operatorname{det}[D \Phi]|$ is integrable on $X$ and

$$
\int_{Y} f(\vec{y})\left|d^{n} \vec{y}\right|=\int_{X}(f \circ \Phi)(\vec{x})|\operatorname{det} D \Phi(\vec{x})|\left|d^{n} \vec{x}\right| .
$$

Lemma 1.3. (Spherical coordinates) If

$$
S:\left(\begin{array}{l}
r \\
\theta \\
\varphi
\end{array}\right)=\left(\begin{array}{c}
r \cos \varphi \cos \theta \\
r \cos \varphi \sin \theta \\
r \sin \varphi
\end{array}\right)
$$

then $|\operatorname{det}[D S]|=r^{2} \cos \varphi$.
Lemma 1.4. (Cylindrical coordinates) If

$$
S:\left(\begin{array}{c}
r \\
\theta \\
z
\end{array}\right)=\left(\begin{array}{c}
r \cos \theta \\
r \sin \theta \\
z
\end{array}\right)
$$

then $|\operatorname{det}[D S]|=r$.
Definition 1.5. Suppose that $M \subseteq \mathbb{R}^{n}$ is a $k$-dimensional manifold. Let $\gamma: U \rightarrow \mathbb{R}^{n}$ be a relaxed parametrization of $M$, where $X$ is the set of bad points. Then

$$
\operatorname{vol}_{k} M=\int_{U-X} \sqrt{\operatorname{det}\left([D \gamma(\vec{u})]^{T}[D \gamma(\vec{u})]\right)}\left|d^{k} \vec{u}\right| .
$$

Definition 1.6. let $U \subseteq \mathbb{R}^{k}$ be a bounded open set with $\operatorname{vol}_{k} \partial U=0$. Let $V$ be an open subset of $\mathbb{R}^{n}$ and let $\gamma: U \rightarrow \mathbb{R}^{n}$ be a $C^{1}$ mapping with $\gamma(U) \subseteq V$. Let $\varphi$ be a $k$-form field defined on $V$. Then the integral of $\varphi$ over $[\gamma(U)]$ is

$$
\int_{[\gamma(U)]} \varphi=\int_{U} \varphi\left(P_{\gamma(\vec{u})}\left(\overrightarrow{D_{1}} \gamma(\vec{u}), \ldots, \overrightarrow{D_{k}} \gamma(\vec{u})\right)\right)\left|d^{k} \vec{u}\right| .
$$

Definition 1.7. Let $M \subseteq \mathbb{R}^{n}$ be a $k$-dimensional oriented manifold, $\varphi$ a $k$-form field on a neighborhood of $M$, and $\gamma: U \rightarrow \mathbb{R}^{n}$ an orientation-preserving parametrization of $M$. Then

$$
\int_{M} \varphi=\int_{[\gamma(U)]} \varphi
$$

as defined in the previous definition.

Theorem 1.8. Let $U \subseteq \mathbb{R}^{n}$ be open, and let $f: U \rightarrow \mathbb{R}^{n-k}$ be a map of class $C^{1}$ such that $[D f(\vec{x})]$ is surjective at all $\vec{x} \in M=f^{-1}(\overrightarrow{0})$. Then the map $\Omega_{\vec{x}}: B\left(T_{\vec{x}}(M)\right) \rightarrow\{-1,1\}$ given by

$$
\Omega_{\vec{x}}\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)=\operatorname{sgn} \operatorname{det}\left[\vec{\nabla} f_{1}, \ldots, \vec{\nabla} f_{n-k}, \vec{v}_{1}, \ldots, \vec{v}_{k}\right]
$$

is an orientation of $M$.
I will remind you of definitions and theorems involving the specialized language of work, flux, and mass forms, and curl and div, if they are needed.

