
MATH 31AH FALL 2017 MIDTERM 1: SAMPLE SOLUTIONS

1 (10 pts).

(a) Find the standard matrix A = [T ] of the linear transformation T : R2 → R2 given by

projection onto the line spanned by the vector

[
1

1

]
. You do not need to prove your answer

is correct, but you must show your calculations.

(b) Find the standard matrix B = [S] of the linear transformation S : R2 → R2 given

by reflection across the line spanned by the vector

[
1

−1

]
. You do not need to prove your

answer is correct, but you must show your calculations.

(c) Are the linear transformations S ◦ T and T ◦ S the same? Briefly justify your answer.

Solution.

[Note that parts (a) and (b) were a webwork problem, but with easier vectors chosen than

the vectors the webwork typically randomly picked].

(a). Let ~y =

[
1

1

]
, and let ~e1 =

[
1

0

]
and ~e2 =

[
0

1

]
as usual. Then

proj~y ~e1 =
~y · ~e1
‖~y‖2

~y =
1

12 + 12
~y =

1

2
~y =

[
1/2

1/2

]
.

A similar calculation gives proj~y ~e2 =

[
1/2

1/2

]
. Since [T ] is the matrix with columns T (~e1) and

T (~e2), we have

[T ] =

[
1/2 1/2

1/2 1/2

]
.

(Most students did the problem this way, since this was the best method in the webwork

where the vector ~y was random. In this problem, it is also fine to draw a picture to visually

calculate what the projections of ~e1 and ~e2 are, which works since the line through ~y makes

a nice 45 degree angle with the axes.)

(b). Some students recalled formulas for the matrix of a reflection in terms of the angle

the reflection line makes with the x-axis, that were obtained in a homework problem.

It is also possible to obtain the reflection of a vector ~x about the line through ~y by writing

~x = ~x⊥ + ~x‖, where ~x‖ is the projection of ~x onto ~y. Then the reflection of ~x about the line

through ~y is ~x− 2~x⊥. (draw a picture to convince yourself).
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The easiest way to do part (b) in this case, since the vector ~y is so simple, is just to draw

a picture and visually calculate the reflections of ~e1 and ~e2 about this line. From the picture

one sees that S(~e1) = −~e2 and S(~e2) = −~e1. Thus

[S] =

[
0 −1

−1 0

]
.

(c). This was meant to refer to the particular linear transformations S and T in parts

(a) and (b); I’m sorry if that was unclear. (Usually, letters are meant to have a consistent

meaning throughout all parts of a problem).

Then, since [S ◦ T ] = [S][T ] and [T ◦ S] = [T ][S], we can tell if the two compositions are

the same by computing the two products of their standard matrices. Since

[S][T ] =

[
0 −1

−1 0

][
1/2 1/2

1/2 1/2

]
=

[
−1/2 −1/2

−1/2 −1/2

]
and

[T ][S] =

[
1/2 1/2

1/2 1/2

][
0 −1

−1 0

]
=

[
−1/2 −1/2

−1/2 −1/2

]
,

the two compositions are the same.

An alternative method was to argue geometrically that projecting onto the line through

[1, 1] and then reflecting about the line through [1,−1] gives the same result as first reflecting

through the line through [1,−1] and then projecting onto the line through [1, 1] (try it).

If you interpreted this problem to mean “given two arbitrary linear transformations S and

T , does S ◦ T = T ◦ S?” then to receive full credit you had to give an example where this

fails, not just state that it is not true in general (since the problem asked for a justification).

2 (10 pts).

(a) Find a vector orthogonal to the plane in R3 which goes through the three points 3

−3

5

 ,
 2

−1

6

 , and

3

0

7

 .
You do not need to prove your answer is correct, but show your calculations.

(b) Find the equation of the plane that goes through the three points given in (a), writing

the equation in the form ax+ by+ cz = d. You do not need to prove your answer is correct,

but show your calculations.

Solution.

[Note that this was a webwork problem, though when you did it you probably had different

numbers].
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(a). We need to find two vectors that lie on the plane. For this we take two differences of

the given points, for example ~v1 =

 3

−3

5

−
 2

−1

6

 =

 1

−2

−1

 and ~v2 =

3

0

7

−
 2

−1

6

 =

1

1

1

.

Then the quickest way to find a vector orthogonal to the plane through two (non-parallel)

vectors is to calculate their cross product: 1

−2

−1

×
1

1

1

 = det

 i 1 1

j −2 1

k −1 1

 = −2i+ k − j − (−2k − i+ j) = −i− 2j + 3k =

−1

−2

3

 .
It is also possible to find such a vector by setting up a system of linear equations and

solving it, but the cross product is faster.

(b). As explained in Example 2 of section 1.5 (page 49 of the text), any plane orthogonal

to the vector

ab
c

 will have the formula ax + by + cz = d for some d. Thus the plane we

are looking for has the formula −x− 2y + 3z = d. Since all three given points are supposed

to lie on this plane, we can solve for d by plugging in any of these three points, for example

−(3)− 2(−3) + 3(5) = d so d = 18. Thus the answer is −x− 2y + 3z = 18.

Again, this could also be done by setting up a system of equations to solve for all of a, b, c, d

but this is lengthy as it does not use the information you got in part (a).

3 (10 pts).

(a) Use vector methods to prove that the diagonals of a parallelogram are orthogonal if

and only if the parallelogram is a rhombus (that is, has all sides of equal length).

(b) Use vector methods to prove that the diagonals of a parallelogram bisect the vertex

angles if and only if the parallelogram is a rhombus.

Solution.

(a). Let the vertices of the parallelogram be A,B,C,D as we go around the parallelogram

clockwise. Let ~x = ~AB and ~y = ~AD. (Note that this renaming makes the notation in the

problem much simpler). Then the two diagonals of the parallelogram are ~AC = ~x + ~y and
~BD = ~y − ~x.

Suppose the diagonals of the parallelogram are orthogonal. This is equivalent to (~x+ ~y) ·
(~y − ~x) = 0. But using the properties of the dot product we now have

(~x+ ~y) · (~y − ~x) = ~x · ~y + ~y · ~y − ~y · ~x− ~x · ~x = ‖~y‖2 − ‖~x‖2.

We see that ‖~y‖2 = ‖~x‖2, and since lengths are nonnegative numbers, taking the square root

of both sides yields ‖~y‖ = ‖~x‖. This shows that the adjacent sides AB and AD have the
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same length. But since opposite sides in any parallelogram have the same length, it follows

that all sides of the parallelogram have the same length.

Conversely, if the parallelogram is a rhombus, then the sides AB and AD have the same

length, so ‖~y‖ = ‖~x‖, and squaring gives ‖~y‖2 = ‖~x‖2. The same equation displayed above

still holds, so this implies that 0 = (~x + ~y) · (~y − ~x), which says that the diagonals of the

parallelogram are orthogonal.

(b). Again let the parallelogram have vertices named A,B,C,D as we go around clockwise

and let ~x = ~AB and ~y = ~AD. Consider the angle at vertex A. The diagonal that goes through

this vertex is ~AC = ~x+ ~y. Let θ1 be the angle between ~x and ~x+ ~y and let θ2 be the angle

between ~x+ ~y and ~y. From the formula for the dot product we get

~x · (~x+ ~y) = ‖~x‖‖~x+ ~y‖ cos θ1

and so

cos θ1 =
~x · (~x+ ~y)

‖~x‖‖~x+ ~y‖
=
‖~x‖2 + ~x · ~y
‖~x‖‖~x+ ~y‖

.

A similar calculation gives

cos θ2 =
‖~y‖2 + ~x · ~y
‖~y‖‖~x+ ~y‖

.

Now suppose that the parallelogram is a rhombus, so that ‖~x‖ = ‖~y‖. Plugging in this

equality into the equations above we get that cos θ1 = cos θ2. Now the angle between two

vectors is taken in the range [0, π]. For angles in that range, two angles have the same cosine

if and only if they are the same. Thus θ1 = θ2 and the diagonal AC bisects the angle at

vertex A.

Now there was nothing special about the vertex A in this argument. Thus assuming

the parallelogram is a rhombus, the same argument applied at each vertex shows that the

diagonal at that vertex bisects the angle at that vertex.

Conversely, suppose that the diagonal AC bisects the angle at vertex A. Then θ1 = θ2

and so certainly cos θ1 = cos θ2. Using the formulas above we get an equality

‖~y‖2 + ~x · ~y
‖~y‖‖~x+ ~y‖

=
‖~x‖2 + ~x · ~y
‖~x‖‖~x+ ~y‖

.

Cancelling the term ‖~x + ~y‖ (note that this is the length of a diagonal of a parallelogram

and so cannot be 0) and clearing denominators gives ‖~x‖(‖~y‖2 + ~x · ~y) = ‖~y‖(‖~x‖2 + ~x · ~y).

After some algebraic manipulation we get ‖~x‖‖~y‖(‖~y‖ − ‖~x‖) = (‖~y‖ − ‖~x‖)~x · ~y.

Now if ‖~y‖−‖~x‖ is not zero, we can divide both sides by this quantity to obtain ‖~x‖‖~y‖ =

~x ·~y. Note that this says that the angle φ between the vectors ~x and ~y has cosφ = 1, in other

words φ = 0. This is impossible for a parallelogram. Thus we must have ‖~y‖−‖~x‖ = 0, and

so ‖~y‖ = ‖~x‖. This shows that the parallelogram has two adjacent sides of equal length, and

as in the proof of part (a), this implies that all sides have the same length.
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4 (10 pts).

Suppose that U and V are subspaces of Rn. Recall that we define

U + V = {~x ∈ Rn | ~x = ~u+ ~v for some ~u ∈ U and ~v ∈ V }.

Prove that (U + V )⊥ = U⊥ ∩ V ⊥.

Solution.

[Note that this was a homework problem verbatim, and it was one of the problems that was

graded. If you did not pick up your graded homework 2 assignment and view the comments

there, you may have replicated any mistakes you made on your exam. Remember that it is

important to view the feedback you obtain from the homework grader.]

Suppose first that ~x ∈ (U + V )⊥. This means that ~x · (~u + ~v) = 0 for all ~u ∈ U and all

~v ∈ V . Using the linearity of the dot product we get that ~x · ~u+ ~x · ~v = 0 for all ~u ∈ U and

~v ∈ V .

Since V is a subspace, we have ~0 ∈ V . Apply the statement above to an arbitrary ~u ∈ U
and the vector ~v = ~0 ∈ V . We obtain ~x · ~u + ~x · ~0 = ~x · ~u + 0 = 0, for all ~u ∈ U . Thus

~x · ~u = 0 for all ~u ∈ U , and this means that ~x ∈ U⊥ by definition. [This is the key part of

the argument, which many of you missed. Note that just because we know a sum of two real

numbers is 0, we cannot conclude that both numbers are 0 in general without some further

reason.]

The same argument, switching the roles of U and V , shows that ~x ∈ V ⊥. Thus ~x ∈
U⊥ ∩ V ⊥. We have proved that (U + V )⊥ ⊆ U⊥ ∩ V ⊥.

Conversely, suppose that ~x ∈ U⊥ ∩ V ⊥. Then in particular ~x ∈ U⊥, and so ~x · ~u = 0 for

all ~u ∈ U . Similarly, ~x ∈ V ⊥, and so ~x · ~v = 0 for all ~v ∈ V . Adding these equations we get

~x · (~u + ~v) = ~x · ~u + ~x + ~v = 0 + 0 = 0 for all ~u ∈ U and ~v ∈ V . Sine ~u + ~v is an arbitrary

vector in U+V , we conclude that ~x ∈ (U+V )⊥. We have proved that U⊥∩V ⊥ ⊆ (U+V )⊥.

Since we have proved both inclusions, we conclude that U⊥ ∩ V ⊥ = (U + V )⊥.

5 (10 pts).

Let A,B and C be n× n matrices. Let 0 be the n× n 0-matrix. For each of the following

statements, if it is true for all n × n matrices A,B, and C with the indicated properties,

prove it; otherwise give a counterexample.

(a) If AB = BC and B is invertible, then A = C.

(b) If AB = CB and B is invertible, then A = C.

(c) If AB = 0, then either A = 0 or B = 0.

Solution.

(a). [This was a homework problem verbatim]
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This is false. One way to find a counterexample is the following. If B is invertible, then

the equation AB = BC leads to B−1AB = B−1BC = C by multiplying on the left by B−1

on both sides. (Note that it is not valid to multiply on one side of the equation on the

right and on the other side on the left, since multiplication of matrices is not commutative.)

Thus if we pick any invertible matrix B and a random matrix A, then as long as B−1AB is

different from A we have a counterexample.

For example pick B =

[
1 0

0 −1

]
, which is invertible with B−1 = B, and let A =

[
1 2

3 4

]
.

Then B−1AB = BAB =

[
1 −2

−3 4

]
. Letting C =

[
1 −2

−3 4

]
we see that AB = BC but

A 6= C.

(b). This is true. Multiply the equation AB = CB by B−1 on the right, obtaining

ABB−1 = CBB−1. Since BB−1 = In, we get A = AIn = CIn = C.

(c). This is false. There are many examples, which you can find by experimentation. One

more systematic method is to recall that the columns of AB are given by the vectors A~bi
where ~bi are the columns of B. Thus choose a nonzero matrix A with a nonzero vector ~v

such that A~v = ~0. (From our more recent work in Chapter 4, we know this happens as long

as A is a singular matrix.) For example, choose A =

[
1 1

1 1

]
and ~v =

[
1

−1

]
. Then we can

take both columns of B to be ~v, i.e. B =

[
1 1

−1 −1

]
. It follows that AB = 0 even though

A and B are nonzero.

6 (15 pts).

Recall that an n × n matrix A is orthogonal if ATA = In, where In is the n × n identity

matrix. In this problem let n = 2.

(a) Show that if ~a1 and ~a2 are the two columns of the 2×2 matrix A, then A is orthogonal

if and only if ‖~a1‖ = 1, ‖~a2‖ = 1, and ~a1 · ~a2 = 0.

(b) Show that A is an orthogonal 2 × 2 matrix if and only if there are elements a, c ∈ R

such that a2 + c2 = 1 and either A =

(
a −c
c a

)
or A =

(
a c

c −a

)
.

(c) Show that if the 2 × 2 matrix A is orthogonal, then A is invertible and A−1 is also

orthogonal.

(d) Show that if the 2× 2 matrix A is orthogonal, then AT is also orthogonal.

Solution.

[Most of this was homework problem(s), although in the homework (b) was phrased in

terms of a choice of angle θ.]
6



(a). For any i and j, we can recognize ~ai · ~aj as the ijth spot of the matrix ATA. Explicitly,

If Aij = aij then

(ATA)ij =
2∑

k=1

(AT )ikAkj =
2∑

k=1

AkiAkj =
2∑

k=1

akiakj = ~ai · ~aj.

Since ATA = I2 by definition, the dot products of the columns of A have the values described.

(b). Let A =

[
a b

c d

]
be orthogonal. By part (a), the columns have length 1 and so

a2 + c2 = 1 and b2 + d2 = 1. Also, the columns are orthogonal by part (a). Suppose that

~x =

[
x1
x2

]
is orthogonal to

[
a

c

]
, and so ax1 + cx2 = 0. If a 6= 0, we get x1 = (−c/a)x2.

If the vector ~x also has ‖~x‖ = 1, then c2x22/a
2 + x22 = 1 and so x22(c

2/a2 + 1) = 1. Since

a2 + c2 = 1, this gives x22 = a2. So either x2 = a and x1 = −c or else x2 = −a and x1 = c.

This shows that once the first column of the matrix is chosen to be the vector

[
a

c

]
of length

1, the second column has to be either

[
−c
a

]
or

[
c

−a

]
, which gives the two required forms.

Although this argument assumed that a 6= 0, a similar argument assuming that c 6= 0 gives

the same two possible forms for the second column. Since a2 + c2 = 1, either a or c has to

be nonzero, so one of the two cases applies.

Conversely, if a2 + c2 = 1 then clearly for either of the two forms above, both columns

have length 1 and the two columns are orthogonal, by direct calculation.

(c). Let A be orthogonal. Then by part (b) we know it has one of the two forms above.

If A =

[
a −c
c a

]
with a2 + c2 = 1, then detA = a2 + c2 = 1. We showed in class that any

2× 2 matrix with nonzero determinant has an inverse, and gave the formula for the inverse.

Thus A is invertible and its inverse is 1/(detA)

[
a c

−c a

]
=

[
a c

−c a

]
. This matrix is again

of the same form and so is orthogonal by part (b) again.

On the other hand, if A =

[
a c

c −a

]
with a2 + c2 = 1, then detA = −a2 − c2 = −1.

Again since this is nonzero we know that A is invertible with inverse 1/(detA)

[
−a −c
−c a

]
=[

a c

c −a

]
, which again is orthogonal by part (b).

An alternative method which does not require the formula for the inverse of a 2 × 2

invertible matrix is to notice that ATA = I2 suggests that AT should be the inverse of A.

Thus one can compute AAT in each of the two cases and show that it is also equal to I2,
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proving that A is invertible with A−1 = AT . Then one checks that AT is also of one of the

forms in (b) and so is orthogonal (see part (d) below).

(d). Considering the two forms in part (b), if A is of the first form then clearly AT is of

the same form (but with c replaced by −c). Thus AT is also orthogonal by part (b). If A is

of the second form, then AT = A, so A is also orthogonal.

If one used the alternative method for (c), then this already proves that AT is invertible

with inverse A, and in part (c) one already proved that AT = A−1 was orthogonal.
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