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Chapter 1

Algebras and Coalgebras

cha:coalgs
1.1 Algebra basics

Let k be a field.

Definition 1.1 (k-algebra). A k-algebra A is a ring with 1 which is also a
k-vector space, such that

λ · (ab) = (λ · a)b = a(λ · b)

for all λ ∈ k and a, b ∈ A.

Given a k-algebra A, there is a ring homomorphism

u : k → A

λ 7→ λ · 1

with u(k) ⊆ Z(A) (the center of A).
Conversely, given a ring A and such a homomorphism u : k → A such

that u(k) ⊆ Z(A), we have that A is a k-algebra with scalar multiplication
λ · a = u(λ)a. Moreover, since we are only concerned with algebras over a field
in these notes, the homomorphism u must be injective, so we can identify k
with u(k) and think of k ⊆ A (where k ⊆ Z(A)).

Example 1.2 (Monoid algebra). Let M be a monoid., i.e. M is a set with
a binary operation (=a product) which is associative and has a unit. Then
we can define the monoid algebra kM , which is a k-vector space with basis M
and product induced by extending the product of M linearly. More formally,
we may write an arbitrary element of kM as

∑
m amm, where if M is infinite

then all but finitely many am are 0.
So (∑

m∈M
amm

)(∑
n∈M

bnn
)

=
∑
m∈M

∑
n∈M

ambnmn,

1
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where am = 0 for all but finitely many n ∈ M , bn = 0 for all but finitely
many n ∈M , and mn is the product in the monoid M . Note that the identity
element of kM is the identity element 1M of the monoid M . ©

A group is just a monoid for which every element has a multiplicative
inverse. We will be especially interested in the special case of group algebras
below.

Example 1.3. As a special case of the preceding example, consider the monoid
(N,+) written multiplicatively as N = {x0, x1, x2, . . .}, so that xixj = xi+j .
Then the monoid algebra kN is isomorphic to the algebra of polynomials k[x].

If we instead take the monoid (Z,+) written multiplicatively as Z =
{. . . , x−2, x−1, x0, x1, x2, . . .}, then we get the algebra of Laurent polynomials,
i.e. kZ ∼= k[x, x−1], and we call it a group algebra. ©

One should be familiar with many more examples of algebras from the
study of ring and module theory. In this course many of the main results will
concern finite dimensional algebras, that is k-algebras A for which dimk A <∞.
If M is a finite monoid then kM is such an example. Another simple example
is the ring Mn(k) of n× n-matrices with entries in k.

We will make heavy use of tensor products in this course, but primarily
tensor products over a field (k), which are especially easy to understand. We
won’t review the general definition and theory of tensor products here. Recall,
however, that if V and W are k-vector spaces, with respective k-bases {vi |
i ∈ I} and {wj | j ∈ J}, then the tensor product V ⊗kW has a k-basis of pure
tensors {vi⊗wj | (i, j) ∈ I × J}. This gives a very explicit way of thinking of a
tensor product over a field, though for some purposes it is better to rely on the
universal property of the tensor product rather than thinking in terms of bases.

Universal Property (Tensor product of k-vector spaces): For any bi-
linear, k-balanced map φ : M × N → L, there exists a unique k-linear map
φ̂ : M ⊗N → L such that φ(m,n) = φ̂(m⊗ n). Equivalently, φ = φ̂ ◦ f , where
f : M ×N →M ⊗N is given by f(m,n) = m⊗n, i.e. we get the commutative
diagram:

M ⊗N

M ×N

L

∃!φ̂

φ

f

We refer to bilinear and balanced over k as “k-bilinear” from now on.
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ex:sumandtenalg Example 1.4 (⊕ and ⊗). Let A and B be k-algebras. Then the direct sum
A⊕B (as vector spaces) is naturally a k-algebra, with product

(a1, b1)(a2, b2) = (a1a2, b1b2)

and scalar product
λ · (a, b) = (λa, λb).

The tensor product A⊗k B is also a k-algebra with product induced by the
extending linearly the product on pure tensors given by

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2 ⊗ b1b2),

and with scalar multiplication

λ · (a1 ⊗ b1) = (λa1)⊗ b1 = a1 ⊗ (λb1). ©

1.2 Diagrammatic definition of an algebra

We would like to “dualize” the definition of an algebra. In order to do this we
need to first express the definition of algebra in terms of commutative diagrams.

First, note that if A is a k-algebra, then the map

A×A→ A

(a, b) 7→ ab

is k-bilinear. Thus by the universal property of the tensor product, we get a
unique k-linear map

A⊗k A→ A

a⊗ b 7→ ab,

which we refer to as the multiplication map of the algebra. As noted earlier, we
can also think of the k-vector space structure in terms of a ring homomorphism

u : k → A

λ 7→ λ · 1

with u(k) ⊆ Z(A), which we refer to as unit map.
In the following result, we use that there are canonical isomorphisms

k ⊗k V ∼= V and V ⊗k k ∼= V for any k-vector space V , and take these a
identifications. From now on, because almost all tensor products will be over
the field k, we write ⊗k as ⊗ when there is no chance of confusion. We write
idS for the identity map S → S of any set S, or sometimes just id if the set is
clear.
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lem:algstruct Lemma 1.5. Suppose that A is a k-vector space together with k-linear maps
m : A⊗A→ k and u : k → A. These maps give A the structure of a k-algebra
for which m and u are the multiplication and unit maps, if and only if the
following two diagrams are commutative:

A⊗k k A k ⊗k A A⊗A⊗A A⊗A

A⊗A A A⊗A A⊗A A

idA⊗u idA u⊗idA

m⊗idA

idA⊗m m

m m m

Proof. The commutativity of the first diagram says that

a⊗ 1k a 1k ⊗ a

a⊗ u(1k) au(1k) = u(1k)a u(1k)⊗ a,

and thus u(1k) = 1A is the identity element of A. And the commutativity of
the second diagram says that

a⊗ b⊗ c ab⊗ c

a⊗ bc a(bc) = (ab)c,

i.e. the product given by m is associative.
The left diagram also says that for λ ∈ k, a ∈ A, λ · a = (λ · 1A)a = a(λ · 1),

so k1A = u(k) is in the center of A. �

We sometimes refer to an algebra by the triple (A,m, u) of the k-vector
space A and the two maps m and u that define the algebra structure.

1.3 Coalgebras

The definition of a coalgebra is made by reversing the arrows in the diagrams
in Lemma 1.5. This leads to a notion that seems much less intuitive than an
algebra at first, but we will see that there are many examples.

def:coalg Definition 1.6 (Coalgebra). Suppose that C is a k-vector space together
with k-linear maps ∆: C → C⊗C and ε : C → k. Then C is called a coalgebra,
and the maps ∆ and ε are called the comultiplication (or coproduct) and the
counit respectively, if the following two diagrams are commutative:

C ⊗ C C C ⊗ C C C ⊗ C

C ⊗k k C k ⊗k C C ⊗ C C ⊗ C ⊗ C

idC ⊗ε

∆ ∆

idC ε⊗idC

∆

∆ ∆⊗idC

idC ⊗∆
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Remark. The second diagram is called “coassociativity” of ∆. 4

We sometimes refer to a coalgebra by the triple (C,∆, ε) of the k-vector
space C and the two maps ∆ and ε that define the coalgebra structure.

Many common examples of product operations defining algebras involve
combining two elements in a natural way such as multiplication of numbers
or composition of functions. Conversely, many natural coproducts take an
element and pull it apart into two pieces in all possible ways, summing over
the possibilities.

ex:monoidcoalg Example 1.7 (Monoid coalgebra). Let M be a monoid with the property
that for all m ∈ M , there are finitely many pairs (n, p) ∈ M ×M such that
np = m. Let kM be the vector space with basis given by the elements of M ,
and define a coalgebra structure on kM with

∆(m) =
∑

(n,p)∈{(n,p)∈M2|np=m}

n⊗ p ∀m ∈M,

ε(m) =

{
0 if m 6= 1M

1 if m = 1M

for m ∈M extended linearly to all of kM .
We claim that (kM,∆, ε) is a coalgebra, which we refer to as the monoid

coalgebra of M . Since both ∆ and ε are defined on the object of M and then
extended linearly to kM , it is easy to see that to check the necessary diagrams
hold it is enough to check they commute when starting with an element m ∈M .
This is because all of the maps in the diagrams are k-linear.

For the top diagram we note that

(id⊗ε)(∆(m)) = (id⊗ε)
( ∑
np=m

n⊗ p
)

=
∑
np=m

ε(n)p = m.

This is clear since every summand is zero except for the one with n = 1M ,
p = m. Similarly

(ε⊗ id)(∆(m)) =
∑
np=m

nε(p) = m,

so the left diagram commutes. Next, we note that

(∆⊗id)◦∆(m) = (∆⊗id)
( ∑
np=m

n⊗p
)

=
∑
qr=n

∑
np=m

q⊗r⊗p =
∑
qrp=m

q⊗r⊗p,

and similarly

(id⊗∆)◦∆(m) = (id⊗∆)
( ∑
np=m

n⊗p
)

=
∑
st=p

∑
np=m

n⊗s⊗t =
∑
nst=m

n⊗s⊗t,

so we see that these are the same, and thus the right diagram also commutes.©
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Example 1.8. As a special case of the previous example, consider the mul-
tiplicative monoid N = {x0, x1, x2, . . .}. The colagebra kN defined above has
coproduct and counit given by

∆(xn) =
∑
i+j=n

xi ⊗ xj ,

ε(xn) = δ0n,

where

δij =

{
0 if i 6= j,
1 if i = j

is the “Kronecker delta”. ©

Example 1.9 (Trivial coalgebra). The field k is a coalgebra in a canonical
way, where ∆: k → k ⊗ k = k and ε are both the identity maps under the
natural identification of k ⊗k k with k. This is called the trivial coalgebra. ©

Example 1.10 (Matrix coalgebra). Let A = Mn(k) be the k-algebra of
n × n-matrices with entries in k. For 1 ≤ i, j ≤ n let eij be the matrix with
a 1 in the (i, j)-entry and 0 in all other entries. Then it is easy to check that
eijest = δjseit. The elements {eij | 1 ≤ i, j ≤ n} are traditionally called matrix
units and they clearly form a basis for A.

Now we can give A a coalgebra structure by defining

∆(eij) =
∑

1≤s≤n
eis ⊗ esj

and
ε(eij) = δij ,

and extend linearly to A. Note that

(ε⊗ id) ◦∆(eij) = (ε⊗ id)
(∑

s

eis ⊗ esj
)

=
∑
s

ε(eis)esj = ε(eii)eij = eij ,

and similarly

(id⊗ε) ◦∆(eij) = (id⊗ε)
(∑

s

eis ⊗ esj
)

=
∑
s

eisε(esj) = eijε(ejj) = eij ,

so the left diagram in Definition 1.6 commutes. Similar checks for the right
diagram shows that (A,∆, ε) is a coalgebra. ©
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Example 1.11 (Grouplike coalgebra on S). Let S be any set and let kS
be a vector space space with basis S. Define

∆: kS → kS ⊗ kS
s 7→ s⊗ s,

ε : kS → k

s 7→ 1

for all s ∈ S. Extending ∆ and ε linearly, we get a coalgebra kS. We call the
coalgebra (kS,∆, ε) the grouplike coalgebra on S

More generally, in any coalgebra (C,∆, ε), an element c ∈ C with ∆(c) =
c⊗ c and ε(c) = 1 is called a grouplike element. Thus the grouplike coalgebra
has a k-basis of grouplike elements. ©

ex:sumandtenofcoalgs Example 1.12 (⊕ and ⊗). Let (C,∆C , εC) and (D,∆D, εD) be coalgebras
over k. Then C ⊕D is naturally a coalgebra, as follows. Note that we have a
canonical isomorphism

(C ⊕D)⊗ (C ⊕D) ∼= (C ⊗ C)⊕ (D ⊗ C)⊕ (C ⊗D)⊕ (D ⊗D).

Then we define the coproduct ∆ of C ⊕D as the composition

C ⊕D (C ⊗ C)⊕ (D ⊗D)

(C ⊕D)⊗ (C ⊕D),

∆C⊕∆D

∆
ι

where ι is the natural inclusion we get by the above isomorphism. Defining also

ε((c, d)) = εC(c) + εD(d),

it is straightforward to check that (C ⊕D,∆, ε) is a coalgebra. We can also
describe the coproduct of C ⊕D more explicitly, as follows. For c ∈ C we write

∆C(c) =
m∑
i=1

ci,1 ⊗ ci,2,

and similarly for d ∈ D we write

∆D(d) =
n∑
j=1

dj,1 ⊗ dj,2.

Then

∆((c, d)) =
m∑
i=1

(ci,1, 0)⊗ (ci,2, 0) +
n∑
j=1

(0, dj,1)⊗ (0, dj,2).
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The tensor product C ⊗D also has a coalgebra structure. The coproduct
∆ is the composition

C ⊗D (C ⊗ C)⊗ (D ⊗D)

(C ⊗D)⊗ (C ⊗D),

∆

∆C⊗∆D

τ23

where
τ23(c1 ⊗ c2 ⊗ d1 ⊗ d2) = c1 ⊗ d1 ⊗ c2 ⊗ d2

is the function that switches the second and third tensorands. The counit is
given by

ε(c⊗ d) = ε(c)ε(d).

Again, if we wish, we can write the formula for the coproduct ∆ explicitly on
elements as

∆(c⊗ d) =
m∑
i=1

n∑
j=1

(ci,1 ⊗ dj,1)⊗ (ci,2 ⊗ dj,2). ©

1.4 Sweedler Notation

If we need to write the action of a coproduct on an element of a colagebra C in
coordinates, formally we get something like the notation ∆(c) =

∑m
i=1 ci,1⊗ ci,2

we wrote in the previous example. This is awkward in several ways: the number
of summands m depends on the element c in general; the double indexing is
ugly; and if we had to apply ∆⊗ idC to ∆(c) even more indices would appear.

Moss Sweedler invented a simplified notation which is in wide use. One just
writes ∆(c) =

∑
c(1) ⊗ c(2). The number of summands is undetermined, and

one does not index the elements at all, other than indicating their positions in
the tensor product. This may be confusing at first, but once one gets used to
this notation it adds great clarity to proofs in which one needs to work with
the action of the coproduct on an arbitrary element.

By the axioms of a coalgebra, (∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆. Sometimes
this map is written as ∆(2) : C → C ⊗ C ⊗ C. In Sweedler notation, applying
the first operation to c gives

(∆⊗ idC) ◦∆(c) = (∆⊗ idC)
(∑

c(1) ⊗ c(2)

)
=
∑

c(1)(1) ⊗ c(1)(2) ⊗ c(2).

On the other hand,

(idC ⊗∆) ◦∆(c) = (idC ⊗∆)
(∑

c(1) ⊗ c(2)

)
=
∑

c(1) ⊗ c(2)(1) ⊗ c(2)(2).
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Now the expressions
∑
c(1)(1) ⊗ c(1)(2) ⊗ c(2) and

∑
c(1) ⊗ c(2)(1) ⊗ c(2)(2)

must represent the same element of C ⊗ C ⊗ C. Sweedler’s notation simplifies
this further, and represents this element as

∆(2)(c) =
∑

c(1) ⊗ c(2) ⊗ c(3).

In this way, double Sweedler indices can be avoided. Notice that the indices
just refer to the positions of the tensorands and not specific elements.

In Sweedler notation, the axiom of the counit ε takes the following form:
for all c ∈ C, one has

c =
∑

ε(c(1))c(2) =
∑

c(1)ε(c(2)).

There is an alternative notation which simplifies even further by avoiding
the parentheses and just writes ∆(c) =

∑
c1 ⊗ c1. If one is feeling especially

lazy, one even omits the sum and writes ∆(c) = c(1) ⊗ c(2). This is a bit
dangerous since one must constantly remember that there is an implicit sum
and c(1) ⊗ c(2) does not stand for a pure tensor.

We will begin to use the Sweedler notation and we will soon see how it
works in practice.

1.5 Basic properties of vector space duals

In this section we give reminders about the basic properties of vector space
duals. Let V be a vector space over the field k. The dual space is

V ∗ = Homk(V, k)

= {all k-linear maps V to k}
= {linear functionals on V }.

that is, the collection of all linear transformations f : V → k. Such an f is
sometimes called a linear functional. V ∗ is naturally itself a vector space with
pointwise operations: if f, g ∈ V ∗ and λ ∈ k, then f + g ∈ V ∗ and λf ∈ V ∗
where

[f + g](v) = f(v) + g(v),

[λf ](v) = λf(v)

for v ∈ V .
Suppose that dimk V <∞ and v1, . . . , vn is a k-basis of V . Then we define

the dual basis of V ∗ to be {v∗1, . . . , v∗n}, where

v∗i (vj) = δij .

It is easy to check that {v∗1, . . . , v∗n} is a basis for V ∗; in particular, dimk V
∗ =

n = dimk V . Since the vector spaces V and V ∗ have the same dimension, there
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is a vector space isomorphism between them, but there is no canonical vector
space isomorphism V → V ∗. In particular the isomorphism

V → V ∗

vi 7→ v∗i

is highly dependent on the basis.
If dimk V = ∞, then V ∗ and V cannot be isomorphic as vector spaces,

as the dimension of the vector space V ∗ has a larger cardinality than the
dimension of V , though we don’t prove that here.

We write V ∗∗ for the double dual (V ∗)∗ = Homk(Homk(V, k), k). There is
a canonical linear transformation

i : V → V ∗∗

v 7→ ev,

where

ev : V ∗ → k

f 7→ f(v)

is “valuation at v”. The map i is always injective. If V is finite dimensional
over k, then we have dimk V = dimk V

∗ = dimk V
∗∗ as observed above. Thus

in this case i is an isomorphism since it is an injective linear transformation
between vector spaces of the same finite dimension. We see that V and V ∗∗

are canonically isomorphic in this case. If V is infinite dimensional over k,
then i cannot be an isomorphism, since it is again the dimension of V ∗∗ of a
cardinality larger than the dimension of V .

Suppose φ : V → W is a linear transformation of k-vector spaces. Then
there is an induced “dual” linear transformation of the dual spaces,

φ∗ : W ∗ → V ∗

f 7→ f ◦ φ
(1.1) {eq:pullback}

called the pullback by φ.
If iV : V → V ∗∗ is the canonical map given above, then there is a commuta-

tive diagram

V W

V ∗∗ W ∗∗.

φ

iV iW

φ∗∗

If V and W are finite dimensional, then iV and iW are isomorphisms, so the
diagram says that dualizing twice, the map φ∗∗ is essentially the same as φ, i.e.
we can identify φ∗∗ with φ.
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Duals and ⊗

It is useful also to notice how duals interact with the tensor product. For
vector spaces V and W we always have a canonical linear transformation
ι : V ∗ ⊗W ∗ → (V ⊗W )∗, where

[ι(f ⊗ g)](v ⊗ w) = f(v)g(w).

One may check that ι is always an injective linear transformation, and that
when either V or W is finite dimensional, then ι is an isomorphism, but not
when both V and W are infinite dimensional. This can be proved by choosing
bases.

1.6 Duals of Algebras and Coalgebras

Let C be a coalgebra over k. We claim that the dual space C∗ has a natural
k-algebra structure.

For f, g ∈ C∗ = Homk(C, k), we define fg ∈ C∗ by

[fg](c) =
∑

f(c(i))⊗ g(c(2)) = (f ⊗ g) ◦∆(c),

where
∆(c) =

∑
c(1) ⊗ c(2)

in Sweedler notation. Note that the counit of C is a linear map ε : C → k, so
ε ∈ C∗. We claim that the product above is an associative product on C∗ and
that ε is the unit element.

We give a direct proof that C∗ is an algebra. By its definition, it is clear
that the relation sending (f, g) 7→ [fg] is k-bilinear, and so induces a linear
map m : C∗ ⊗ C∗ → C∗. To check that m defines an associative product, we
calculate for f, g, h ∈ C∗ that

[(fg)h](c) =
∑

(fg)(c(1))h(c(2)) =
∑

f(c(1)(1))g(c(1)(2))h(c(2))

=
∑

f(c(1))g(c(2))h(c(3))

and likewise

[f(gh)](c) =
∑

f(c(1))(gh)(c(2)) =
∑

f(c(1))g(c(2)(1))h(c(2)(2))

=
∑

f(c(1))g(c(2))h(c(3)),

where we have used the Sweedler notation for ∆(2). To check that ε is then a
unit for C∗ we note that for all c ∈ C and f ∈ C∗,

[εf ](c) =
∑

ε(c(1))f(c(2)) = f
(∑

ε(c(1))c(2)

)
= f(c),

where we have used that f is linear. Thus εf = f . A similar argument shows
that fε = f . This shows that ε is the unit element, and so, more formally, the
map u : k → C∗ given by u(λ) = λε is the unit map.
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prop:dualofcoalg Proposition 1.13. Let (C,∆, ε) be a coalgebra. Define (A,m, u), A = C∗,
m = ∆∗ ◦ i where i : C∗ ⊗ C∗ → (C ⊗ C)∗ is the natural map, and u = ε∗,
identifying k∗ with k. Then (A,m, u) is an algebra.

Proof. We have coassociativity, so the diagram

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ ∆⊗id

id⊗∆

commutes. Dualizing, we get that

C∗ (C ⊗ C)∗

(C ⊗ C)∗ (C ⊗ C ⊗ C)∗

∆∗

∆∗

(id⊗∆)∗

(∆⊗id)∗

commutes. Expanding, we consider the diagram

C∗ (C ⊗ C)∗ C∗ ⊗ C∗

(C ⊗ C)∗ (C ⊗ C ⊗ C)∗

C∗ ⊗ C∗ C∗ ⊗ C∗ ⊗ C∗.

∆∗ i

∆∗

(idC ⊗∆)∗

(∆⊗idC)∗

i

idC∗ ⊗(∆∗◦i)

j

(∆∗◦i)⊗idC∗

α

β

γ

Here j : C∗ ⊗ C∗ ⊗ C∗ → (C ⊗ C ⊗ C)∗ is the canonical map for three vector
spaces. We note that from above we have that square α commutes, and square
β and γ can be shown to commute formally by an easy check. So the outside
square commutes, and the outside map C∗⊗C∗⊗C∗ → C∗ says thatm = ∆∗◦i
is associative; in other words the multiplication map diagram commutes.

Similarly, we dualize the counit diagram

C ⊗ C C C ⊗ C

C ⊗ k C k ⊗ C,

idC ⊗ε

∆ ∆

idC ε⊗idC

and consider the diagram

C∗ ⊗ C∗ (C ⊗ C)∗ C∗ (C ⊗ C)∗ C∗ ⊗ C∗

C∗ ⊗ k (C ⊗ k)∗ C∗ (C ⊗ k)∗ C∗ ⊗ k.

i ∆∗ ∆∗ i

idC∗ ⊗ε∗
(idC ⊗ε)∗ idC∗ (ε⊗idC)∗

ε∗⊗idC∗α′ β′
γ′

δ′
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We note that the squares β′ and γ′ commute, because they are just the counit
diagram dualized, and the squares α′ and δ′ can again be shown to commute
formally by an easy check. Hence the left α′β′ square and the right γ′δ′ square
commute, and, since m = ∆∗ ◦ i and u = ε∗, we see that the unit map diagram
commutes. �

Remark. m in Proposition 1.13 is the same as the product on C∗ defined above,
i.e.

[(∆∗ ◦ i)(f ⊗ g)](c) = ∆∗(f ⊗ g)(c) = (f ⊗ g)(∆(c)) =
∑

f(c(1))g(c(2))

for f, g ∈ C∗ and c ∈ C. 4

Remark. If C is finite dimensional over k, then i is a canonical isomorphism, and
we can identify (C⊗C)∗ with C∗⊗C∗. Then the duals of the coalgebra structure
diagrams for C are exactly the algebra structure diagrams for A = C∗. 4

Question: If A is an algebra, is A∗ a coalgebra?

Note that m∗ : A∗ → (A⊗A)∗, so we would like to define ∆ = φ◦m∗, where
φ : (A⊗A)∗ → A∗ ⊗A is natural. But such a φ does not exists in general, so:

Answer: In general, A (of arbitrary dimension) being an algebra does not imply
that A∗ is a coalgebra. ♣

Remark. If A is finite dimensional over k, then i : A∗ ⊗ A∗ → (A⊗ A)∗ is an
isomorphism, so we can take φ = i−1 and this works. I.e. taking A∗ ⊗ A∗ =
(A⊗A)∗ as an identification, A∗ is a coalgebra. 4

Corollary 1.14.
(1) Suppose that A is a finite dimensional k-algebra. Then A∗∗ is also an

algebra and iA : A → A∗∗ (the canonical map) is an isomorphism of
algebras.

(2) Suppose that C is a finite dimensional coalgebra. Then C∗∗ is also a
coalgebra and iC : C → C∗∗ (the canonical map) is an isomorphism of
coalgebras.

Example 1.15. Let S be a set, (kS,∆, ε) the grouplike coalgebra with ∆(s) =
s⊗s, ε(s) = 1 for s ∈ S. Let A = (kS)∗ be the dual algebra. Then, by definition,

A = Homk(kS, k) = HomSets(S, k),

so A is the set of functions S → k with pointwise operations. For example, if
we take f : S → k, g : S → k, then

[fg](s) = (f ⊗ g)(s⊗ s) = f(s)g(s). ©



CHAPTER 1. ALGEBRAS AND COALGEBRAS 14

Example 1.16. Let C = Mn(k) be the coalgebra with operations

∆(eij) =

n∑
`=1

ei` ⊗ e`j ,

ε(eij) = δij ,

where the eij ’s are the matrix units and δij is the Kronecker delta. To describe
A = C∗, consider the dual basis {e∗ij | 1 ≤ i, j ≤ n} (with e∗ij(ek`) = δikδj`) and
note that

[e∗ije
∗
`m](ers) =

∑
t

e∗ij(ert)e
∗
`m(ets) =

∑
t

δirδjtδ`tδms = δirδj`δms,

so
e∗ije

∗
`m = δj`e

∗
im.

This agrees with the usual multiplication of matrix units, i.e. eije`m = δj`eim,
so it shows that C∗ ∼= Mn(k) as an algebra, since the basis elements e∗ij
multiply exactly as matrix units in Mn(k) do. Finally it is easy to see that
ε∗ = e∗11 + · · ·+ e∗nn by noting that multiplying this on either side of any e∗ij
returns e∗ij . ©

Example 1.17. Let M be a finite monoid and consider the monoid algebra
A = kM , and let C = A∗ with the dual basis {p∗ | p ∈ M}. Then C is a
coalgebra with

∆(p∗) =
∑
q,r∈M
qr=p

q∗ ⊗ r∗,

ε(p∗) =

{
0 if p 6= 1M ,
1 if p = 1M .

This is the monoid coalgebra described in Example 1.7.
Note that ∆(p∗) ∈ A∗ ⊗ A∗ has the property that ∆(p∗)(q ⊗ r) = p∗(qr)

for q, r ∈M (since ∆ = m∗), which agrees with the above. ©

1.7 Coalgebra terminology

To continue our study of coalgebras we will need to introduce some standard
(categorical) terminology. Specifically we need to introduce a description of
homomorphisms and isomorphisms in the category of (k-)coalgebras, and we
need to describe sub-objects, factor-objects and the like in the category of
coalgebras.
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def:coalgterm Definition 1.18 (Coalgebra morphism, kernel, image and isomorphism).
Let (C,∆C , εC) and (D,∆D, εD) be coalgebras.

A linear map f : C → D is a morphism of coalgebras if the following
diagrams are commutative:

C D C D

C ⊗ C D ⊗D k

f

∆C ∆D

f

εC εD

f⊗f

Kernel and image of f are as usual for the linear map f .
f is an isomorphism if it is bijective.

Definition 1.19 (Coideal and subcoalgebra). Let C be a coalgebra.
A subspace I ⊆ C is a coideal if

∆(I) ⊆ I ⊗ C + C ⊗ I

and
ε(I) = 0.

A subspace D ⊆ C is a subcoalgebra of C if

∆(D) ⊆ D ⊗D.

lem:kernelpi Lemma 1.20. Let V and W be vector spaces with subspaces V ′ ⊆ V and
W ′ ⊆W . Consider the vector space map

π : V ⊗W → V/V ′ ⊗W/W ′

v ⊗ w 7→ (v + V ′)⊗ (w +W ′).

Then
kerπ = V ′ ⊗W + V ⊗W ′.

Proof. It is clear that V ′ ⊗W + V ⊗W ′ ⊆ kerπ.
Now choose vector space complements (e.g. by picking a basis) V ′′ ⊆ V

such that V = V ′⊕V ′′ andW ′′ ⊆W such thatW = W ′⊕W ′′. Then π|V ′′⊕W ′′
is an isomorphism onto V/V ′ ⊗W/W ′, and thus

V ′′ ⊕W ′′ ∩ kerπ = 0.

But, we also have that

(V ′′ ⊗W ′′)⊕ (V ′ ⊗W + V ⊗W ′) = V ⊗W,

so
kerπ = kerπ ∩ V ⊗W ⊆ V ′ ⊗W + V ⊗W ′,

and thus
kerπ = V ′ ⊗W + V ⊗W ′. �
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Proposition 1.21. Let C and D be coalgebras, and let f : C → D be a mor-
phism of coalgebras.

(1) If V is a subcoalgebra of C, then V is a coalgebra with ∆V = ∆C |V and
εV = εC |V .

(2) If I is a coideal of C, then C/I is a factor coalgebra with

∆C/I(c+ I) =
∑

(c(1) + I)⊗ (c(2) + I),

εC/I(c+ I) = εC(c).

(3) Ker f is a coideal of C and Im f = f(C) is a subcoalgebra of D.

(4)

f̃ : C/Ker f → f(C)

c+ Ker f 7→ f(c)

is an isomorphism of coalgebras.

Proof. The details are left as an exercise to the reader. Note for (2), to show
that ∆C/I is well defined, we need to show that ∆C/I(c) = 0 for c ∈ I. But

∆(I) ⊆ I ⊗ C + C ⊗ I = Ker(C ⊗ C → C/I ⊗ C/I),

so ∆C/I(c) = 0. �

Example 1.22. Let f : S → T be a set map. Then f induces a linear map
f̃ : kS → kT , and one can check that f̃ is in fact a morphism of grouplike
coalgebras. We note that

Ker f̃ = k- span{s1 − s2 | s1, s2 ∈ S with f(s1) = f(s2)}

and
Im f̃ = kf(S). ©

ex:strlowtrimat Example 1.23. Let C = Mn(k) be the matrix coalgebra. Recall that

∆(eij) =
∑
t

eit ⊗ etj ,

ε(eij) = δij .

Let
I = k- span{eij | i > j} = {strictly lower triangular matrices},
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and note that if i > j, then for all t we have either t > j or i > t, so

∆(eij) ⊆ I ⊗ C + C ⊗ I

and ε(eij) = 0. Hence I is a coideal.
So we have a factor coalgebra

C/I = {eij + I | i ≤ j}

and check that
∆(eij + I) =

∑
i≤t≤j

(eit + I)⊗ (etj + I)

and ε(eij + I) = δij . ©

1.8 Duality between substructures

Given a k-vector space V , there is a k-bilinear map

〈 · , · 〉 : V ∗ × V → k

(f, v) 7→ f(v),

which induces a linear map

V ∗ ⊗ V → k

f ⊗ v 7→ f(v).

For X ⊆ V a subset, we define

X⊥ = {f ∈ V ∗ | 〈f, v〉 = 0 for all v ∈ X},

and similarly for Y ⊆ V ∗ a subset, we define

Y ⊥ = {v ∈ V | 〈g, v〉 = 0 for all g ∈ Y }.

If V is a finite dimensional vector space, then we say that 〈 · , · 〉 is a perfect
pairing , if for any subspaces X ⊆ V and Y ⊆ V ∗ we have that X⊥⊥ = X and
Y ⊥⊥ = Y .

In the same way as above, we have a bilinear map

〈 · , · 〉 : (V ∗ ⊗ V ∗)× (V ⊗ V )→ k

(f ⊗ g, v ⊗ w) 7→ f(v)g(w),

and we define ⊥ in as above in this setting as well. For X ⊆ V ⊗ V a subset,
we define

X⊥ = {f ∈ V ∗ ⊗ V ∗ | 〈f, v〉 = 0 for all v ∈ X},
and similarly for Y ⊆ V ∗ ⊗ V ∗ a subset, we define

Y ⊥ = {v ∈ V ⊗ V | 〈g, v〉 = 0 for all g ∈ Y }.
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lem:IotimesJperp Lemma 1.24. Let V be a vector space. If I, J ⊆ V ∗ are subspaces, then

(I ⊗ J)⊥ = I⊥ ⊗ V + V ⊗ J⊥.

Proof. Exercise. The argument is similar to one in the proof of Lemma 1.20.�

Now we have:

thm:idealsubrels Theorem 1.25. Let C be a coalgebra, and let A = C∗ be the dual algebra.

1 If I is a ideal of A = C∗, then I⊥ is a subcoalgebra of C.

2 If B is a subalgebra of A = C∗, then B⊥ is a coideal of C.

3 If J is a coideal of C, then J⊥ is a subalgebra of A = C∗.

4 If D is a subcoalgebra of C, then D⊥ is an ideal of A = C∗.

Proof. Let I, J,K be subsapces of C∗.
Claim: IJ ⊆ K implies that ∆(K⊥) ⊆ I⊥ ⊗ C + C ⊗ J⊥.
Suppose that IJ ⊆ K and note that the claim follows from Lemma 1.24 if

∆(K⊥) ⊆ (I ⊗ J)⊥.

Now, for c ∈ K⊥ ⊆ (IJ)⊥, we see for f ∈ I and g ∈ J that

0 = [fg](c) = (f ⊗ g)(∆(c)),

so ∆(c) ∈ (I ⊗ J)⊥, and the claim follows.

(1) If I is an ideal of C∗, then C∗I ⊆ I, so by the claim

∆(I⊥) ⊆ (C∗)⊥︸ ︷︷ ︸
=0

⊗C + C ⊗ I⊥ = C ⊗ I⊥.

Similarly IC∗ ⊆ I, so by the claim

∆(I⊥) ⊆ I⊥ ⊗ C + C ⊗ (C∗)⊥︸ ︷︷ ︸
=0

= I⊥ ⊗ C,

and thus
∆(I⊥) ⊆ C ⊗ I⊥ ∩ I⊥ ⊗ C = I⊥ ⊗ I⊥.

Hence I⊥ is a subcoalgebra.

(2) If B is a subalgebra of C∗, then BB ⊆ B, so by the claim

∆(B⊥) ⊆ B⊥ ⊗ C + C ⊗B⊥.

Also, since B is a subalgebra of C∗, we have that ε = 1C∗ ∈ B and thus
〈ε, c〉 = 0 for any c ∈ B⊥, so

ε(B⊥) = 0.

Hence B⊥ is a coideal.
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For (3) and (4), let U, V,W be subspaces of C and show that ∆(U) ⊆
V ⊗C +C ⊗W implies that V ⊥W⊥ ⊆ U⊥. Then the proof can be finished by
arguments as above. �

Example 1.26. Consider the coalgebra C = Mn(k) with

∆(eij) =
∑
t

eit ⊗ etj ,

ε(eij) = δij ,

and thus C∗ ∼= Mn(k) as an algebra with

e∗ije
∗
k` = δjke

∗
i`.

In Example 1.23 we saw that,

I = k- span{eij | i > j} = {strictly lower triangular matrices}

is a coideal in C. So by Theorem 1.25,

I⊥ = {e∗ij | i ≤ j}

is a subalgebra of C∗. So I⊥ is the subalgebra of upper triangular matrices in
C∗ (under the isomorphism C∗ ∼= Mn(k)).

Also the algebra C∗ has no ideals except 0 and C∗ since Mn(k) is simple.
So by Theorem 1.25, the only subcoalgebras of C are 0 and C. We say C is a
simple coalgebra. ©

Corollary 1.27. If C is a finite dimensional coalgebra, then there are bijections

{ideals of C∗} {subcoalgebras of C}

{subalgebras of C} {coideals of C}

given by ( · )⊥.

Now we get to one of our first results about coalgebras that doesn’t really
have a dual in the category of algebra.

Theorem 1.28. Let C be a coalgebra and let V ⊆ C be a finite dimensional
subspace. Then V ⊆ D ⊆ C for some subcoalgebra D with dimkD <∞.

Remark. The above theorem is sometimes called the fundamental theorem of
coalgebras. 4

Corollary 1.29. Let C be a coalgebra. Then

C =
⋃

D finite dimensional
subcoalgebra of C

D.
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Proof (of theorem). Fix a basis {ci | i ∈ I} for C, and write

∆(ci) =
∑
j,`

αi,j,`cj ⊗ c`,

where αi,j,` ∈ k and for a given i, αi,j,` = 0 except for finitely many (j, `).
Let {v1, . . . , vn} be a basis for V , and write

∆(vi) =
∑
j

wi,j ⊗ cj ,

where wi,j ∈ C and for a given i, wi,j = 0 except for finitely many j.
Let W = span{vi, wi,j} ⊆ C and consider ∆(2)(vi). We note that

∆(2)(vi) =
∑
j

∆(wi,j)⊗ cj

and also
∆(2)(vi) =

∑
s,t

∑
j

αi,s,twi,j ⊗ cs ⊗ ct,

so reindexing
∆(2)(vi) =

∑
s,t,j

αt,s,jwi,t ⊗ cs ⊗ cj .

So we get
∆(wi,j) =

∑
s,t

αt,s,jwi,t ⊗ cs.

This shows that ∆(W ) ⊆W ⊗ C since ∆(vi) ⊆W ⊗ C and ∆(wi,j) ⊆W ⊗ C,
i.e. W is a right coideal of C.

Now let {wi} be a basis for W and write (using the above)

∆(wi) =
∑
j

wj ⊗ bi,j ,

where bi,j ∈ C. Then

∆(2)(wi) =
∑
j

∑
`

w` ⊗ bj,` ⊗ bi,j =
∑
j

wj ⊗∆(bi,j) =
∑
`

w` ⊗∆(bi,`),

so
∆(bi,`) =

∑
j

bj,` ⊗ bi,j .

Let B = span{bi,j} and consider D = B +W . D is a subalgebra of C since

∆(W ) ⊆W ⊗B ⊆ D ⊗D,
∆(B) ⊆ B ⊗B ⊆ D ⊗D,

and dimkD <∞. Finally, V ⊆W ⊆ D ⊆ C. �
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This property has no dual for algebras in general. The dual property would
say, if A is an algebra and W ⊆ A a subspace such that dimk A/W < ∞,
then there is an ideal I ⊆ W ⊆ A with dimk A/I < ∞. But, this fails for
general algebras, e.g. consider A = k(x) the rational functions. Here A has no
ideals I with A/I finite dimensional except I = A. (Note: Any simple infinite
dimensional algebra would have the same problem.)



Chapter 2

Bialgebras

cha:bialgs
2.1 Bialgebras

Definition 2.1 (Bialgebra). A vector space B is a bialgebra if (B,m, u) is
an algebra and (B,∆, ε) is a coalgebra, and where either of the following
equivalent properties holds:

(1) ∆, ε are algebra homomorphisms.

(2) m,u are coalgebra morphisms.

We usually refer to a bialgebra by the five tuple (B,m, u,∆, ε).

ex:monbialg Example 2.2. Let M be a monoid, take (kM,m, u) to be the monoid algebra,
and take (kM,∆, ε) to be the grouplike coalgebra on M . Then (kM,m, u,∆, ε)
is a bialgebra. To see this, we will check (1) from the definition above: If
p, q ∈M , then

∆(pq) = pq ⊗ pq = (p⊗ p)(q ⊗ q) = ∆(p)∆(q)

and
∆(1M ) = 1M ⊗ 1M = 1kM⊗kM .

(Note that it is enough to check a product of basis elements to show that ∆ is
multiplicative.) So ∆ is an algebra homomorphism. For ε we see that

ε(pq) = 1 = ε(p)ε(q),

ε(1M ) = 1. ©

Let’s prove that the conditions (1) and (2) in the definition of a bialgebra
are actually equivalent:

22
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Proof. (1) says that

∆(ab) = ∆(a)∆(b), ∆(1) = 1,

ε(ab) = ε(a)ε(b), ε(1) = 1,

so we get the following four diagrams.

B ⊗B B k B

(B ⊗B)⊗ (B ⊗B) B ⊗B B ⊗B

B ⊗B B k B

k ⊗ k k k

mB

∆B⊗∆B ∆B

uB

uB⊗B
∆B

mB⊗B

mB

εB⊗εB εB

uB

εB

I
II

III
IV

(2) says that m and u are coalgebra maps. mB : B ⊗ B → B being a
coalgebra map means (cf. Definition 1.18) that

(mB ⊗mB) ◦∆B⊗B = ∆B ◦mB,

εB⊗B = εB ◦mB,

which is equivalent to diagram I and III. To see the equivalence check Exam-
ple 1.4 and Example 1.12, and note that we define mA⊗B = (mA ⊗mB) ◦ τ23

and ∆C⊗D = τ23 ◦ (∆C ⊗∆D), so

(mB ⊗mB) ◦∆B⊗B = (mB ⊗mB) ◦ τ23 ◦ (∆B ⊗∆B) = mB⊗B ◦ (∆B ⊗∆B).

Similarly, uB : B → k being a coalgebra map means that

(uB ⊗ uB) ◦∆B⊗B = ∆B ◦ uB,
εk = εB ◦ uB,

which is equivalent to diagram II and IV. �

prop:bialgdual Proposition 2.3. Let (B,m, u,∆, ε) be a bialgebra with dimk B <∞. Then
(B∗,∆∗, ε∗,m∗, u∗) is a bialgebra, where we identify (B⊗B)∗ = B∗⊗B∗ (which
makes sense for B finite dimensional).

Proof. Note that when you dualize diagrams I–IV, I and IV are self-dual, and
II and III dualize to each other.
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For example, dualizing digram II, we get

k = k∗ B∗

(B ⊗B)∗ = B∗ ⊗B∗,

u∗B=εB∗

u∗B⊗B=(uB⊗uB)∗=u∗B⊗u
∗
B=εB∗⊗εB∗

∆∗B=mB∗

which is exatcly diagram III under our identification. �

ex:finmonbialg Example 2.4. LetM be a finite monoid and take (kM,m, u) to be the algebra
with

pq =

{
p if p = q,
0 if p 6= q

(p, q ∈M),

1kM =
∑
p∈M

p.

This algebra is clear isomorphic to the algebra k × · · · × k with |M | factors.
Consider furthermore the coalgebra (kM,∆, ε) with

∆(p) =
∑
qr=p

q ⊗ r,

ε(p) =

{
1 if p = 1M ,
0 if p 6= 1M ,

for p ∈ M . One can now check that this (kM,m, u,∆, ε) is a bialgebra by
definition, or we can show that this bialgebra is the dual of the bialgebra from
Example 2.2 (when M is finite). ©

Definition 2.5 (Commutative algebra). An algebra A is commutative if
ab = ba for all a, b ∈ A, or equivalently if m ◦ τ = m as maps A ⊗ A → A,
where

τ : A⊗A→ A⊗A
a⊗ b 7→ b⊗ a.

Definition 2.6 (Cocommutative coalgebra). A coalgebra C cocommuta-
tive if ∆ = τ ◦∆ as maps A→ A⊗A, or equivalently∑

c(1) ⊗ c(2) = ∆(c) =
∑

c(2) ⊗ c(1).

We say that a bialgebra is commutative, if it is commutative as an algebra,
and cocommutative if it is cocommutative as a coalgebra.

Example 2.7. The bialgebra from Example 2.2 is cocommutative, but not
commutative in general, and the bialgebra from Example 2.4 is commutative,
but not cocommutative in general. ©
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2.2 Review of free algebras and presentations

The free (associative) algebra is

k〈x1, . . . , xn〉 = k- span of the words in the xi,

e.g. for n = 2 the words are

{1, x1, x2, x
2
1, x1x2, x2x1, x

2
2, . . .},

with product given by concatenation (extended linearly), e.g.

(x2
1)(x2x1) = x2

1x2x1.

Universal Property (Free algebra): Given an algebra A and a1, . . . , an ∈
A there exists a unique algebra morphism

φ : k〈x1, . . . , xn〉 → A

xi 7→ ai.

We can write k〈x1, . . . , xn〉/(r1, . . . , rn) for the algebra with relations r1, . . . , rn,
i.e. k〈x1, . . . , xn〉/I where I is the smallest ideal containing r1, . . . , rn.

Note that
I =

{∑
j

fjrijgj

∣∣∣ fj , gj ∈ k〈x1, . . . , xn〉
}
.

ex:quantumbialg Example 2.8 (Quantum plane). Consider the algebra

A =
k〈x, y〉

(yx− qxy)

for 0 6= q ∈ k. One can check that A has k-basis {xiyj | i, j ≥ 0}. We claim
that A is a bialgebra with

∆(x) = x⊗ x, ε(x) = 1,

∆(y) = y ⊗ 1 + x⊗ y, ε(y) = 0,

i.e. x is a grouplike element, and y is (1, x)-primitive.

Proof (that the quantum plane is a bialgebra). First note that, by the universal
property of free algebras, there are unique k-algebra homomorphisms

∆̃ : k〈x, y〉 → k〈x, y〉 ⊗ k〈x, y〉
x 7→ x⊗ x
y 7→ y ⊗ 1 + x⊗ y,

ε : k〈x, y〉 → k

x 7→ 1

y 7→ 0.
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It remains to check that ∆̃ and ε̃ induce the maps

∆:
k〈x, y〉
I

→ k〈x, y〉
I

⊗ k〈x, y〉
I

,

ε :
k〈x, y〉
I

→ k,

where I = (yx− qxy). To check this we need to show that

∆̃ ⊆ I ⊗ k〈x, y〉+ k〈x, y〉 ⊗ I,
ε̃(I) = 0.

We note that

∆̃(yx− qxy) = (y ⊗ 1− x⊗ y)(x⊗ x)− q(x⊗ x)(y ⊗ 1− x⊗ y)

= yx⊗ x− x2 ⊗ yx− qxy ⊗ x+ qx2 ⊗ xy
= (yx− qxy)⊗ x+ x2 ⊗ (−yx+ qxy) ∈ I ⊗ k〈x, y〉+ k〈x, y〉 ⊗ I,

and similarly
ε̃(yx− qxy) = 0,

as we wanted.
Now we have algebra homomorphisms

∆: A→ A⊗A,
ε : A→ k,

and we want to show that (A,∆, ε) is a coalgebra. We need to show that

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

Here both equations are algebra homomorphisms A→ A⊗A⊗A by the above,
so they are equal if they agree on generators. For x, the above equation just
says

x⊗ x⊗ x = x⊗ x⊗ x,

which is obviously true, and for y the equation says

(∆⊗ id)(y ⊗ 1 + x⊗ y) = (y ⊗ 1 + x⊗ y)⊗ 1 + x⊗ x⊗ y
= y ⊗ 1⊗ 1 + x⊗ (y ⊗ 1 + x⊗ y)

= (id⊗∆)(x⊗ 1 + x⊗ y, )

so coassociativity holds. Similarly,

(ε⊗ id) ◦∆, id, (id⊗ε) ◦∆
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are all algebra homomorphisms, so again we just have to check that these are
all equal on x, y. We see that

(ε⊗ id)(∆(y)) = ε(y)1 + ε(x)y = 0 + y = y = id(y)

= y + 0 = yε(1) + xε(y) = (id⊗ε)(∆(y)),

as we wanted. Hence (A,m, u,∆, ε) is a bialgebra. �

We call this bialgebra the quantum plane. ©

Example 2.9 (Sweedler/Taft algebra). Consider

B =
k〈x, y〉

(yx+ xy, x2 − 1, y)

with

∆(x) = x⊗ x, ε(x) = 1,

∆(y) = y ⊗ 1 + x⊗ y ε(y) = 0.

We claim that this is a finite dimensional (with dimk B = 4) bialgebra which is
neither commutative nor cocommutative.

We first note that B has basis {1, x, y, xy} (easy to see this is a spanning
set, and linear independence is left to the reader). Now, since

A =
k〈x, y〉

(yx+ xy)

is a bialgebra, it is enough to check that the ideal of A generated by (x2−1, y2) =:

J is a biideal of A (i.e. an ideal and coideal).
To see that J is a coideal, we note that

∆(x2 − 1) = x2 ⊗ x2 − 1⊗ 1

= (x2 − 1)⊗ x2 + 1⊗ (x2 − 1) ∈ J ⊗A+A⊗ J,

and similarly

∆(y2) = (y ⊗ 1 + x⊗ y)(y ⊗ 1 + x⊗ y)

= y2 ⊗ 1 + yx⊗ y + xy ⊗ y + x2 ⊗ y2

= y2 ⊗ 1 + x2 ⊗ y2︸ ︷︷ ︸
∈J⊗A+A⊗J

+ (yx+ xy)︸ ︷︷ ︸
=0

⊗y.

Also

ε(x2 − 1) = 12 − 1 = 0,

ε(y2) = 02 = 0,

so J is a biideal. Hence B = A/J is a bialgebra. ©
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Hopf Algebras

cha:hopfalgs
Definition 3.1 (Convolution algebra). Let C be a coalgebra and A an
algebra. The convolution algebra is

Homk(C,A)

with product f ∗ g given by

[f ∗ g](c) = m ◦ (f ⊗ g) ◦∆(c) =
∑

f(c(1))g(c(2)).

This is an algebra with with identity element u ◦ ε.

To check that u ◦ ε is the identity, note that

[(u ◦ ε) ∗ g](c) =
∑

u ◦ ε(c(1))g(c(2))

=
∑

ε(c(1))g(c(2)) (identifying k with u(k) ⊆ A)

= g
(∑

ε(c(1))c(2)

)
(since g is linear)

= g(c) (counit axiom),

so (u ◦ ε) ∗ g = g. Similarly g ∗ (u ◦ ε) = g, and ∗ is associative since

(f ∗ g) ∗ h =
∑

f(c(1))g(c(2))h(c(3)) = f ∗ (g ∗ h)

using coassociativity.

Definition 3.2 (Hopf algebra). A bialgebra H is a Hopf algebra if, in the
convolution algebra Homk(H,H), idH : H → H has an inverse S : H → H
under convolution:

S ∗ idH = u ◦ ε = idH ∗S.

In this case, S is called the antipode of H.

Remarks.
(1) A Hopf algebra is not an additional structure on a bialgebra.

28
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(2) S, if it exists, is unique (being an inverse element in an algebra).

(3) In Sweedler notation S satisfies for all h ∈ H∑
S(h(1))h(2) = ε(h) =

∑
h(1)S(h(2)). 4

Example 3.3. Let G be a group. Then the bialgebra kG, where (kG,m, u) is
a group algebra and (kG,∆, ε) is a grouplike coalgebra, is a Hopf algebra. To
see this, consider

S : kG→ kG

G 3 g 7→ g−1

and note that for g ∈ G

1 = ε(g) = S(g)g = g−1g = 1

= gS(g) = gg−1 = 1. ©

Proposition 3.4. Let H be a Hopf algebra with antipode S. Then:

(1) S is an algebra anti-homomorphism, i.e.

S(ab) = S(b)S(a),

or
S ◦m = m ◦ (S ⊗ S) ◦ τ : H ⊗H → H.

(2) S is a colagebra anti-homomorphism, i.e.

∆(S(a)) =
∑

S(a(2))⊗ S(a(1)),

or
∆ ◦ S = τ ◦ (S ⊗ S) ◦∆: H → H ⊗H.

Proof.
(1) Consider the convolution algebra

R = Homk(H ⊗H,H).
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We note that

[(S ◦m) ∗m](a⊗ b)

=
∑

(S ◦m)(a⊗ b)(1)m((a⊗ b)(2))

=
∑

(S ◦m)(a(1) ⊗ b(2))m(a(2) ⊗ b(2)) (by definition of ∆H⊗H)

=
∑

S(a(1)b(2))a(2)b(2)

=
∑

S((ab)(1))(ab)(2) (∆H is an algebra homomorphism)

= ε(ab)

= ε(a)ε(b)

= εH⊗H(a⊗ b) (by definition of εH⊗H),

so (S ◦m) ∗m = ε in R. Similarly

m ∗ (m ◦ (S ⊗ S) ◦ τ)(a⊗ b)

=
∑

m((a⊗ b)(1))m ◦ (S ⊗ S) ◦ τ((a⊗ b)(2))

=
∑

m(a(1) ⊗ b(1))m ◦ (S ⊗ S) ◦ τ(a(2) ⊗ b(2))

=
∑

a(1)b(1)S(b(1))S(a(1))

=
∑

ε(b)a(1)S(a(2)) (by axiom of S)

= ε(a)ε(b) (by axiom of S)
= εH⊗H(a⊗ b),

so m ∗ (m ◦ (S ⊗ S) ◦ τ) = ε in R. Thus

m ◦ (S ⊗ S) ◦ τ = S ◦m,

since both are inverse to m under convolution.

(2) Same idea for the argument, but this time using

Homk(H,H ⊗H). �

Lemma 3.5. Let H be a Hopf algebra and define

G := {g ∈ H \ {0} |∆(g) = g ⊗ g},

the set of grouplike elements in H. Then every g ∈ G is a unit and G is a
group under multiplication.
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Proof. It’s easy to see that ε(g) = 1 for all g ∈ G (cf. Homework 1).1 Now

ε(g) = 1 = S(g)g = gS(g)

for g ∈ G, so g is a unit and S(g) = g−1. Also, if g, h ∈ G, then gh ∈ G since
∆ is an algebra map. Finally, since S is a coalgebra anti-homomorphism

∆(g−1) = ∆(S(g)) =
∑

S(g)⊗ S(g) = g−1 ⊗ g−1,

so g−1 ∈ G for g ∈ G. Hence G is a group. �

Corollary 3.6. If M is a monoid, then the monoid bialgebra kM (with grou-
plike coalgebra structure) is a Hopf algebra if and only if M is a group.

Proof. The elements in M are grouplike, so if kM is a Hopf algebra, then M
consists of units. In fact M = G. The converse statement we have already
shown. �

Example 3.7 (Quantum plane). The quantum plane

kq[x, y] =
k〈x, y〉

(yx− qxy)
(0 6= q ∈ k),

with

∆(x) = x⊗ x, ε(x) = 1,

∆(y) = y ⊗ 1 + x⊗ y, ε(y) = 0,

is a bialgebra, but not a Hopf algebra. This is by the same reason as above; x
is grouplike but not a unit. ©

Example 3.8 (Taft algebra). The Taft algebra

k〈x, y〉
(yx+ xy, x2 − 1, y2)

is a Hopf algebra with

S(x) = x−1 = x,

S(y) = −xy = yx. ©

Proposition 3.9. If H is a finite dimensional Hopf algebra H = (H,m, u,∆, ε, S),
then so is H∗, where

SH∗ = S∗.

1Also, the elements of G are linearly independent over k, cf. Homework 1.
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Proof. We saw in Proposition 2.3 that (H∗,∆∗, ε∗,m∗, u∗) is a bialgebra (since
dimkH <∞). So we just need to show that S∗ is an antipode. Since

m ◦ (S ⊗ id) ◦∆ = u ◦ ε = m ◦ (id⊗S) ◦∆,

dualizing, we get that

∆∗ ◦ (S∗ ⊗ id) ◦m∗ = ε∗ ◦ u∗ = ∆∗ ◦ (id⊗S∗) ◦m∗.

Hence S∗ is indeed an antipode. �

Definition 3.10 (Hopf algebra morphism). A linear map f : H → H ′ be-
tween Hopf algebras is a morphism of Hopf algebras if it is a bialgebra morphism,
and

f ◦ SH = SH′ ◦ f.

Example 3.11. If H is the 4 dimensional Taft algebra, you can check that
H∗ ∼= H as Hopf algebras. (Exercise.) ©

3.1 Universal enveloping algebras of Lie algebras

Definition 3.12 (Lie algebra). A Lie algebra is a vector space L over k with
a bilinear product

L× L→ L

(x, y) 7→ [x, y]

such that

[x, x] = 0[x, y] = −[y, x][x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity)

for all x, y, z ∈ L.

Now assume that L is a finite dimensional (over k) Lie algebra. If L has
basis {x1, . . . , xn}, then we define the universal enveloping algebra of L to be

U(L) =
k〈x1, . . . , xn〉

(xjxi − xixj − [xi, xj ] | 1 ≤ i < j ≤ n)
.

Example 3.13. L = kx+ ky with [x, y] = x = −[y, x] is a Lie algebra, and

U(L) ∼=
k〈x, y〉

(yx− xy − x)
. ©
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Example 3.14 (Abelian Lie algebra). L = kx1+· · ·+kxn with [xi, xj ] = 0
for all i, j is an Abelian Lie algebra, and

U(L) =
k〈x1, . . . , xn〉
(xjxi − xixj)

∼= k[x1, . . . , xn]. ©

thm:PBW Theorem 3.15 (Poincaré-Birkhoff-Witt [PBW]). If L is a Lie algebra
with basis {x1, . . . , xn}, then U(L) has k-basis

{xi11 · · ·x
in
n | ij ≥ 0}.

Remark. A module over L is the same as a module over U(L). 4

Example 3.16 (Universal enveloping algebra). Let L be a Lie algebra
with basis x1, . . . , xn.2 Then U(L) is a Hopf algebra with

∆(xi) = xi ⊗ 1 + 1⊗ xi (i.e. xi is (1, 1)-primitive),
ε(xi) = 0,

S(xi) = −xi.

Actually, ∆(x) = x ⊗ 1 + 1 ⊗ x for all x ∈ L, and similarly ε(x) = 0 and
S(x) = −x for all x ∈ L.

Showing that U(L) is a bialgebra is similar to the quantum plane example
(cf. Example 2.8). Similarly, to check that S is an antipode, we only need to
check on the generating set of the algebra, so

S(xi)1 + S(1)xi = −xi + xi = 0 = ε(xi),

and similarly
xiS(1) + 1S(xi) = 0. ©

Example 3.17. The Lie algebra L = kx has [x, x] = 0, U(L) = k[x], and

∆(x) = x⊗ 1 + 1⊗ x,
ε(x) = 0,

S(x) = −x.

It is interesting to compute

∆(xn) = (∆(x))n = (x⊗1+1⊗x)n =
n∑
i=0

(
n

i

)
(x⊗1)i(1⊗x)n−i =

n∑
i=0

(
n

i

)
xi⊗xn−i.

©

2We don’t need dimk L < ∞ for this, but it simplifies the notation.
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3.2 Coordiante rings of algebraic groups

Let R be a commutative finitely generated k-algebra, say

R =
k[x1, . . . , xn]

(f1, . . . , fm)
,

where k = k.
Let

X = max SpecR = {maximal ideals of R},
which is a closed subset of affine n-space An = kn, where

max Spec k[x1, . . . , xn] = An = kn

(x1 − a1, . . . , xn − an) 7→ (a1, . . . , an)

for ai ∈ k by the Nullstellensatz, and

max Spec
k[x1, . . . , xn]

(f1, . . . , fm)
→ X = {(a1, . . . , an)|fj(a1, . . . , an) = 0 for all j} ⊆ An.

X as above is an affine closed set.
An affine algebraic group is such an X which is also a group where

p : X ×X → X, v : X → X, 1X : Spec k → X,

(x, y) 7→ xy x 7→ x−1

where p and v are regular maps of X (given by ratios of polynomials in words).
Claim: R = coordinate ring of X is a Hopf algebra.

From algebraic geometry, affine varieties and regular maps are dual to
commutative k-algebras and algebra maps. Also product of varieties correspond
to tensor product of algebras. Dualizing the multiplication map p and inverse
map v gives algebra maps

∆: R→ R⊗k R (dual of p),
S : R→ R (dual of v),
ε : R→ k (dual of 1X).

(Proof omitted — concentrate on examples.)

Example 3.18. A1 = k = max Spec k[x] is an algebraic group under

p : A1 × A1 → A1, v : A1 → A1 1A1 = 0.

(a, b) 7→ a+ b a 7→ −a

The corresponding Hopf structure on k[x] is

∆: k[x]→ k[x]⊗ k[x], S : k[x]→ k[x], ε : k[x]→ k.

x 7→ x⊗ 1 + 1⊗ x x 7→ −x x 7→ 0

This is the same as U(L) for a 1 dimensional Lie algebra L. ©
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Example 3.19.

X = A1 − {0} = k − {0} = max Spec k[x, x−1]
(
k[x, x−1] ∼=

k[x, y]

(yx− 1)

)
is an algebraic group with

p : X ×X → X, v : X → X, 1X = 1.

(a, b) 7→ ab a 7→ a−1

The corresponding Hopf structure on R = k[x, x−1] is

∆: R→ R⊗R, S : R→ R, ε : R→ k.

x 7→ x⊗ x x 7→ x−1 x 7→ 1

In fact this is kZ up to isomorphism, since

G = grouplike elements of R = {xi | i ∈ Z} ∼= (Z,+). ©

Example 3.20. Consider

X = SL2(k) =
{[a b
c d

] ∣∣∣ ad− bc = 1
}
⊆ k4 = A4,

i.e.
X = max SpecR

where
R =

k[x11, x12, x21, x22]

(x11x22 − x12x21 − 1)
,

is an algebraic group with

p : X ×X → X, v : X → X, 1X =

[
1 0
0 1

]
.

(A,B) 7→ AB A 7→ A−1

In coordinates we have e.g.

v
([a b
c d

])
=

[
d −b
−c a

]
and similarly p can be described by polynomials in the entries.

The Hopf structure on R is

∆: R→ R⊗R, S : R→ R, ε : R→ k.

xij 7→
n∑
`=1

xi` ⊗ x`j x11 7→ x22 xij 7→ δij

x22 7→ x11

x12 7→ −x12

x21 7→ −x21 ©
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3.3 Modules and comodules

Let A be a k-algebra. Recall that a left A-module is an Abelian group M with
a bilinear map

µ : A×M →M

(a, x) 7→ a . x = ax

such that

1x = x,

a(bx) = (ab)x

for all x ∈M and a, b ∈ A. Note that M is also a k-vector space since k ⊆ A.
We write M as (M,µ).

Note furthermore, if (A,m, u) is the algebra, then (M,µ) — where we abuse
notation and write µ for the map µ : A⊗M →M — is a module over A if and
only if the following commute.

A⊗A⊗M A⊗M k ⊗M A⊗M

A⊗M M M

mA⊗idM

idA⊗M µ

u⊗idM

µM

µ

Dualizing we get:

Definition 3.21 (Right comodule). Let C be a coalgebra over k, C =
(C,∆, ε). A right comodule over C is a vector space N and a linear map
ρ : N → N ⊗ C such that the following diagrams commute:

N N ⊗ C N N ⊗ C

N ⊗ C N ⊗ C ⊗ C N ⊗ k

ρ

ρ idN ⊗∆

ρ

idN ⊗ε

ρ⊗idC

Example 3.22. Let (C,∆, ε) be a coalgebra. C is a right comodule over itself
with ρ = ∆: C → C ⊗ C, since the needed diagrams are part of axioms of the
coalgebra. Similarly, C is a left comodule over itself using ∆. ©

Example 3.23. Let (C,∆, ε) be a coalgebra. Suppose I ⊆ C is a subspace I
such that

∆(I) ⊆ I ⊗ C,

i.e. I is a right coideal. Then (I,∆|I) is a comodule and a subcomodule of C.©
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Example 3.24. Consider C = k[x] with

∆(xn) =

n∑
i=0

xi ⊗ xn−i,

ε(xn) = δ0n.

(C,∆, ε) is a coalgebra.
Let N be a k-vector space with a linear transformation φ : N → N such

that φ is locally nilpotent, i.e. for all n ∈ N , φi(n) = 0 for all i � 0. Now
define

ρ : N → N ⊗ k[x]

n 7→
∑
s≥0

φs(n)⊗ xs,

where φ0 = idN . Local nilpotence implies that ρ is well-defined. To check that
this a comodule, we note that

(id⊗∆) ◦ ρ(n) = (id⊗∆)
(∑

s

φs(n)⊗ xs
)

=
∑
s

s∑
i=0

φs(n)⊗ xi ⊗ xs−i

and

(ρ⊗id)
(∑

s

φs(n)⊗xs
)

=
∑
s

∑
t

φt(φs(n))⊗xt⊗xs =
∑
r

∑
t

φr+t(n)⊗xt⊗xr,

where these are equal with t = i and r = s− i. Furthermore

(id⊗ε)(ρ(n)) =
∑
s

φs(n)⊗ ε(xs) = φ0(n) = n,

so (N, ρ) is indeed a comodule. ©

Remark. All right comodules over C = k[x] as above have this form. 4

Definition 3.25. Let N and P be two right comodules over C. Then ψ : N →
P is a comodule morphism if

N P

N ⊗ C P ⊗ C

ψ

ρN ρP

ψ⊗idC

commutes.

All standard results (e.g. about kernels) still works in this setting.
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3.4 Duality between right C-comodules and certain
left C∗-modules

Definition 3.26 (Closed and cofinite subspaces). Let V be a vector space
over k. Let V ∗ = Homk(V, k). A subspace X ⊆ V ∗ is called closed if X = W⊥

for some subspace W ⊆ V , i.e.

X = {f ∈ V ∗ | f(w) = 0 for all w ∈W}.

X ⊆ V ∗ is cofinite if dimk V
∗/X <∞.

X ⊆ V ∗ is cofinite and closed if and only if X = W⊥ for some finite
dimensional subspace W ⊆ V .

Definition 3.27 (Rational C∗-modules). Let C be a coalgebra, and so C∗

is an algebra. A left C∗-module M is rational if for all m ∈M ,

amC∗(m)

is cofinite and closed subspace of C∗. (Note that it is always a left ideal of C∗.)

Remark. If M is rational, then

C∗ .m ∼= C∗/amC∗(m)

as left modules. So C∗ .m is finite dimensional. So M is the union of finite
dimensional submodules, i.e. M is locally finite. 4

Notation of Sweedler for comodules

If (M,ρ) is a right C-module, we write

ρ(m) =
∑

m(0)︸︷︷︸
∈M

⊗m(1)︸︷︷︸
∈C

.

For a left C-comodule (M,ρ), we write

ρ(m) =
∑

m(−1)︸ ︷︷ ︸
∈C

⊗m(0)︸︷︷︸
∈M

.

Duality results

Theorem 3.28. Let C be a coalgebra and let C∗ be the dual algebra.

(1) If (N, ρ) is a right C-comodule, then (N,µ) is a left C∗-module which is
rational, where

µ : C∗ ⊗N C∗ ⊗N ⊗ C N

f ⊗ n⊗ c f(c)n.

idC ⊗ρ
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(2) If (N,µ) is a rational left C∗-module, then there is a natural right C-
comodule structure (N, ρ).

(3) These processes are inverse.

Corollary 3.29. Right C-comodules are in bijection with rational left C∗-
modules.

If dimk C <∞, then all C∗-modules are rational.

Proof (Sketch of theorem part (1)). We want to show that (N,µ) is a left C∗-
module. For f, g ∈ C∗ and n ∈ N we note that the map µ ◦ (id⊗µ) takes

f ⊗ g ⊗ n 7→
∑

f ⊗ g ⊗ n(0) ⊗ n(1)

7→
∑

g(n(1))f ⊗ n(0)

7→
∑

g(n(1))f ⊗ n(0)(0) ⊗ n(0)(1) = g(n(2))⊗ n(0) ⊗ n(1)

7→
∑

g(n(2))f(n(1))n(0),

while the map µ ◦ (mC∗ ⊗ id) takes

f ⊗ g ⊗ n 7→ fg ⊗ n

7→
∑

fg ⊗ n(0) ⊗ n(1)

7→
∑

(fg)(n(1))⊗ n(0) =
∑

f(n(1)(1))g(n(1)(2))n(0)

=
∑

f(n(1))g(n(2))n(0).

Thus we see that
µ ◦ (id⊗µ) = µ ◦ (mC∗ ⊗ id).

Also 1C∗ = ε, so µ takes

ε⊗ n 7→
∑

ε⊗ n(0) ⊗ n(1) 7→
∑

ε(n(1))n(0) =
∑

n(0)ε(n(1)) = n

by comodule axioms.
Finally to see that N is rational, we note that if n ∈ N , then

ρ(n) =

q∑
i=1

ni ⊗ ci

for some ni ∈ N and ci ∈ C. So, if W = kc1 + · · · + kcq, then I := W⊥ is
closed and cofinite, and µ(I ⊗ n) = 0. �
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Remark. We won’t prove part (2), but note that if C is finite dimensional, then
(2) is proved similarly. Given (N,µ) a left C∗-module, we define (N, ρ) a right
C-comodule by

ρ : N C∗ ⊗N ⊗ C N ⊗ C,
n

∑
c∗i ⊗ n⊗ ci

µ⊗idC

where {ci} is any basis of C. 4

Example 3.30. Consider the coalgebra C = k[x] with

∆(xn) =

n∑
i=0

xi ⊗ xn−i,

ε(xn) = δ0n.

Let C∗ be the dual algebra, and recall that C∗ ∼= kJzK (cf. Homework 1) via

C∗ = Homk(C, k)→ kJzK

f 7→
∑
i≥0

f(xi)zi.

Consider a rational left C∗-module N , and let

φ : N → N

n 7→ z . n.

Since N is rational, it is locally finite. This implies for n ∈ N , kJzKn is finite
dimensional, so zs . n = 0 for s� 0. Hence φ is locally nilpotent. Also, (zs) is
closed (and cofinite) in kJzK.

Now check that the corresponding right C-comodule on N is the one we
defined

ρ(n) =
∑
s

φs(n)⊗ xs. ©

3.5 Monoidal structure on modules

Proposition 3.31. Let B be a bialgebra, and let M and N be left B-modules.
Then M ⊗k N is again a left B-module where

b . (m⊗ n) =
∑

b(1) .m⊗ b(2) . n.

Proof. ∆: B → B ⊗B is a map of algebras. Since M and N are B-modules,
M ⊗k N is a B ⊗B-module with

(a⊗ b) . (m,n) = (a .m⊗ b . n).
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Now pullback via ∆ to get a B-module structure on M ⊗N . Also note that
∆(1) = 1⊗ 1, so

1 . (m⊗ n) = m⊗ n. �

You can formulate this as saying that the category of left B-modules is a
monoidal category.

Example 3.32. Let G be a group, and let M and N be representations of G
(i.e. kG-modules). Then M ⊗N is also a representation, where

g . (m⊗ n) = g .m⊗ g . n

for all g ∈ G. ©

Example 3.33. Let U(L) be the universal enveloping algebra of a Lie algebra
L. LetM and N be representations of L (so modules over U(L)). ThenM⊗N
is again a representation, where

x . (m⊗ n) = (x .m⊗ n) + (m⊗ x . n)

for x ∈ L. (Recall that ∆(x) = x⊗ 1 + 1⊗ x.) ©

3.6 Hopf modules

If B is a bialgebra, we defined (left or right) B-modules, and (left or right)
B-comodules. It is natural to define a structure that is both a module and a
comodule with some added axioms.

Definition 3.34 (Hopf module). We say M is a (right,right) Hopf module
over B if

(1) (M,µ) is a right B-module (where µ : M ⊗B →M),

(2) (M,ρ) is a right B-comodule (where ρ : M →M ⊗B),

and

(3) ρ is a right B-module map

or

(3’) µ is a right B-comodule map.

In this definition (3) and (3’) are equivalent.
Recall in (3) that M ⊗B is a right B-module with

(m⊗ b) . c =
∑

m. c(1) ⊗ b . c(2).
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Also in (3’), M ⊗B is a right B-comodule with

ρM⊗B(m⊗ b) =
∑

m(0)b(1) ⊗m(1)b(2).

Note, (3) says that

M ⊗B M ⊗B ⊗B

M M ⊗B

ρ⊗idB

µM µM⊗ idB

ρ

commutes. In Sweedler notation

ρ(mb) =
∑

(mb)(0) ⊗ (mb)(1)

=
∑

m(0)b(1) ⊗m(1)b(2)

=
∑

µM⊗B(m(0) ⊗m(1) ⊗ b).

Example 3.35. B itself is a (right,right) Hopf module with

µ = m : B ⊗B → B,

ρ = ∆: B → B ⊗B. ©

Example 3.36. Similarly,
⊕

i∈I B is a Hopf module. This is a free Hopf
module. ©

Definition 3.37. Let M be a Hopf module over a bialgebra B.

M coinv = {m ∈M | ρ(m) = m⊗ 1B}

is called the coinvariants of M and is a k-subspace.

Theorem 3.38. Let H be a Hopf algebra and let M be a Hopf module over
H. Then

M ∼= M coinv ⊗k H

as right Hopf modules, where M coinv ⊗H is a right module and comodule using
the second coordinate,

(m⊗ h) . g = m⊗ hg,

ρ(m⊗ h) =
∑

m⊗ h(1) ⊗ h(2),

i.e. M coinv ⊗H is free of rank dimkM
coinv.
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Proof. Define

α : M coinv ⊗k H →M

m⊗ h 7→ mh,

β : M →M coinv ⊗k H

m 7→
∑

m0S(m1)⊗m2.

Remark. Here we write

(ρ⊗ id) ◦ ρ(m) =
∑

m0 ⊗m1 ⊗m2

with no parentheses around indices now. 4

Claim: α and β are inverse bijections and maps of Hopf modules.
Step 1: β is well-defined.

For m ∈M with ρ(m) =
∑
m0 ⊗m1, we have

ρ
(∑

m0S(m1)
)

=
∑

(m0S(m1))0 ⊗ (m0S(m1))1

=
∑

m0S(m2)1 ⊗m1S(m2)2 (axiom (3) of Hopf modules)

=
∑

m0S(m3)⊗m1S(m2) (since S is an anti coalgebra map)

=
∑

m0S(m2)⊗ ε(m1)

=
∑

m0S(ε(m1)m2)⊗ 1 (by linearity)

=
∑

m0S(m1)⊗ 1 (by the counit axiom).

This shows that

µ ◦ (id⊗S) ◦ ρ(m) =
∑

m0S(m1)⊗ 1,

and thus ∑
m0S(m1) ∈M coinv.

Writing β as
∑
m00S(m01)⊗m1, we see that

β(m) ∈M coinv ⊗k H.

Step 2: α ◦ β = idM .
We see that

α ◦ β(m) = α
(∑

m0S(m1)⊗m2

)
=
∑

m0S(m1)m2

=
∑

m0ε(m1) (by axiom of S)

= m (by comodule axioms).
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Step 3: β ◦ α = idMcoinv⊗kH .
We see that

(β ◦ α)(m⊗ h) = β(mh)

=
∑

(mh)0S
(
(mh)1

)
⊗ (mh)2

=
∑

m0h1S(m1h2)⊗m2h3 (by Hopf module axiom (3)).

Since m ∈ M coinv,
∑
m0 ⊗m1 ⊗m2 = m ⊗ 1 ⊗ 1, and thus continuing the

calculation

=
∑

mh1S(h2)⊗ h3

=
∑

mε(h1)⊗ h2

=
∑

m⊗ ε(h1)h2

= m⊗ h (by comodule axioms).

Step 4: α is a Hopf module map.
To see that α is a module map, we note that

α((m⊗ h) . g) = α(m⊗ hg) = mhg

and
α(m⊗ h) . g = mh . g = mhg.

To see that α is a comodule map, we note that

(α⊗ id)ρ(m⊗ h) =
∑

(α⊗ id)(m⊗ h1 ⊗ h2) =
∑

mh1 ⊗ h2

and
ρ ◦ α(m⊗ h) = ρ(mh) =

∑
m0h1 ⊗m1h2 =

∑
mh1 ⊗ h2,

since ρ(m) = m⊗ 1 because m ∈M coinv.

Step 1–4 proves the claim and thus the theorem. �

cor:fundthmhopfmod Corollary 3.39 (Fundamental Theorem of Hopf Modules). Every (right,right)
Hopf module over a Hopf algebra is free as a Hopf module.

Proof. We see by the theorem that

M coinv ⊗k H ∼=
⊕
i∈I

H,

where I indexes a basis of M coinv. �



CHAPTER 3. HOPF ALGEBRAS 45

Remark. The same result (as the corollary) holds true for (left,left), (left,right)
and (right,left) type Hopf modules. The theorem holds for these if S is
bijective. 4

Question: Given an algebra A, how do we know if A can be given a Hopf
algebra structure?

Answer: This is unknown in general, but there are restrictions on A. ♣

E.g. we will show the following result later.

Theorem. Let H be a finite dimensional Hopf algebra. Then H is a Frobenius
algebra.3

Suppose M is a left A-module, where A is a k-algebra. Then M∗ =
Homk(M,k) is a right A-module (since M is a (A, k)-bimodule), where for
f ∈M∗, a ∈ A,

[fa](m) = f(am).

Similarly, if M is right A-module, then M∗ is a left A-module with

[af ](m) = f(ma),

and if M is an (A,A)-bimodule, then M∗ is also an (A,A)-bimodule.
In particular A∗ is an (A,A)-bimodule.

thm:Frobalg Theorem 3.40. Let A be a finite dimensional k-algebra. Then the following
are equivalent:

(1) A ∼= A∗ as right A-modules.

(1’) A ∼= A∗ as left A-modules.

(2) There is a nondegenerate bilinear form ( · , ·) on A (i.e. ( · , ·) : A×A→ k)
such that the form is associative, i.e. (ab, c) = (a, bc).

(3) There is a linear functional f : A→ k such that Ker f contains no nonzero
right ideals of A.

(3’) There is a linear functional f : A→ k such that Ker f contains no nonzero
left ideals of A.

def:Frobalg Definition 3.41 (Frobenius algebra). We say an algebra A is Frobenius if
it satisfies any of the conditions from Theorem 3.40.

3We will define this shortly.
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Proof (of theorem). (1) =⇒ (2): Let φA → A∗ be an isomorphism of right
modules. Define a form ( · , · ) by

(a, b) = φ(a)(b).

Recall that ( · , · ) is nondegenerate if there does not exist 0 6= a ∈ A such that
(a, b) = 0 for all b ∈ A. Note φ(a) = (a, · ), so if (a, · ) = 0, then φ(a) = 0, and
thus a = 0 since φ is bijective. So ( · , · ) is nondegenerate.

Now
(ab, c) = φ(ab)(c) = [φ(a)b](c) = φ(a)(bc) = (a, bc).

(2) =⇒ (3): Assume we have a form ( · , · ), and consider f = (1A, · ) : A→ k.
If Ker f contains a nonzero right ideal, then it contains aA for some a 6= 0. So

f(aA) = (1A, aA) = (a,A) = 0,

but ( · , · ) is nondegenerate – contradiction!
(3) =⇒ (1): Let f be such a linear function and define

φ : A→ A∗

1 7→ f

a 7→ fa,

which is a right A-module map. If φ(a) = 0, then fa = 0, so f(ab) = [fa](b) = 0
for all b, and thus f(aA) = 0. Hence a = 0, and thus φ is injective.

Now, since dimk A <∞,

dimk A
∗ = dimk A <∞,

so φ is an isomorphism.

Finally (1’) =⇒ (2) =⇒ (3’) =⇒ (1’) is similar. �

ex:MnkFrob Example 3.42. Consider the algebra A = Mn(k). We claim that A is Frobe-
nius. To see this, define a form on A with

(eij , est) = δsjδit =

{
1 if est = eji,
0 otherwise.

This is the same form as
(P,Q) = tr(PQ)

for P,Q ∈ A = Mn(k). So ( · , · ) is associative since

(P,QR) = tr(PQR) = (PQ,R).

The form is nondegenerate since if P 6= 0, we can write P =
∑
aijeij where at

least one aij 6= 0, so
(P, eji) = aij 6= 0.

Hence A = Mn(k) is Frobenius by Definition 3.41. ©
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Example 3.43. Consider the algebra A = k[x]/(xn) for some n ≥ 1. A is
local (i.e. has a unique maximal ideal) with maximal ideal (x) and unique
minimal ideal (xn−1). To satisfy (3) of Definition 3.41, we just need a f : A→ k
such that

Ker f ∩ (xn−1) = 0,

which we can get by choosing an f with f(xn−1) 6= 0. ©

Example 3.44. Consider the algebra A = k[x, y]/(x2, xy, y2), and note that A
is a 3 dimensional algebra with basis 1, x, y. We claim that A is not Frobenius.
To see this, note that every k-subspace of the 2 dimensional ideal

(x, y)

(x2, xy, y2)

is an ideal of A. So if f : A→ k is linear,

Ker f ∩ (x, y)

(x2, xy, y2)

is nonzero, since any two dimension 2 subspaces of A intersect. So condition
(3) of Definition 3.41 fails to hold for all f : A→ k. ©

thm:hopfalgfrob Theorem 3.45. Let H be a finite dimensional Hopf algebra. Then H is a
Frobenius algebra.

Before beginning the proof we will introduce some notation. Let H be
a Hopf algebra. Then H∗ is a left and right H-module, and we will use the
notation

(h ⇀ f)(a) = f(ah) = 〈f, ah〉

for the left action of h ∈ H on f ∈ H∗ (applied to a ∈ H) and

(f ↼ h)(a) = f(ha) = 〈f, ha〉

for the right action of h on f (applied to a). We also have another left action
(with a the following notation)

(h ⇁ f)(a) = f(S(h)a) = 〈f, S(h)a〉 = (f ↼ S(h))(a)

and a right action (with the following notation)

(f ↽ h)(a) = f(aS(h)) = 〈f, aS(h)〉 = (S(h) ⇀ f)(a).

Since H∗ is a left H∗-module by multiplication, H∗ is also a right H-
comodule with

ρ : H∗ → H∗ ⊗H.

f 7→
∑

f0 ⊗ f1.
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Recall, if

m : H∗ ⊗H∗ → H∗,

f ⊗ g 7→ fg

then
m : H∗ ⊗H∗ H∗ ⊗H∗ ⊗H H∗,

f ⊗ g ⊗ a 〈f, a〉g

id⊗ρ

so
fg =

∑
〈f, g1〉g0. (3.1) {eq:fgH*}

Now (H∗, ρ) is a right H-comodule and (H∗,↽) is a right H-module.

Proof (of Theorem 3.45). We will split the proof into several steps.

Step 1: H∗ is a (right,right) Hopf module under these structures.

We will show this by proving that ρ is a H-module map, so we need to show
that ∑

(f0 ↽ h1)⊗ f1h2 = ρ(f ↽ h) = ρ(f) . h =
(∑

f0 ⊗ f1

)
. h. (3.2) {eq:rhoactcom}

Given g ∈ H∗,
g(f ↽ h) =

∑
〈g, (f ↽ h)1〉(f ↽ h)0

by eq. (3.1). To show eq. (3.2) it is enough to show that if we apply idH∗ ⊗g
to both sides, we get equal results for all g ∈ H∗. So to show eq. (3.2) it is
enough to show that∑

〈g, f1h2〉(f0 ↽ h1) = (id⊗g)
(
ρ(f ↽ h)

)
=
∑

(id⊗g)
(
(f ↽ h)0 ⊗ (f ↽ h)1

)
= 〈g, (f ↽ h)1〉(f ↽ h)0

= g(f ↽ h),

i.e. it is enough to show that

g(f ↽ h) =
∑
〈g, f1h2〉(f0 ↽ h1) (3.3) {eq:gfSracth}

for all f, g ∈ H∗, h ∈ H. To show this we start with the right hand side:∑
〈g, f1h2〉(f0 ↽ h1) =

∑
〈h2 ⇀ g, f1〉(f0 ↽ h1)

=
∑(
〈h2 ⇀ g, f1〉f0

)
↽ h1

=
∑[

(h2 ⇀ g)f
]
↽ h1
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by eq. (3.1). Now it is enough to show for all x ∈ H that both sides of eq. (3.3)
are the same. We see that∑〈

[(h2 ⇀ g)f ] ↽ h1, x
〉

=
∑〈

[(h2 ⇀ g)f ], xS(h1)
〉

=
∑〈

h2 ⇀ g, (xS(h1))1

〉〈
f, (xS(h1))2

〉
(by def. of mult. in H∗)

=
∑〈

h2 ⇀ g, x1S(h1)1

〉〈
f, x2S(h1)2

〉
=
∑〈

h3 ⇀ g, x1S(h2)
〉〈
f, x2S(h1)

〉
(since S anti-coalgebra map)

=
∑〈

g, x1S(h2)h3

〉〈
f, x2S(h1)

〉
=
∑〈

g, x1ε(h2)
〉〈
f, x2S(h1)

〉
(by axiom forS)

=
∑〈

g, x1

〉〈
f, x2S(h1ε(h2))

〉
=
∑〈

g, x1

〉〈
f, x2S(h)

〉
=
∑〈

g, x1

〉〈
f ↽ h, x2

〉
=
〈
g(f ↽ h), x

〉
,

as we wanted.

Step 2: (H∗,↽) ∼= (H∗, . ) as right H-modules.

Now we know that H∗ is a Hopf module, so by the Fundamental Theorem of
Hopf modules (Corollary 3.39)

H∗ ∼= (H∗)coinv ⊗k H.

Furthermore,H is finite dimensional, so dimkH
∗ = dimkH, and thus dimk(H∗)coinv =

1 by the above, and hence
H∗ ∼= H

as right Hopf modules. But this only shows that

(H∗,↽) ∼= (H, . )

as right H-modules, and to show H is Frobenius we want

(H∗,↼) ∼= (H, . )

as right H-modules.

Step 3: S is bijective.
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Choose an isomorphism of right H-modules

φ : H → (H∗,↽).

1 7→ f

h 7→ (f ↽ h)

If S(h) = 0 for h ∈ H, then

〈f ↽ h, x〉 = 〈f, xS(h)〉 = 0

for all x ∈ H, so f ↽ h = 0, and thus φ(h) = 0. Now, since φ is an isomorphism,
we have that h = 0, and thus S is injective.

Since dimkH = dimkH
∗ and S is linear, S is bijective.

Step 4: The map

ψ : (H∗,↽)→ (H∗,↼)

f 7→ f ◦ S

is a right H-module isomorphism.

We note that ψ is bijection since S is (so ψ−1 = [f 7→ f ◦ S−1]). Finally,〈
ψ(f ↽ h), x

〉
=
〈
(f ↽ h) ◦ S, x

〉
=
〈
f ↽ h, S(x)

〉
=
〈
f, S(h)S(x)

〉
= f

(
S(x)S(h)

)
= f ◦ S(hx)

=
〈
(f ◦ S) ↼ h, x

〉
=
〈
ψ(f) ↼ h, x

〉
,

so ψ is a right H-module map.

Step 5: (H, . ) ∼= (H∗,↼).

Step 2 and Step 4 together implies that

(H∗,↼) ∼= (H∗,↽) ∼= (H, . )

as right H-modules, and thus H is Frobenius. �

Corollary 3.46. If H is a finite dimensional Hopf algebra, then S is bijective,
and thus an anti-isomorphism.

Proof. We proved this in Step 3 of the above proof. �
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Remark. Most nice infinite dimensional Hopf algebras also satisfy the above
corollary. 4

Remark. A finite dimensional Frobenius algebra A need not have a Hopf algebra
structure. 4

Example 3.47. Consider the algebra A = Mn(k) for n ≥ 2. We saw in
Example 3.42 that A is Frobenius. But A is simple (has no ideals other than
0 and A), so if A is a bialgebra in some way, then Ker ε is an ideal with
dimk A/Ker ε = 1. Hence A cannot have a Hopf algebra structure (it can’t
even have a bialgebra structure). ©

Example 3.48. Let G be a finite group. Then kG is Frobenius. In fact kG
has a Frobenius form where for g, h ∈ G,

(g, h) =

{
1 if gh = 1G,
0 otherwise. ©

3.7 Integrals

Definition 3.49. Let H be a bialgebra. A left integral in H is a t ∈ H such
that

ht = ε(h)t

for all h ∈ H, and a right integral is a t ∈ H such that

th = ε(h)t

for all h ∈ H. We write∫ l

H
= {t ∈ H | t is a left integral}

and ∫ r

H
= {t ∈ H | t is a right integral}.

Note that both
∫ l
H and

∫ r
H are k-subspaces of H.

From the exact sequence

0 Ker(ε) H k 0ε

we get see that
k ∼= H/Ker(ε).
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Actually Ker ε is an ideal, so k a an (H,H)-bimodule. k is called the trivial
module.

If λ ∈ k, k the trivial module, and h ∈ H, then h − ε(h) ∈ Ker ε since
(h− ε(h)) . λ = 0, i.e.

h . λ = ε(h)λ,

and similarly
λ . h = ε(h)λ.

We see that 0 6= t ∈ H is a left integral if and only if kt is a left ideal of H
and H(kt) ∼=H k (as left H-modules).Similarly 0 6= t ∈ H is a right integral if
and only if kt is a right ideal and (kt)H ∼= kH (as right H-modules).

Proposition 3.50. Let H be a finite dimensional Hopf algebra. Then:

(1)
∫ l
H and

∫ r
H are 1 dimensional.

(2) S(
∫ l
H) =

∫ r
H and S(

∫ r
H) =

∫ l
H .

Proof. ConsiderH∗ which is again a Hopf algebra (sinceH is finite dimensional).
A left integral in H∗ is f ∈ H∗ such that

gf = εH∗(g)f = (uH)∗(g)f = g(1H)f.

Recall from the proof of Theorem 3.45 that (H∗, ρ) is a right H-comodule,
where

ρ : H∗ → H∗ ⊗H,

f 7→
∑

f0 ⊗ f1

satisfies
gf =

∑
〈g, f1〉f0 (3.4) {eq:gfinsum}

for all f, g ∈ H∗. From this we see f ∈
∫ l
H if and only if

〈g, 1〉f = g(1)f = gf =
∑
〈g, f1〉f0

for all g ∈ H∗. This forces

ρ(f) =
∑

f0 ⊗ f1 = f ⊗ 1,

or equivalently f ∈ (H∗)coinv.
In the proof of Theorem 3.45 we also saw that dimk(H

∗)coinv = 1, so
dimk

∫ l
H∗ = 1. Similarly, dimk

∫ r
H∗ = 1.

This proves (1) since as H runs over all finite dimensional Hopf algebras,
so does H∗ (since H∗∗ ∼= H in this case).



CHAPTER 3. HOPF ALGEBRAS 53

For (2), let t ∈
∫ l
H so that ht = ε(h)t for all h ∈ H. Then

S(t)h = S(t)SS−1(h)

= S
(
S−1(h)t

)
(S is an anti-isomorphism)

= S
(
ε(S−1(h))t

)
= εS−1(h)S(t)

= ε(h)S(t)

where S is bijective by the proof of Theorem 3.45, and where ε ◦ S−1 = ε is
equivalent to ε = ε ◦ S, which is true since S is an anti-homomorphism of
coalgebras. So S(t) ∈

∫ r
H . Similarly, if t ∈

∫ r
H , then S(t) ∈

∫ l
H .

Since S is bijective and dimk

∫ l
H = dimk

∫ r
H = 1, we see that S(

∫ l
H) =

∫ r
H

and S(
∫ r
H) =

∫ l
H . �

Example 3.51. Let G be a finite group and H = kG. Then t =
∑

g∈G g is a
left and right integral, so kt =

∫ l
H =

∫ r
H . To see this, note that

g′t = g′
∑
g∈G

g
∑
g∈G

g′g =
∑
h∈G

h = t,

and ε(g′) = 1 for all g′ ∈ G. So t ∈
∫ l
H and a similar argument shows that

t ∈
∫ r
H . ©

Example 3.52. Let G be a finite group and H = (kG)∗. Write Pg for the
element g∗ of the dual basis to G, so (Pg)(h) = δgh. We claim that P1G is a
left and right integral. To see this, note that

PgP1(h) = Pg(h)P1(h) = δghδ1h = δg1δ1h = Pg(1)P1(h),

so PgP1 = Pg(1)P1, where εH(Pg) = Pg(1). ©

Definition 3.53. A finite dimensional Hopf algebra is unimodular if∫ l

H
=

∫ r

H
.

So by the above kG and (kG)∗, for a finite group G, are unimodular.

Example 3.54. Consider the 4 dimensional Taft algebra

H =
k〈x, y〉

(x2 − 1, y2, xy + yx)
= k + kx+ ky + kxy

with

∆(x) = x⊗ x ε(x) = 1 S(x) = x

∆(y) = y ⊗ 1 + x⊗ y ε(y) = 0 S(y) = −xy.
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We claim thatH is not unimodular. To see this, note that y+xy = (1+x)y ∈
∫ l
H

since

1 · (1 + x)y = ε(1)(1 + x)y,

x · (1 + x)y = (x+ x2)y = (x+ 1)y = ε(x)(1 + x)y,

y · (1 + x)y = (y + yx)y = y2 − xy2 = 0 = ε(y)(1 + x)y,

xy · (1 + x)y = xy2 + xyxy = 0− x2y2 = 0 = ε(xy)(1 + x)y,

where ε(xy) = ε(x)ε(y) = 0 by the definition of ε on a product. But on the
other hand

y − xy = y + yx = y(1 + x) ∈
∫ r

H
,

so H cannot be unimodular (since x+ yx and x− yx are linearly independent).
Note that

S
(
(1 + x)y

)
= S(y)S(1 + x) = (−xy)(1 + x) = −xy − xyx

= −xy + x2y = −xy + y = y(1 + x) =∈
∫ r

H
. ©

lem:infdimnoideals Lemma 3.55. Let H be an infinite dimensional Hopf algebra. Then H has no
nonzero finite dimensional left or right ideals.

Proof. Let I be a finite dimensional right ideal and let (H,∆) be the standard
right H-comodule on H. Then H is a rational left H∗-module with

f ? h =
∑
〈f, h2〉h1

for f ∈ H∗, h ∈ H. So H is a left H∗-module, and a right H-module, but not
a (H∗, H)-bimodule. These two actions on H, . = · of H and ? of H∗, satisfy

(f ? k) · k =
∑(

S(k2) ⇀ f
)
? (h · k1).

To see this, note that ∑(
S(k2) ⇀ f

)
? (h · k1)

=
∑〈

S(k3) ⇀ f, h2k2

〉
h1k1

=
∑〈

f, h2k2S(k3)
〉
h1k1

=
∑
〈f, h2〉h1k1ε(k2)

=
∑
〈f, h2〉h1k

= (f ? h) · k.
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Now take J = H∗ ? I, which is still finite dimensional since H is a rational
left H∗-module and thus locally finite. So J is a right coideal of H by the
correspondence between left H∗ submodules of H and right subcomodules of
H. Also, J is still a right ideal since

J ·H = (H∗ ? I) ·H ⊆ H∗ ? (I ·H) = H∗ ? I = J.

Now J is a Hopf submodule of the right Hopf module H, so J is free the
Fundamental Theorem of Hopf Modules (Corollary 3.39). But dimkH = ∞
and dimk J < ∞, so J = 0. Hence I = 0. Similarly H has no nonzero finite
dimensional left ideals. �

Corollary 3.56. An infinite dimensional Hopf algebra H has no nonzero left
or right integrals.

Proof. If t ∈
∫ r
H , then kt is a right ideal of H. So by the Lemma 3.55, t = 0.

Similarly on the left. �

Remark. If H is a Hopf algebra, then so is Hop,cop, which is an algebra with
the opposite multiplication and comultiplication, i.e.

g ∗ h = hg,

∆(g) =
∑

g2 ⊗ g1.

Similarly, Hop (opposite multiplication, same comultiplication) and Hcop (same
multiplication, opposite comultiplication) are Hopf algebras as long as S is
bijective (so in particular if H is finite dimensional). 4
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