Math 207a Winter 2020 Homework 1

April 6, 2020

1. Let V and W be vector spaces over k. Consider the canonical map $\psi: V^{*} \otimes_{k} W^{*} \rightarrow$ $\left(V \otimes_{k} W\right)^{*}$, where given $f \in V^{*}, g \in W^{*},[\psi(f \otimes g)](v \otimes w)=f(v) g(w)$.
(a). Show that ψ is injective.
(b). Show that ψ is an isomorphism of vector spaces if and only if either V or W is finite dimensional over k.
2. Keep the hypotheses of exercise 1.

Show that for subspaces $I \subseteq V^{*}$ and $J \subseteq W^{*}$ we have

$$
(I \otimes J)^{\perp}=I^{\perp} \otimes W+V \otimes J^{\perp} .
$$

(The notation is defined in the lectures). Hint: choose bases.
3. Let (C, Δ, ϵ) be a coalgebra over the field k. A nonzero element $c \in C$ is called grouplike if $\Delta(c)=c \otimes c$.
(a). Show that if c is grouplike, then $\epsilon(c)=1$.
(b). Show that any set of distinct grouplike elements in C is linearly independent over k.
4. Recall that a coalgebra C is grouplike if it has a k-basis of grouplike elements.
(a). Show that any cosubalgebra of a grouplike coalgebra is again grouplike.
(b). Show that if C and D are grouplike coalgebras, then so are $C \oplus D$ and $C \otimes_{k} D$.
5. Let (C, Δ, ϵ) be a coalgebra over the field k. Given grouplike elements $g, h \in C$, an element $c \in C$ is called (g, h)-primitive if $\Delta(c)=g \otimes c+c \otimes h$.
(a). Show that if c is (g, h)-primitive, then $\epsilon(c)=0$.
(b). Let V be the set of (g, h)-primitive elements of V. Show that V is a subspace of $C ; D=V+k g+k h$ is a cosubalgebra of $C ; V$ is a coideal of D; and D / V is a grouplike coalgebra.
6. Let $C=k \mathbb{N}$ be the monoid coalgebra of $\mathbb{N}=\left\{x^{0}, x^{1}, x^{2}, \ldots\right\}$. So we can think of C as the polynomial ring $k[x]$ as a vector space, with coproduct $\Delta\left(x^{n}\right)=\sum_{i+j=n} x^{i} \otimes x^{j}$ and counit $\epsilon\left(x^{n}\right)=\delta_{0 n}=\left\{\begin{array}{ll}1 & \mathrm{n}=0 \\ 0 & n \neq 0\end{array}\right.$.
(a) Show that the dual algebra C^{*} is isomorphic to the power series ring $k[[x]]$ in one variable over k.
(b). Find all cosubalgebras of C.
7. Recall that for a coalgebra C we showed that its dual C^{*} is an algebra.
(a). Suppose that $\phi: C \rightarrow D$ is a homomorphism of coalgebras. Show that the dual map $\phi^{*}: D^{*} \rightarrow C^{*}$ is a homomorphism of algebras.
(b). Suppose that C and D are coalgebras and consider the map $\psi: C^{*} \otimes D^{*} \rightarrow(C \otimes D)^{*}$ from exercise 1. Show that ψ is a homomorphism of algebras.

