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Notations and Conventions

e K is a field.
e VV and W are K-vector spaces.

e Unadorned ® symbols are always over K.

Homework 1

1.1 Problem 1
Proposition 1.1. The natural map Yyw: V@ W* — (V@ W)* is always injective, and it
18 surjective if and only if one of V. or W is finite-dimensional.

The first statement may be proven using bases, and this proof is reasonable. However, I
prefer going through one of my favorite lemmas about the tensor product.

Definition 1.2. . C V* is called separating if f(v) = 0 for every f € . implies v = 0.

For two linear functionals f € V* g € W* abuse notation slightly by writing f ® g also
for pvw(f ®g) € (V@ W)
Lemma 1.3. Let .¥ C V*, 7 C W* be separating sets. If v € V @ W is such that
(f®g)(x) =0, for every f € . and g € T, then x = 0.

Proof. Write x = Z;":l v; ® w;, where vq,...,v, € V and wy,...,w, € W, where we take
Wi, ..., Wy € W linearly independent. (This is possible basically because finite-dimensional
vector spaces have bases.) Now, the condition implies that if f € ., then

0=(f®g)( Z fvj)g(w;) —9<Zf% )

for every g € 7. Since J is separating, Y 7", f(v;)w; = 0. Since wy, ..., w, € W are
linearly independent, it follows that f(vy) = -+ = f(v,) = 0, for every f € .. Since . is
separating, we get vy = --- = v,, = 0. Therefore, x = 0, as desired. O

1



The key observation is that if ey : V < V** is the natural map, then ey (V) C V** is a
separating set in (V*)*. Indeed, if f € V*, then ey (v)(f) = f(v), for all v € V.

Proof of Injectivity Part of Proposition[1.1. Suppose x € V*®@W* is such that ¥y (z) = 0.
For every v € V and w € W, note the functional ey (v) ® ey (w): V* @ W* — K satisfies
(ev(v) ® ew (w))(z) = Yvw(2)(v © w) = 0.
By Lemma |1.3| and the observation above, we conclude x = 0, as desired. O
For the second part of Proposition [1.1], we make an observation.
Lemma 1.4. Let (vp)neny € VY, (Wn)nen € WY be sequences in V' and W, respectively. If
h=>"" i ®g; € myw C (VW) then
hoy @wy) -+ h(vy ® wy)
rank : . : <m,
h(v, @wy) -+ h(v, ® wy,)
for alln € N.
Proof. Note that for all j, k € [n], we have

h(v; ® wy) = Z fo(vy) ge(wy) = (F.Gn) i,

where
filvi) oo fin(vr) gi(wi) -+ gi(wn)
F, = : : e K™™ and G,, = : : e K™
filvn) = flvn) gm(w1) o gm(wy)
whence it follows that
h(vy @ wy) -+ h(v; @ wy,)
rank : : = rank(F,G,) < rank F,, < m,
h(v, @ wy) -+ h(v, @ w,)
as desired. ]

We are now ready for the rest of Proposition (1.1

Proof of Second Part of Proposition[1.1. We first show ¢y is not surjective if V' and W
are both infinite-dimensional. In this case, there are sequence (v,)nen € VY, (wy)neny € WH
of linearly independent vectors in both V' and W. Then we know (v,, ® wy,)nen is linearly
independent in V' ® W. Completing it to a basis (or choosing a complementary subspace),
we conclude there exists ¢ € (V ® W)* such that

o(v; @ wi) = dj,

for all j,k € N. But then [¢(v; ® wk)|jkem = In € K™, for all n € N. Since rank I,, = n,
we conclude from Lemma that ¢ & im ¢y, and therefore ¢y is not surjective.
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Now, in the case that (without loss of generality) W is finite-dimensional, let n = dim W.
Since all maps are natural, we may as well assume W = K. In this case, we can consider
the identifications

(Vo= (V:e K)"
= (Ve K*)"
=V (K")".
and
VoK"Y= (Ve K)")"
(V)= (ve)"

2
2

(These all work out because direct sums, i.e., coproducts, and direct products, i.e., prod-
ucts, of finitely many vector spaces are the same.) One may check easily that under these

identifications,
K\N AU T/* nyx YV.E™ n\* ~v *\n
(VY =V e (K" —= (Vo K") = (V")
is the identity map, so that 1y xn is surjective. O

1.2 Problem 2
Proposition 1.5. Let [ CV* and J C W* be subspaces. Then (I J)* = [t@W+V&®J*+.

As above, there is a proof of this fact using bases, but I prefer to go through Lemma [1.3]
Let Vi, Vo, Wy, W5 all be K-vector spaces.

Lemma 1.6 (Flatness). If T: Vi — Wy and Ty: Vo — Wy are injective linear maps, then
Ty RTy: Vi@ Vy— Wy ® Wy is injective as well.

Proof. We first observe . .= {foTy €e V' : f e Wi} and T = {go Ty, € V' : g € WS}
are separating sets. Indeed, if v € V] is such that f(Tiv) =0, for all f € W7, then Tiv =0
(because W7 is a separating set). Since T} is injective, we conclude v = 0, as desired. The
same argument works for 7.

Now, suppose = € V; ® V, is such that (T} ® T5)(x) = 0. Then, for all f € W} and
g € W5, we have

(feh)®(goTa))(x) = ((f®g)o(Th @T2))(x) = (f ®g)(0) =0

By the previous paragraph and Lemma [1.3] we conclude z = 0, as desired. O]

Lemma 1.7 (Quotients). If Vi CV and Wy C W are subspaces and my: V — V/V} and
7o W — W/Wi are the natural quotient maps, then ker(m @ mo) = Vi @ W +V @ W.

Proof. We did this in class. ]



Theorem 1.8. IfT,: V}, — Wy and Ty: Vo — Wy are linear, then
ker(T7 @ Ty) = ker T} @ Vo + V; ® ker Ts,.

Proof. Restricting the codomains of T} and T5 to get Tl: Vi — im7T; and TQ: Vo — im T,
we get T7 ® T as the composition

L1®L2

Vi@V, 228 im Ty @ im Ty 222 Wy @ W,
where ¢;: imT; — W; is inclusion, for j € {1,2}. Since ; ® ¢ is injective by Lemma [1.6|
ker(T7 ® Ty) = ker(Tl ® Tg) —kerT) @ Vo+ Vi @ ker Ty = ker Ty @ Vi + Vi @ ker T,

by Lemma and the First Isomorphism Theorem. O]

Now, the key observation is that if I C V* is a subspace and e, == pl, oey: V — I* is
the natural map ey : V < V** followed by the restriction map p!,: (V*)* — I* defined by
f v fl, then

I+ =kerel,,

by definition of L.

Proof of Proposition[1.5. Consider the map el, @ ef;,: V@ W — I* ® J*. By Theorem ,
we have that

ker(e, @ ejy) = kerel, @ W+ V @ kerejy, = [T W +V @ J* .
I1®J

But also, the universal property of the tensor product implies that ey, is the composition

5{/®€\{V * « Y1 *
VoW —I'eJ — (I®J)

where 97 ; is the injective map from Proposition We conclude that
(I ® J)" =ker(ejy) = ker(ey, ®ejy) =" @W +V ® J,

as claimed. O
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1. Since C' is a coalgebra, and ¢ € C' is group-like we have

(I®e)oAle) = ¢ (1)
(leele®e = ¢ (2)
c-elc) = ¢ (3)

ey = 1 (4)

(Note ¢ # 0 since 0 is not a group-like element.) O

2. Suppose the group-like elements are not linearly independent, then there is a linear depending
relation

aicp + -+ ape, =0,

where ¢;, ¢ are distinct group-like elements in C' and «; are elements in k for ¢ € {1,--- ,n}.
Assume {¢1,- -+, ¢, } are the smallest possible set that has linear dependency, then we observe
that o; # 0, Vi € {1,---,n} (Otherwise we would have a smaller linear dependent set).

Furthermore, if n = 1 then we have
«1C;p = 0

which is a contradiction since 0 is not a group-like element in C, so n > 1.

Then we can write
n—1
Cp = E Bics,
i=1

where ; € k/{0} for alli € {1,---,n—1}. Since this is a smaller set of ¢;’s, it has to be linear
independent.
Now we apply A to both sides of the equation above and we get

n—1
n @y = E Bici ® c;.
=1

Thus we get 1 = n — 1 by looking at the rank of both sides, so we get Sic1 + fSace = 0 =
co = p1c1. By applying € to both sides we get €(ca) = €(81¢1) = 1, so /1 = 1 = ¢1 = ¢a, which
reaches a contradiction. [



4. (a) Let D C C be a subcoalgebra of a grouplike coalgebra. Let {g;} be a basis of grouplike
elements in C. Let d € D. Then d = ), a;g; for some a; € k. Then A(d) = ). a;g; ® g;, but also
A(d) e D@D C D®C so A(d) =), v; ®g; for some v; € D. Since the g; are linearly independent,
we have that a;g; = v; € D for all i. Therefore each g; € D when a; # 0. So d is in the span of
grouplike elements. Hence all of D is the span of grouplike elements. Since the grouplike elements
are linearly independent, D is grouplike.

(b) If C, D are grouplike coalgebras, then they have bases of grouplike elements {¢;} and {d;}
respectively.

A basis for C @ D is given by {(c;,0), (0,d;)}, and note that the coproduct on C'@ D is given by
first applying Ac @ Ap to C @ D and then distributing the direct sum canonically. In other words,
(¢,0) = (c®¢,0®0) — (¢,0) ® (¢,0) and similarly for (0,d) where ¢ € C and d € D is grouplike.
So the (¢;,0) and the (0,d;) are grouplike.

For the tensor product, {¢; ®d;} is a basis, and the coproduct is taken by first applying Ac ® Ap
to C ® D and then applying 7o3. That is, (¢,d) — (c®¢) ® (d®@d) — (¢ ® d) ® (¢ ® d) and hence
c® d is grouplike if ¢, d are.

So C @ D and C ® D are grouplike.
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Problem Statement

Let (C,A,¢) be a coalgebra over the field K. Given grouplike elements
g,h € C, and element ¢ € C is called (g, h)-primitive if

Alc)=g®c+c®h.

1. Show that if ¢ is (g, h)-primitive, then g(c) = 0.
2. Let V be the set of (g, h)-primitive elements of C. Show that:

> V is a subspace of C;

» D =V + Kg+ Kh is a subcoalgebra of C;
> V is a coideal of D;

» and D/V is a grouplike coalgebra.



g(c)=0

Recall that from Problem 3, we have that (g) = 1 for any grouplike
geC.
Suppose ¢ € C is (g, h)-primitive. Notice that

(ide @ e)(A(c)) = (iddc@e)(g@c+c®h) =g ®e(c) + c®e(h).
From the properties of coalgebras, it follows that
c=c¢(c)g+e(h)c=¢e(c)g+c < e(c)g =0.

Since g is grouplike, g # 0 so ¢(¢) = 0.



V is a subspace of C

Clearly 0 € C is (g, h)-primitive, so we only have to show closure under
addition and scalar multiplication. Suppose ¢, c; € V and k € K. Then

A(C1+CQ)ZA(C1)+A(C2)
=gRa+a®h+gRa+a®h
=g@(ata)t(ata)xh

so ¢; + ¢ € V. We also have that
A(ka) = kA(a) =k(g@a+a®h) =g (ka) + (ka) @ h

so kc; € V. ]



D =V + Kg + Kh is a subcoalgebra of C

Recall that if g € G is grouplike, then A(g) =g ® g.

Since D is a subspace of C, we only have to check that A(D) C D® D.
Suppose d € D. Then we can write d = ¢ + kyg + kxh for c € V and
ki, ko € K. Notice that

A(d)=g@c+c@h+k(g®g)+k(he h).

Since g, h,c € D, we have that A(d) € D® D.



V is a coideal of D

Recall that a subspace | C C is a called a coideal of (/) = 0 and
A(YcleC+Col.

From part 1, we have that (V) = 0. Suppose ¢ € V. Then
Alc)=c®h+g®ec.

Since g, h € D, we are done.



D/V is grouplike

To show this, we are going to show that D = K as K-vector spaces. First
we show that V N (Kg + Kh) = K(g — h). Suppose that
c € VN (Kg + Kh). Then we can write ¢ = kig + koh. Therefore

0=¢e(c) = kie(g) + koe(h) = ki + ko
so ky = —ky so ¢ € K(g — h). Now notice that for any k € K,

A(kg — kh) =g ® (kg) + (—kh) ® h
=g @ (kg) — k(g @ h) + k(g @ h) + (—kh) @ h
=g ® (kg — kh) + (kg — kh) ® h

so kg — kh € VN (Kg + Kh).



D/V is grouplike
Consider the map

¢:D—K
c+ kig + koh — ki + ko.

First we show that ¢ is well-defined. Suppose

dy = cx + kg + koh= ¢ + tig + toh =: d;.

Then
(ki —t1)g + (ke —)h € VN (Kg + Kh) = K(g — h).
Therefore
k—ti+hkh—tH=0<< k+hk=t+t0t.
Thus

O(dk) = ki + ko = t1 + to = ¢(d).



D/V is grouplike

Clearly ¢ is K-linear and surjective. Also since

e(c+ kig + kog) = ki + ko = e(¢(c + kig + kag))

and
(02 O)(Ac+ kig + koh)) = ki @1+ ko @ 1 = Ak + ko)

¢ is a morphism of coalgebras. Thus we only have to show that

ker¢p = V. If c € V, then ¢ = ¢ + 0g + 0h so ¢(c) = 0.

Now suppose that d € ker ¢. We can write d = ¢ + kyg + kah for c € V
and ki, k € K. Then ky + ko = 0 so ko, = —k;. Therefore

d eV + K(g—h). Since K(g — h) C V, we have that d € V and so
ker¢ = V.

By the first isomorphism theorem, it follows that D/V = K. Thus any
non-zero element forms a basis for D/V so {g + V'} is a K-basis of
grouplike elements. ]
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Problem 7.
Recall that for a coalgebra (C, A, ¢), we have showed that the dual (C*, A* &*)
is an algebra.

(a)

Suppose that ¢: C — D is a homomorphism of colagebras. Show that
the dual map ¢*: D* — C™ is a homomorphism of algebras.

Solution: Note that ¢ being a homomorphism of coalgebras implies
(¢®¢)OAC:ADO¢ and Ec =€p o ¢.

Thus
¢*(1p+) = ¢*(ep) =epop =ec = 1=
and
" (fg) =" o AL(f®g)=(Apod) (f®g) = ((¢®¢)oAc) (f®yg)
Y AL f © 6°9) = ¢*(£)6"(9)

for f € C*, g € D*. Here (%) is true since

(0@ 6)0Ac) (fRg)](c) = (f @ 9) (D dleq) @ dlew)))
=Y f(dcq) @ gléee)
= Z ¢*f(c@y) ®@ ¢ g(c2))
— ("1 ® ¢"g) 0 Ac(o)
= [Azo(¢"f ®¢"9)](c)
for f € C*,g € D*,c € C. Hence ¢* is a homomorphism of algebras.

Suppose that C' and D are coalgebras and consider the map v : C*® D* —
(C®D)* given by [¢(f @ g)l(v@w) = f(v)g(w) for f € V*,ge W*, v e
V,w € W. Show that ¢ is a homomorphism of algebras.

Solution: Note that
Y(lerep) = Y(ec ®ep) = ecap = L(coD)-
since ecgp(c® d) = ec(c)ep(d). Now note that for f,g € C*, o, 8 € D*,
mexgp = (Mo @ mp+) 0 Tag = (AH ® A}) 0 Ta3
implies that

Y((fa)(g®pB)) =vomeep: ((f®a)® (g f))
=y o (AL @A) oms((f@ ) @ (9® H))
=10 (AL @ AD)((f@9) @ (a®p))
=y (AL(f ®9) @ Ap(a® B)), (1)



and
mceD)* = Atgp = (723 o(Ac® AD))*
implies that
Y(f@a)p(g® B) = meep): (V(f @ @) @Y(g@ b))
= (r230 (Ac ® Ap)) " (V(f ® a) ® (g ® B))
= W(f®a)@ip(ge p)) omso(Ac®Ap). (2)
Now, for f,g € C*,a, 8 € D*,c € C,d € D, (1) implies that
W ((fea)(geB)]|(cod) = V(AL ®g9) @ Ah(a® p))]
= [AL(f @ 9)l(0)[Ap(a @ B)](d)

= (3 flea) @ 9le@)) (3 alda) @ Bldw))
i) B otee)

ckek—k d ch@h—k

- (Z f(c(l))g(c(2))> (Z a(d(l))ﬂ(d(z)))
c d
= 3" fley)gle@)alday)Blde)),
c,d

and (2) implies that

[W(f@a)Pgep)(cod) = (V(f®a)@i(g® f))
= W(f®a)®@P(ge )

om%( qn®c)(%ym®dm»
= (v f®a®¢g®m)

© 23 (Z c1) ® ¢z) @ dry ® d(?))
c,d

= [¥(f @)@ (g ® B)] (Y e @ dy @ ez @ i) )

C

o3 0 (Ac ® Ap)(c®d)

~— —

=S (W(f @ a)eq) @) @ ($(g @ B)(c) @ diay))

Noting that the two expressions agree (since k is commutative), we see
that

Y((foa)gepB)) =9(f®@a)p(gep).

Hence 1 is a homomorphism of algebras.



