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Notations and Conventions

• K is a field.

• V and W are K-vector spaces.

• Unadorned ⊗ symbols are always over K.

Homework 1

1.1 Problem 1

Proposition 1.1. The natural map ψV,W : V ∗⊗W ∗ ! (V ⊗W )∗ is always injective, and it

is surjective if and only if one of V or W is finite-dimensional.

The first statement may be proven using bases, and this proof is reasonable. However, I

prefer going through one of my favorite lemmas about the tensor product.

Definition 1.2. S ⊆ V ∗ is called separating if f(v) = 0 for every f ∈ S implies v = 0.

For two linear functionals f ∈ V ∗, g ∈ W ∗, abuse notation slightly by writing f ⊗ g also

for ψV,W (f ⊗ g) ∈ (V ⊗W )∗.

Lemma 1.3. Let S ⊆ V ∗, T ⊆ W ∗ be separating sets. If x ∈ V ⊗ W is such that

(f ⊗ g)(x) = 0, for every f ∈ S and g ∈ T , then x = 0.

Proof. Write x =
∑m

j=1 vj ⊗ wj, where v1, . . . , vm ∈ V and w1, . . . , wm ∈ W , where we take

w1, . . . , wm ∈ W linearly independent. (This is possible basically because finite-dimensional

vector spaces have bases.) Now, the condition implies that if f ∈ S , then

0 = (f ⊗ g)(x) =
m∑
j=1

f(vj)g(wj) = g

(
m∑
j=1

f(vj)wj

)
,

for every g ∈ T . Since T is separating,
∑m

j=1 f(vj)wj = 0. Since w1, . . . , wm ∈ W are

linearly independent, it follows that f(v1) = · · · = f(vm) = 0, for every f ∈ S . Since S is

separating, we get v1 = · · · = vm = 0. Therefore, x = 0, as desired.
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The key observation is that if eV : V ↪! V ∗∗ is the natural map, then eV (V ) ⊆ V ∗∗ is a

separating set in (V ∗)∗. Indeed, if f ∈ V ∗, then eV (v)(f) = f(v), for all v ∈ V .

Proof of Injectivity Part of Proposition 1.1. Suppose x ∈ V ∗⊗W ∗ is such that ψV,W (x) ≡ 0.

For every v ∈ V and w ∈ W , note the functional eV (v)⊗ eW (w) : V ∗ ⊗W ∗ ! K satisfies

(eV (v)⊗ eW (w))(x) = ψV,W (x)(v ⊗ w) = 0.

By Lemma 1.3 and the observation above, we conclude x = 0, as desired.

For the second part of Proposition 1.1, we make an observation.

Lemma 1.4. Let (vn)n∈N ∈ V N, (wn)n∈N ∈ WN be sequences in V and W , respectively. If

h :=
∑m

j=1 fj ⊗ gj ∈ imψV,W ⊆ (V ⊗W )∗, then

rank

h(v1 ⊗ w1) · · · h(v1 ⊗ wn)
...

. . .
...

h(vn ⊗ w1) · · · h(vn ⊗ wn)

 ≤ m,

for all n ∈ N.

Proof. Note that for all j, k ∈ [n], we have

h(vj ⊗ wk) =
m∑
`=1

f`(vj) g`(wk) = (FnGn)jk,

where

Fn =

f1(v1) · · · fm(v1)
...

. . .
...

f1(vn) · · · fm(vn)

 ∈ Kn×m and Gn =

g1(w1) · · · g1(wn)
...

. . .
...

gm(w1) · · · gm(wn)

 ∈ Km×n,

whence it follows that

rank

h(v1 ⊗ w1) · · · h(v1 ⊗ wn)
...

. . .
...

h(vn ⊗ w1) · · · h(vn ⊗ wn)

 = rank(FnGn) ≤ rankFn ≤ m,

as desired.

We are now ready for the rest of Proposition 1.1.

Proof of Second Part of Proposition 1.1. We first show ψV,W is not surjective if V and W

are both infinite-dimensional. In this case, there are sequence (vn)n∈N ∈ V N, (wn)n∈N ∈ WN

of linearly independent vectors in both V and W . Then we know (vn ⊗ wn)n∈N is linearly

independent in V ⊗W . Completing it to a basis (or choosing a complementary subspace),

we conclude there exists ϕ ∈ (V ⊗W )∗ such that

ϕ(vj ⊗ wk) = δjk,

for all j, k ∈ N. But then [ϕ(vj ⊗ wk)]j,k∈[n] = In ∈ Kn×n, for all n ∈ N. Since rank In = n,

we conclude from Lemma 1.4 that ϕ 6∈ imψV,W , and therefore ψV,W is not surjective.
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Now, in the case that (without loss of generality) W is finite-dimensional, let n := dimW .

Since all maps are natural, we may as well assume W = Kn. In this case, we can consider

the identifications

(V ∗)n ∼= (V ∗ ⊗K)n

∼= (V ∗ ⊗K∗)n

∼= V ∗ ⊗ (K∗)n

∼= V ∗ ⊗ (Kn)∗.

and

(V ⊗Kn)∗ ∼= ((V ⊗K)n)∗

∼= (V n)∗ ∼= (V ∗)n

(These all work out because direct sums, i.e., coproducts, and direct products, i.e., prod-

ucts, of finitely many vector spaces are the same.) One may check easily that under these

identifications,

(V ∗)n ∼= V ∗ ⊗ (Kn)∗
ψV,Kn

−−−! (V ⊗Kn)∗ ∼= (V ∗)n

is the identity map, so that ψV,Kn is surjective.

1.2 Problem 2

Proposition 1.5. Let I ⊆ V ∗ and J ⊆ W ∗ be subspaces. Then (I⊗J)⊥ = I⊥⊗W +V ⊗J⊥.

As above, there is a proof of this fact using bases, but I prefer to go through Lemma 1.3.

Let V1, V2,W1,W2 all be K-vector spaces.

Lemma 1.6 (Flatness). If T1 : V1 ! W1 and T2 : V2 ! W2 are injective linear maps, then

T1 ⊗ T2 : V1 ⊗ V2 ! W1 ⊗W2 is injective as well.

Proof. We first observe S := {f ◦ T1 ∈ V ∗1 : f ∈ W ∗
1 } and T := {g ◦ T2 ∈ V ∗2 : g ∈ W ∗

2 }
are separating sets. Indeed, if v ∈ V1 is such that f(T1v) = 0, for all f ∈ W ∗

1 , then T1v = 0

(because W ∗
1 is a separating set). Since T1 is injective, we conclude v = 0, as desired. The

same argument works for T .

Now, suppose x ∈ V1 ⊗ V2 is such that (T1 ⊗ T2)(x) = 0. Then, for all f ∈ W ∗
1 and

g ∈ W ∗
2 , we have

((f ◦ T1)⊗ (g ◦ T2))(x) = ((f ⊗ g) ◦ (T1 ⊗ T2))(x) = (f ⊗ g)(0) = 0.

By the previous paragraph and Lemma 1.3, we conclude x = 0, as desired.

Lemma 1.7 (Quotients). If V1 ⊆ V and W1 ⊆ W are subspaces and π1 : V ! V/V1 and

π2 : W ! W/W1 are the natural quotient maps, then ker(π1 ⊗ π2) = V1 ⊗W + V ⊗W1.

Proof. We did this in class.
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Theorem 1.8. If T1 : V1 ! W1 and T2 : V2 ! W2 are linear, then

ker(T1 ⊗ T2) = kerT1 ⊗ V2 + V1 ⊗ kerT2.

Proof. Restricting the codomains of T1 and T2 to get T̃1 : V1 ! imT1 and T̃2 : V2 ! imT2,

we get T1 ⊗ T2 as the composition

V1 ⊗ V2
T̃1⊗T̃2−−−! imT1 ⊗ imT2

ι1⊗ι2−−−! W1 ⊗W2,

where ιj : imTj ↪! Wj is inclusion, for j ∈ {1, 2}. Since ι1 ⊗ ι2 is injective by Lemma 1.6,

ker(T1 ⊗ T2) = ker(T̃1 ⊗ T̃2) = ker T̃1 ⊗ V2 + V1 ⊗ ker T̃2 = kerT1 ⊗ V2 + V1 ⊗ kerT2,

by Lemma 1.7 and the First Isomorphism Theorem.

Now, the key observation is that if I ⊆ V ∗ is a subspace and eIV := ρIV ◦ eV : V ! I∗ is

the natural map eV : V ↪! V ∗∗ followed by the restriction map ρIV : (V ∗)∗ ! I∗ defined by

f 7! f |I , then

I⊥ = ker eIV ,

by definition of ⊥.

Proof of Proposition 1.5. Consider the map eIV ⊗ eJW : V ⊗W ! I∗ ⊗ J∗. By Theorem 1.8,

we have that

ker(eIV ⊗ eJW ) = ker eIV ⊗W + V ⊗ ker eJW = I⊥ ⊗W + V ⊗ J⊥.

But also, the universal property of the tensor product implies that eI⊗JV⊗W is the composition

V ⊗W
eIV ⊗e

J
W−−−−! I∗ ⊗ J∗

ψI,J
−−! (I ⊗ J)∗

where ψI,J is the injective map from Proposition 1.1. We conclude that

(I ⊗ J)⊥ = ker(eI⊗JV⊗W ) = ker(eIV ⊗ eJW ) = I⊥ ⊗W + V ⊗ J⊥,

as claimed.
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Math 207A HW 1 Problem 3

April 17, 2020

1. Since C is a coalgebra, and c ∈ C is group-like we have

(1⊗ ε) ◦∆(c) = c (1)

(1⊗ ε)(c⊗ c) = c (2)

c · ε(c) = c (3)

ε(c) = 1 (4)

(Note c 6= 0 since 0 is not a group-like element.)

2. Suppose the group-like elements are not linearly independent, then there is a linear depending
relation

α1c1 + · · ·+ αncn = 0,

where ci, c are distinct group-like elements in C and αi are elements in k for i ∈ {1, · · · , n}.
Assume {c1, · · · , cn} are the smallest possible set that has linear dependency, then we observe
that αi 6= 0, ∀i ∈ {1, · · · , n} (Otherwise we would have a smaller linear dependent set).
Furthermore, if n = 1 then we have

α1c1 = 0

which is a contradiction since 0 is not a group-like element in C, so n > 1.
Then we can write

cn =

n−1∑
i=1

βici,

where βi ∈ k/{0} for all i ∈ {1, · · · , n−1}. Since this is a smaller set of ci’s, it has to be linear
independent.
Now we apply ∆ to both sides of the equation above and we get

cn ⊗ cn =

n−1∑
i=1

βici ⊗ ci.

Thus we get 1 = n − 1 by looking at the rank of both sides, so we get β1c1 + β2c2 = 0 ⇒
c2 = β1c1. By applying ε to both sides we get ε(c2) = ε(β1c1) = 1, so β1 = 1⇒ c1 = c2, which
reaches a contradiction.
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4. (a) Let D ⊆ C be a subcoalgebra of a grouplike coalgebra. Let {gi} be a basis of grouplike
elements in C. Let d ∈ D. Then d =

∑
i aigi for some ai ∈ k. Then ∆(d) =

∑
i aigi ⊗ gi, but also

∆(d) ∈ D⊗D ⊆ D⊗C so ∆(d) =
∑

i vi⊗ gi for some vi ∈ D. Since the gi are linearly independent,
we have that aigi = vi ∈ D for all i. Therefore each gi ∈ D when ai 6= 0. So d is in the span of
grouplike elements. Hence all of D is the span of grouplike elements. Since the grouplike elements
are linearly independent, D is grouplike.

(b) If C,D are grouplike coalgebras, then they have bases of grouplike elements {ci} and {dj}
respectively.

A basis for C ⊕D is given by {(ci, 0), (0, dj)}, and note that the coproduct on C ⊕D is given by
first applying ∆C ⊕∆D to C ⊕D and then distributing the direct sum canonically. In other words,
(c, 0) 7→ (c ⊗ c, 0 ⊗ 0) 7→ (c, 0) ⊗ (c, 0) and similarly for (0, d) where c ∈ C and d ∈ D is grouplike.
So the (ci, 0) and the (0, dj) are grouplike.

For the tensor product, {ci⊗dj} is a basis, and the coproduct is taken by first applying ∆C⊗∆D

to C ⊗D and then applying τ23. That is, (c, d) 7→ (c ⊗ c) ⊗ (d ⊗ d) 7→ (c ⊗ d) ⊗ (c ⊗ d) and hence
c⊗ d is grouplike if c, d are.

So C ⊕D and C ⊗D are grouplike.
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Problem Statement

Let (C ,∆, ε) be a coalgebra over the field K . Given grouplike elements
g , h ∈ C , and element c ∈ C is called (g , h)-primitive if

∆(c) = g ⊗ c + c ⊗ h.

1. Show that if c is (g , h)-primitive, then ε(c) = 0.

2. Let V be the set of (g , h)-primitive elements of C . Show that:
I V is a subspace of C ;
I D = V + Kg + Kh is a subcoalgebra of C ;
I V is a coideal of D;
I and D/V is a grouplike coalgebra.



ε(c) = 0

Recall that from Problem 3, we have that ε(g) = 1 for any grouplike
g ∈ C .
Suppose c ∈ C is (g , h)-primitive. Notice that

(idC ⊗ ε)(∆(c)) = (idC ⊗ ε)(g ⊗ c + c ⊗ h) = g ⊗ ε(c) + c ⊗ ε(h).

From the properties of coalgebras, it follows that

c = ε(c)g + ε(h)c = ε(c)g + c ⇐⇒ ε(c)g = 0.

Since g is grouplike, g 6= 0 so ε(c) = 0.



V is a subspace of C

Clearly 0 ∈ C is (g , h)-primitive, so we only have to show closure under
addition and scalar multiplication. Suppose c1, c2 ∈ V and k ∈ K . Then

∆(c1 + c2) = ∆(c1) + ∆(c2)

= g ⊗ c1 + c1 ⊗ h + g ⊗ c2 + c2 ⊗ h

= g ⊗ (c1 + c2) + (c1 + c2)⊗ h

so c1 + c2 ∈ V . We also have that

∆(kc1) = k∆(c1) = k(g ⊗ c1 + c1 ⊗ h) = g ⊗ (kc1) + (kc1)⊗ h

so kc1 ∈ V .



D = V + Kg + Kh is a subcoalgebra of C

Recall that if g ∈ G is grouplike, then ∆(g) = g ⊗ g .
Since D is a subspace of C , we only have to check that ∆(D) ⊂ D ⊗ D.
Suppose d ∈ D. Then we can write d = c + k1g + k2h for c ∈ V and
k1, k2 ∈ K . Notice that

∆(d) = g ⊗ c + c ⊗ h + k1(g ⊗ g) + k2(h ⊗ h).

Since g , h, c ∈ D, we have that ∆(d) ∈ D ⊗ D.



V is a coideal of D

Recall that a subspace I ⊂ C is a called a coideal of ε(I ) = 0 and

∆(I ) ⊂ I ⊗ C + C ⊗ I .

From part 1, we have that ε(V ) = 0. Suppose c ∈ V . Then

∆(c) = c ⊗ h + g ⊗ c .

Since g , h ∈ D, we are done.



D/V is grouplike

To show this, we are going to show that D ∼= K as K -vector spaces. First
we show that V ∩ (Kg + Kh) = K (g − h). Suppose that
c ∈ V ∩ (Kg + Kh). Then we can write c = k1g + k2h. Therefore

0 = ε(c) = k1ε(g) + k2ε(h) = k1 + k2

so k2 = −k1 so c ∈ K (g − h). Now notice that for any k ∈ K ,

∆(kg − kh) =g ⊗ (kg) + (−kh)⊗ h

=g ⊗ (kg)− k(g ⊗ h) + k(g ⊗ h) + (−kh)⊗ h

=g ⊗ (kg − kh) + (kg − kh)⊗ h

so kg − kh ∈ V ∩ (Kg + Kh).



D/V is grouplike

Consider the map

φ : D → K

c + k1g + k2h 7→ k1 + k2.

First we show that φ is well-defined. Suppose

dk := ck + k1g + k2h = ct + t1g + t2h =: dt .

Then

(k1 − t1)g + (k2 − t2)h ∈ V ∩ (Kg + Kh) = K (g − h).

Therefore

k1 − t1 + k2 − t2 = 0 ⇐⇒ k1 + k2 = t1 + t2.

Thus
φ(dk) = k1 + k2 = t1 + t2 = φ(dt).



D/V is grouplike

Clearly φ is K -linear and surjective. Also since

ε(c + k1g + k2g) = k1 + k2 = ε(φ(c + k1g + k2g))

and

(φ⊗ φ)(∆(c + k1g + k2h)) = k1 ⊗ 1 + k2 ⊗ 1 = ∆(k1 + k2)

φ is a morphism of coalgebras. Thus we only have to show that
ker φ = V . If c ∈ V , then c = c + 0g + 0h so φ(c) = 0.
Now suppose that d ∈ ker φ. We can write d = c + k1g + k2h for c ∈ V
and k1, k2 ∈ K . Then k1 + k2 = 0 so k2 = −k1. Therefore
d ∈ V + K (g − h). Since K (g − h) ⊂ V , we have that d ∈ V and so
ker φ = V .
By the first isomorphism theorem, it follows that D/V ∼= K . Thus any
non-zero element forms a basis for D/V so {g + V } is a K -basis of
grouplike elements.
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Problem 7.
Recall that for a coalgebra (C,∆, ε), we have showed that the dual (C∗,∆∗, ε∗)
is an algebra.

(a) Suppose that φ : C → D is a homomorphism of colagebras. Show that
the dual map φ∗ : D∗ → C∗ is a homomorphism of algebras.

Solution: Note that φ being a homomorphism of coalgebras implies

(φ⊗ φ) ◦∆C = ∆D ◦ φ and εC = εD ◦ φ.

Thus
φ∗(1D∗) = φ∗(εD) = εD ◦ φ = εC = 1C∗

and

φ∗(fg) = φ∗ ◦∆∗D(f ⊗ g) = (∆D ◦ φ)∗(f ⊗ g) =
(
(φ⊗ φ) ◦∆C

)∗
(f ⊗ g)

(∗)
= ∆∗C(φ∗f ⊗ φ∗g) = φ∗(f)φ∗(g)

for f ∈ C∗, g ∈ D∗. Here (∗) is true since[(
(φ⊗ φ) ◦∆C

)∗
(f ⊗ g)

]
(c) = (f ⊗ g)

(∑
φ(c(1))⊗ φ(c(2))

)
=
∑

f(φc(1))⊗ g(φc(2))

=
∑

φ∗f(c(1))⊗ φ∗g(c(2))

= (φ∗f ⊗ φ∗g) ◦∆C(c)

=
[
∆∗C ◦ (φ∗f ⊗ φ∗g)

]
(c)

for f ∈ C∗, g ∈ D∗, c ∈ C. Hence φ∗ is a homomorphism of algebras.

(b) Suppose that C and D are coalgebras and consider the map ψ : C∗⊗D∗ →
(C ⊗D)∗ given by [ψ(f ⊗ g)](v⊗w) = f(v)g(w) for f ∈ V ∗, g ∈W ∗, v ∈
V,w ∈W . Show that ψ is a homomorphism of algebras.

Solution: Note that

ψ(1C∗⊗D∗) = ψ(εC ⊗ εD) = εC⊗D = 1(C⊗D)∗

since εC⊗D(c⊗ d) = εC(c)εD(d). Now note that for f, g ∈ C∗, α, β ∈ D∗,

mC∗⊗D∗ = (mC∗ ⊗mD∗) ◦ τ23 = (∆∗C ⊗∆∗D) ◦ τ23

implies that

ψ
(
(f ⊗ α)(g ⊗ β)

)
= ψ ◦mC∗⊗D∗

(
(f ⊗ α)⊗ (g ⊗ β)

)
= ψ ◦ (∆∗C ⊗∆∗D) ◦ τ23

(
(f ⊗ α)⊗ (g ⊗ β)

)
= ψ ◦ (∆∗C ⊗∆∗D)

(
(f ⊗ g)⊗ (α⊗ β)

)
= ψ

(
∆∗C(f ⊗ g)⊗∆∗D(α⊗ β)

)
, (1)
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and
m(C⊗D)∗ = ∆∗C⊗D =

(
τ23 ◦ (∆C ⊗∆D)

)∗
implies that

ψ(f ⊗ α)ψ(g ⊗ β) = m(C⊗D)∗
(
ψ(f ⊗ α)⊗ ψ(g ⊗ β)

)
=
(
τ23 ◦ (∆C ⊗∆D)

)∗(
ψ(f ⊗ α)⊗ ψ(g ⊗ β)

)
=
(
ψ(f ⊗ α)⊗ ψ(g ⊗ β)

)
◦ τ23 ◦ (∆C ⊗∆D). (2)

Now, for f, g ∈ C∗, α, β ∈ D∗, c ∈ C, d ∈ D, (1) implies that[
ψ
(
(f ⊗ α)(g ⊗ β)

)]
(c⊗ d) =

[
ψ
(
∆∗C(f ⊗ g)⊗∆∗D(α⊗ β)

)]
= [∆∗C(f ⊗ g)](c)[∆∗D(α⊗ β)](d)

=
(∑

c

f(c(1))⊗ g(c(2))︸ ︷︷ ︸
∈k⊗k=k

)(∑
d

α(d(1))⊗ β(d(2))︸ ︷︷ ︸
∈k⊗k=k

)
=
(∑

c

f(c(1))g(c(2))
)(∑

d

α(d(1))β(d(2))
)

=
∑
c,d

f(c(1))g(c(2))α(d(1))β(d(2)),

and (2) implies that[
ψ(f ⊗ α)ψ(g ⊗ β)

]
(c⊗ d) =

(
ψ(f ⊗ α)⊗ ψ(g ⊗ β)

)
◦ τ23 ◦ (∆C ⊗∆D)(c⊗ d)

=
(
ψ(f ⊗ α)⊗ ψ(g ⊗ β)

)
◦ τ23

((∑
c

c(1) ⊗ c(2)
)(∑

d

d(1) ⊗ d(2)
))

=
(
ψ(f ⊗ α)⊗ ψ(g ⊗ β)

)
◦ τ23

(∑
c,d

c(1) ⊗ c(2) ⊗ d(1) ⊗ d(2)
)

=
[
ψ(f ⊗ α)⊗ ψ(g ⊗ β)

](∑
c,d

c(1) ⊗ d(1) ⊗ c(2) ⊗ d(2)
)

=
∑
c,d

(
ψ(f ⊗ α)(c(1) ⊗ d(1))

)
⊗
(
ψ(g ⊗ β)(c(2) ⊗ d(2))

)
=
∑
c,d

f(c(1))α(d(1))⊗ g(c(2))β(d(2))︸ ︷︷ ︸
∈k⊗k=k

=
∑
c,d

f(c(1))α(d(1))g(c(2))β(d(2)).

Noting that the two expressions agree (since k is commutative), we see
that

ψ
(
(f ⊗ α)(g ⊗ β)

)
= ψ(f ⊗ α)ψ(g ⊗ β).

Hence ψ is a homomorphism of algebras.
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