MATH 207A (Hopf Algebras) Homework

Evangelos "Vaki" Nikitopoulos

Spring 2020

Notations and Conventions

- K is a field.
- V and W are K-vector spaces.
- Unadorned \otimes symbols are always over K.

Homework 1

1.1 Problem 1

Proposition 1.1. The natural map $\psi_{V, W}: V^{*} \otimes W^{*} \rightarrow(V \otimes W)^{*}$ is always injective, and it is surjective if and only if one of V or W is finite-dimensional.

The first statement may be proven using bases, and this proof is reasonable. However, I prefer going through one of my favorite lemmas about the tensor product.
Definition 1.2. $\mathscr{S} \subseteq V^{*}$ is called separating if $f(v)=0$ for every $f \in \mathscr{S}$ implies $v=0$.
For two linear functionals $f \in V^{*}, g \in W^{*}$, abuse notation slightly by writing $f \otimes g$ also for $\psi_{V, W}(f \otimes g) \in(V \otimes W)^{*}$.

Lemma 1.3. Let $\mathscr{S} \subseteq V^{*}, \mathscr{T} \subseteq W^{*}$ be separating sets. If $x \in V \otimes W$ is such that $(f \otimes g)(x)=0$, for every $f \in \mathscr{S}$ and $g \in \mathscr{T}$, then $x=0$.
Proof. Write $x=\sum_{j=1}^{m} v_{j} \otimes w_{j}$, where $v_{1}, \ldots, v_{m} \in V$ and $w_{1}, \ldots, w_{m} \in W$, where we take $w_{1}, \ldots, w_{m} \in W$ linearly independent. (This is possible basically because finite-dimensional vector spaces have bases.) Now, the condition implies that if $f \in \mathscr{S}$, then

$$
0=(f \otimes g)(x)=\sum_{j=1}^{m} f\left(v_{j}\right) g\left(w_{j}\right)=g\left(\sum_{j=1}^{m} f\left(v_{j}\right) w_{j}\right)
$$

for every $g \in \mathscr{T}$. Since \mathscr{T} is separating, $\sum_{j=1}^{m} f\left(v_{j}\right) w_{j}=0$. Since $w_{1}, \ldots, w_{m} \in W$ are linearly independent, it follows that $f\left(v_{1}\right)=\cdots=f\left(v_{m}\right)=0$, for every $f \in \mathscr{S}$. Since \mathscr{S} is separating, we get $v_{1}=\cdots=v_{m}=0$. Therefore, $x=0$, as desired.

The key observation is that if $e_{V}: V \hookrightarrow V^{* *}$ is the natural map, then $e_{V}(V) \subseteq V^{* *}$ is a separating set in $\left(V^{*}\right)^{*}$. Indeed, if $f \in V^{*}$, then $e_{V}(v)(f)=f(v)$, for all $v \in V$.

Proof of Injectivity Part of Proposition 1.1. Suppose $x \in V^{*} \otimes W^{*}$ is such that $\psi_{V, W}(x) \equiv 0$. For every $v \in V$ and $w \in W$, note the functional $e_{V}(v) \otimes e_{W}(w): V^{*} \otimes W^{*} \rightarrow K$ satisfies

$$
\left(e_{V}(v) \otimes e_{W}(w)\right)(x)=\psi_{V, W}(x)(v \otimes w)=0
$$

By Lemma 1.3 and the observation above, we conclude $x=0$, as desired.
For the second part of Proposition 1.1, we make an observation.
Lemma 1.4. Let $\left(v_{n}\right)_{n \in \mathbb{N}} \in V^{\mathbb{N}},\left(w_{n}\right)_{n \in \mathbb{N}} \in W^{\mathbb{N}}$ be sequences in V and W, respectively. If $h:=\sum_{j=1}^{m} f_{j} \otimes g_{j} \in \operatorname{im} \psi_{V, W} \subseteq(V \otimes W)^{*}$, then

$$
\operatorname{rank}\left[\begin{array}{ccc}
h\left(v_{1} \otimes w_{1}\right) & \cdots & h\left(v_{1} \otimes w_{n}\right) \\
\vdots & \ddots & \vdots \\
h\left(v_{n} \otimes w_{1}\right) & \cdots & h\left(v_{n} \otimes w_{n}\right)
\end{array}\right] \leq m
$$

for all $n \in \mathbb{N}$.
Proof. Note that for all $j, k \in[n]$, we have

$$
h\left(v_{j} \otimes w_{k}\right)=\sum_{\ell=1}^{m} f_{\ell}\left(v_{j}\right) g_{\ell}\left(w_{k}\right)=\left(F_{n} G_{n}\right)_{j k}
$$

where

$$
F_{n}=\left[\begin{array}{ccc}
f_{1}\left(v_{1}\right) & \cdots & f_{m}\left(v_{1}\right) \\
\vdots & \ddots & \vdots \\
f_{1}\left(v_{n}\right) & \cdots & f_{m}\left(v_{n}\right)
\end{array}\right] \in K^{n \times m} \text { and } G_{n}=\left[\begin{array}{ccc}
g_{1}\left(w_{1}\right) & \cdots & g_{1}\left(w_{n}\right) \\
\vdots & \ddots & \vdots \\
g_{m}\left(w_{1}\right) & \cdots & g_{m}\left(w_{n}\right)
\end{array}\right] \in K^{m \times n}
$$

whence it follows that

$$
\operatorname{rank}\left[\begin{array}{ccc}
h\left(v_{1} \otimes w_{1}\right) & \cdots & h\left(v_{1} \otimes w_{n}\right) \\
\vdots & \ddots & \vdots \\
h\left(v_{n} \otimes w_{1}\right) & \cdots & h\left(v_{n} \otimes w_{n}\right)
\end{array}\right]=\operatorname{rank}\left(F_{n} G_{n}\right) \leq \operatorname{rank} F_{n} \leq m
$$

as desired.
We are now ready for the rest of Proposition 1.1 .
Proof of Second Part of Proposition 1.1. We first show $\psi_{V, W}$ is not surjective if V and W are both infinite-dimensional. In this case, there are sequence $\left(v_{n}\right)_{n \in \mathbb{N}} \in V^{\mathbb{N}},\left(w_{n}\right)_{n \in \mathbb{N}} \in W^{\mathbb{N}}$ of linearly independent vectors in both V and W. Then we know $\left(v_{n} \otimes w_{n}\right)_{n \in \mathbb{N}}$ is linearly independent in $V \otimes W$. Completing it to a basis (or choosing a complementary subspace), we conclude there exists $\varphi \in(V \otimes W)^{*}$ such that

$$
\varphi\left(v_{j} \otimes w_{k}\right)=\delta_{j k},
$$

for all $j, k \in \mathbb{N}$. But then $\left[\varphi\left(v_{j} \otimes w_{k}\right)\right]_{j, k \in[n]}=I_{n} \in K^{n \times n}$, for all $n \in \mathbb{N}$. Since rank $I_{n}=n$, we conclude from Lemma 1.4 that $\varphi \notin \operatorname{im} \psi_{V, W}$, and therefore $\psi_{V, W}$ is not surjective.

Now, in the case that (without loss of generality) W is finite-dimensional, let $n:=\operatorname{dim} W$. Since all maps are natural, we may as well assume $W=K^{n}$. In this case, we can consider the identifications

$$
\begin{aligned}
\left(V^{*}\right)^{n} & \cong\left(V^{*} \otimes K\right)^{n} \\
& \cong\left(V^{*} \otimes K^{*}\right)^{n} \\
& \cong V^{*} \otimes\left(K^{*}\right)^{n} \\
& \cong V^{*} \otimes\left(K^{n}\right)^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(V \otimes K^{n}\right)^{*} & \cong\left((V \otimes K)^{n}\right)^{*} \\
& \cong\left(V^{n}\right)^{*} \cong\left(V^{*}\right)^{n}
\end{aligned}
$$

(These all work out because direct sums, i.e., coproducts, and direct products, i.e., products, of finitely many vector spaces are the same.) One may check easily that under these identifications,

$$
\left(V^{*}\right)^{n} \cong V^{*} \otimes\left(K^{n}\right)^{*} \xrightarrow{\psi_{V, K^{n}}}\left(V \otimes K^{n}\right)^{*} \cong\left(V^{*}\right)^{n}
$$

is the identity map, so that $\psi_{V, K^{n}}$ is surjective.

1.2 Problem 2

Proposition 1.5. Let $I \subseteq V^{*}$ and $J \subseteq W^{*}$ be subspaces. Then $(I \otimes J)^{\perp}=I^{\perp} \otimes W+V \otimes J^{\perp}$.
As above, there is a proof of this fact using bases, but I prefer to go through Lemma 1.3. Let $V_{1}, V_{2}, W_{1}, W_{2}$ all be K-vector spaces.

Lemma 1.6 (Flatness). If $T_{1}: V_{1} \rightarrow W_{1}$ and $T_{2}: V_{2} \rightarrow W_{2}$ are injective linear maps, then $T_{1} \otimes T_{2}: V_{1} \otimes V_{2} \rightarrow W_{1} \otimes W_{2}$ is injective as well.

Proof. We first observe $\mathscr{S}:=\left\{f \circ T_{1} \in V_{1}^{*}: f \in W_{1}^{*}\right\}$ and $\mathscr{T}:=\left\{g \circ T_{2} \in V_{2}^{*}: g \in W_{2}^{*}\right\}$ are separating sets. Indeed, if $v \in V_{1}$ is such that $f\left(T_{1} v\right)=0$, for all $f \in W_{1}^{*}$, then $T_{1} v=0$ (because W_{1}^{*} is a separating set). Since T_{1} is injective, we conclude $v=0$, as desired. The same argument works for \mathscr{T}.

Now, suppose $x \in V_{1} \otimes V_{2}$ is such that $\left(T_{1} \otimes T_{2}\right)(x)=0$. Then, for all $f \in W_{1}^{*}$ and $g \in W_{2}^{*}$, we have

$$
\left(\left(f \circ T_{1}\right) \otimes\left(g \circ T_{2}\right)\right)(x)=\left((f \otimes g) \circ\left(T_{1} \otimes T_{2}\right)\right)(x)=(f \otimes g)(0)=0 .
$$

By the previous paragraph and Lemma 1.3, we conclude $x=0$, as desired.
Lemma 1.7 (Quotients). If $V_{1} \subseteq V$ and $W_{1} \subseteq W$ are subspaces and $\pi_{1}: V \rightarrow V / V_{1}$ and $\pi_{2}: W \rightarrow W / W_{1}$ are the natural quotient maps, then $\operatorname{ker}\left(\pi_{1} \otimes \pi_{2}\right)=V_{1} \otimes W+V \otimes W_{1}$.

Proof. We did this in class.

Theorem 1.8. If $T_{1}: V_{1} \rightarrow W_{1}$ and $T_{2}: V_{2} \rightarrow W_{2}$ are linear, then

$$
\operatorname{ker}\left(T_{1} \otimes T_{2}\right)=\operatorname{ker} T_{1} \otimes V_{2}+V_{1} \otimes \operatorname{ker} T_{2}
$$

Proof. Restricting the codomains of T_{1} and T_{2} to get $\tilde{T}_{1}: V_{1} \rightarrow \operatorname{im} T_{1}$ and $\tilde{T}_{2}: V_{2} \rightarrow \operatorname{im} T_{2}$, we get $T_{1} \otimes T_{2}$ as the composition

$$
V_{1} \otimes V_{2} \xrightarrow{\tilde{T}_{1} \otimes \tilde{T}_{2}} \operatorname{im} T_{1} \otimes \operatorname{im} T_{2} \xrightarrow{\iota_{1} \otimes \iota_{2}} W_{1} \otimes W_{2},
$$

where $\iota_{j}: \operatorname{im} T_{j} \hookrightarrow W_{j}$ is inclusion, for $j \in\{1,2\}$. Since $\iota_{1} \otimes \iota_{2}$ is injective by Lemma 1.6,

$$
\operatorname{ker}\left(T_{1} \otimes T_{2}\right)=\operatorname{ker}\left(\tilde{T}_{1} \otimes \tilde{T}_{2}\right)=\operatorname{ker} \tilde{T}_{1} \otimes V_{2}+V_{1} \otimes \operatorname{ker} \tilde{T}_{2}=\operatorname{ker} T_{1} \otimes V_{2}+V_{1} \otimes \operatorname{ker} T_{2}
$$

by Lemma 1.7 and the First Isomorphism Theorem.
Now, the key observation is that if $I \subseteq V^{*}$ is a subspace and $e_{V}^{I}:=\rho_{V}^{I} \circ e_{V}: V \rightarrow I^{*}$ is the natural map $e_{V}: V \hookrightarrow V^{* *}$ followed by the restriction map $\rho_{V}^{I}:\left(V^{*}\right)^{*} \rightarrow I^{*}$ defined by $\left.f \mapsto f\right|_{I}$, then

$$
I^{\perp}=\operatorname{ker} e_{V}^{I}
$$

by definition of \perp.
Proof of Proposition 1.5. Consider the map $e_{V}^{I} \otimes e_{W}^{J}: V \otimes W \rightarrow I^{*} \otimes J^{*}$. By Theorem 1.8 , we have that

$$
\operatorname{ker}\left(e_{V}^{I} \otimes e_{W}^{J}\right)=\operatorname{ker} e_{V}^{I} \otimes W+V \otimes \operatorname{ker} e_{W}^{J}=I^{\perp} \otimes W+V \otimes J^{\perp}
$$

But also, the universal property of the tensor product implies that $e_{V \otimes W}^{I \otimes J}$ is the composition

$$
V \otimes W \xrightarrow{e_{V}^{I} \otimes e_{W}^{J}} I^{*} \otimes J^{*} \xrightarrow{\psi_{I, J}}(I \otimes J)^{*}
$$

where $\psi_{I, J}$ is the injective map from Proposition 1.1. We conclude that

$$
(I \otimes J)^{\perp}=\operatorname{ker}\left(e_{V \otimes W}^{I \otimes J}\right)=\operatorname{ker}\left(e_{V}^{I} \otimes e_{W}^{J}\right)=I^{\perp} \otimes W+V \otimes J^{\perp}
$$

as claimed.

Math 207A HW 1 Problem 3

April 17, 2020

1. Since C is a coalgebra, and $c \in C$ is group-like we have

$$
\begin{align*}
(1 \otimes \epsilon) \circ \Delta(c) & =c \tag{1}\\
(1 \otimes \epsilon)(c \otimes c) & =c \tag{2}\\
c \cdot \epsilon(c) & =c \tag{3}\\
\epsilon(c) & =1 \tag{4}
\end{align*}
$$

(Note $c \neq 0$ since 0 is not a group-like element.)
2. Suppose the group-like elements are not linearly independent, then there is a linear depending relation

$$
\alpha_{1} c_{1}+\cdots+\alpha_{n} c_{n}=0
$$

where c_{i}, c are distinct group-like elements in C and α_{i} are elements in k for $i \in\{1, \cdots, n\}$. Assume $\left\{c_{1}, \cdots, c_{n}\right\}$ are the smallest possible set that has linear dependency, then we observe that $\alpha_{i} \neq 0, \forall i \in\{1, \cdots, n\}$ (Otherwise we would have a smaller linear dependent set). Furthermore, if $n=1$ then we have

$$
\alpha_{1} c_{1}=0
$$

which is a contradiction since 0 is not a group-like element in C, so $n>1$.
Then we can write

$$
c_{n}=\sum_{i=1}^{n-1} \beta_{i} c_{i}
$$

where $\beta_{i} \in k /\{0\}$ for all $i \in\{1, \cdots, n-1\}$. Since this is a smaller set of c_{i} 's, it has to be linear independent.
Now we apply Δ to both sides of the equation above and we get

$$
c_{n} \otimes c_{n}=\sum_{i=1}^{n-1} \beta_{i} c_{i} \otimes c_{i}
$$

Thus we get $1=n-1$ by looking at the rank of both sides, so we get $\beta_{1} c_{1}+\beta_{2} c_{2}=0 \Rightarrow$ $c_{2}=\beta_{1} c_{1}$. By applying ϵ to both sides we get $\epsilon\left(c_{2}\right)=\epsilon\left(\beta_{1} c_{1}\right)=1$, so $\beta_{1}=1 \Rightarrow c_{1}=c_{2}$, which reaches a contradiction.
4. (a) Let $D \subseteq C$ be a subcoalgebra of a grouplike coalgebra. Let $\left\{g_{i}\right\}$ be a basis of grouplike elements in C. Let $d \in D$. Then $d=\sum_{i} a_{i} g_{i}$ for some $a_{i} \in k$. Then $\Delta(d)=\sum_{i} a_{i} g_{i} \otimes g_{i}$, but also $\Delta(d) \in D \otimes D \subseteq D \otimes C$ so $\Delta(d)=\sum_{i} v_{i} \otimes g_{i}$ for some $v_{i} \in D$. Since the g_{i} are linearly independent, we have that $a_{i} g_{i}=v_{i} \in D$ for all i. Therefore each $g_{i} \in D$ when $a_{i} \neq 0$. So d is in the span of grouplike elements. Hence all of D is the span of grouplike elements. Since the grouplike elements are linearly independent, D is grouplike.
(b) If C, D are grouplike coalgebras, then they have bases of grouplike elements $\left\{c_{i}\right\}$ and $\left\{d_{j}\right\}$ respectively.

A basis for $C \oplus D$ is given by $\left\{\left(c_{i}, 0\right),\left(0, d_{j}\right)\right\}$, and note that the coproduct on $C \oplus D$ is given by first applying $\Delta_{C} \oplus \Delta_{D}$ to $C \oplus D$ and then distributing the direct sum canonically. In other words, $(c, 0) \mapsto(c \otimes c, 0 \otimes 0) \mapsto(c, 0) \otimes(c, 0)$ and similarly for $(0, d)$ where $c \in C$ and $d \in D$ is grouplike. So the $\left(c_{i}, 0\right)$ and the $\left(0, d_{j}\right)$ are grouplike.

For the tensor product, $\left\{c_{i} \otimes d_{j}\right\}$ is a basis, and the coproduct is taken by first applying $\Delta_{C} \otimes \Delta_{D}$ to $C \otimes D$ and then applying τ_{23}. That is, $(c, d) \mapsto(c \otimes c) \otimes(d \otimes d) \mapsto(c \otimes d) \otimes(c \otimes d)$ and hence $c \otimes d$ is grouplike if c, d are.

So $C \oplus D$ and $C \otimes D$ are grouplike.

MATH 207A, HW 1, Problem 5

Cameron Cinel

April 17, 2020

Problem Statement

Let (C, Δ, ε) be a coalgebra over the field K. Given grouplike elements $g, h \in C$, and element $c \in C$ is called (g, h)-primitive if

$$
\Delta(c)=g \otimes c+c \otimes h .
$$

1. Show that if c is (g, h)-primitive, then $\varepsilon(c)=0$.
2. Let V be the set of (g, h)-primitive elements of C. Show that:

- V is a subspace of C;
- $D=V+K g+K h$ is a subcoalgebra of C;
- V is a coideal of D;
- and D / V is a grouplike coalgebra.

$\varepsilon(c)=0$

Recall that from Problem 3, we have that $\varepsilon(g)=1$ for any grouplike $g \in C$.
Suppose $c \in C$ is (g, h)-primitive. Notice that

$$
\left(\operatorname{id}_{c} \otimes \varepsilon\right)(\Delta(c))=\left(\operatorname{id}_{c} \otimes \varepsilon\right)(g \otimes c+c \otimes h)=g \otimes \varepsilon(c)+c \otimes \varepsilon(h) .
$$

From the properties of coalgebras, it follows that

$$
c=\varepsilon(c) g+\varepsilon(h) c=\varepsilon(c) g+c \Longleftrightarrow \varepsilon(c) g=0 .
$$

Since g is grouplike, $g \neq 0$ so $\varepsilon(c)=0$.

V is a subspace of C

Clearly $0 \in C$ is (g, h)-primitive, so we only have to show closure under addition and scalar multiplication. Suppose $c_{1}, c_{2} \in V$ and $k \in K$. Then

$$
\begin{aligned}
\Delta\left(c_{1}+c_{2}\right) & =\Delta\left(c_{1}\right)+\Delta\left(c_{2}\right) \\
& =g \otimes c_{1}+c_{1} \otimes h+g \otimes c_{2}+c_{2} \otimes h \\
& =g \otimes\left(c_{1}+c_{2}\right)+\left(c_{1}+c_{2}\right) \otimes h
\end{aligned}
$$

so $c_{1}+c_{2} \in V$. We also have that

$$
\Delta\left(k c_{1}\right)=k \Delta\left(c_{1}\right)=k\left(g \otimes c_{1}+c_{1} \otimes h\right)=g \otimes\left(k c_{1}\right)+\left(k c_{1}\right) \otimes h
$$

so $k c_{1} \in V$.

$D=V+K g+K h$ is a subcoalgebra of C

Recall that if $g \in G$ is grouplike, then $\Delta(g)=g \otimes g$. Since D is a subspace of C, we only have to check that $\Delta(D) \subset D \otimes D$. Suppose $d \in D$. Then we can write $d=c+k_{1} g+k_{2} h$ for $c \in V$ and $k_{1}, k_{2} \in K$. Notice that

$$
\Delta(d)=g \otimes c+c \otimes h+k_{1}(g \otimes g)+k_{2}(h \otimes h) .
$$

Since $g, h, c \in D$, we have that $\Delta(d) \in D \otimes D$.

V is a coideal of D

Recall that a subspace $I \subset C$ is a called a coideal of $\varepsilon(I)=0$ and

$$
\Delta(I) \subset I \otimes C+C \otimes I
$$

From part 1, we have that $\varepsilon(V)=0$. Suppose $c \in V$. Then

$$
\Delta(c)=c \otimes h+g \otimes c .
$$

Since $g, h \in D$, we are done.

D / V is grouplike

To show this, we are going to show that $D \cong K$ as K-vector spaces. First we show that $V \cap(K g+K h)=K(g-h)$. Suppose that $c \in V \cap(K g+K h)$. Then we can write $c=k_{1} g+k_{2} h$. Therefore

$$
0=\varepsilon(c)=k_{1} \varepsilon(g)+k_{2} \varepsilon(h)=k_{1}+k_{2}
$$

so $k_{2}=-k_{1}$ so $c \in K(g-h)$. Now notice that for any $k \in K$,

$$
\begin{aligned}
\Delta(k g-k h) & =g \otimes(k g)+(-k h) \otimes h \\
& =g \otimes(k g)-k(g \otimes h)+k(g \otimes h)+(-k h) \otimes h \\
& =g \otimes(k g-k h)+(k g-k h) \otimes h
\end{aligned}
$$

so $k g-k h \in V \cap(K g+K h)$.

D / V is grouplike

Consider the map

$$
\begin{aligned}
\phi: D & \rightarrow K \\
c+k_{1} g+k_{2} h & \mapsto k_{1}+k_{2} .
\end{aligned}
$$

First we show that ϕ is well-defined. Suppose

$$
d_{k}:=c_{k}+k_{1} g+k_{2} h=c_{t}+t_{1} g+t_{2} h=: d_{t}
$$

Then

$$
\left(k_{1}-t_{1}\right) g+\left(k_{2}-t_{2}\right) h \in V \cap(K g+K h)=K(g-h) .
$$

Therefore

$$
k_{1}-t_{1}+k_{2}-t_{2}=0 \Longleftrightarrow k_{1}+k_{2}=t_{1}+t_{2} .
$$

Thus

$$
\phi\left(d_{k}\right)=k_{1}+k_{2}=t_{1}+t_{2}=\phi\left(d_{t}\right) .
$$

D / V is grouplike

Clearly ϕ is K-linear and surjective. Also since

$$
\varepsilon\left(c+k_{1} g+k_{2} g\right)=k_{1}+k_{2}=\varepsilon\left(\phi\left(c+k_{1} g+k_{2} g\right)\right)
$$

and

$$
(\phi \otimes \phi)\left(\Delta\left(c+k_{1} g+k_{2} h\right)\right)=k_{1} \otimes 1+k_{2} \otimes 1=\Delta\left(k_{1}+k_{2}\right)
$$

ϕ is a morphism of coalgebras. Thus we only have to show that $\operatorname{ker} \phi=V$. If $c \in V$, then $c=c+0 g+0 h$ so $\phi(c)=0$.
Now suppose that $d \in \operatorname{ker} \phi$. We can write $d=c+k_{1} g+k_{2} h$ for $c \in V$ and $k_{1}, k_{2} \in K$. Then $k_{1}+k_{2}=0$ so $k_{2}=-k_{1}$. Therefore $d \in V+K(g-h)$. Since $K(g-h) \subset V$, we have that $d \in V$ and so $\operatorname{ker} \phi=V$.
By the first isomorphism theorem, it follows that $D / V \cong K$. Thus any non-zero element forms a basis for D / V so $\{g+V\}$ is a K-basis of grouplike elements.
6. Let $C=k \mathbb{N}$ be the monoid coalgebra of $\mathbb{N}=\left\{x^{0}, x^{1}, x^{2}, \ldots\right\}$.
(a). Show that $C^{\star} \equiv k[[y]]$
(b). Find all suboaalgebra of C
$\left.P f=\cos \varphi=C^{+} \rightarrow K I[y] I\right]$ WTS that φ is an algebra map $f \rightarrow \sum_{i=0}^{\infty} f\left(x^{i}\right) y^{i}$
$\Delta^{*}(f \circ g)\left(x^{n}\right)=\sum_{i=1}=n f\left(x^{i}\right) \cdot g\left(x^{j}\right)=$ the coefficient of $\varphi(f) \varphi(g)$ on the degree n term
$\Rightarrow \varphi$ is an algebra homomorphism and is a bijection.
(b). Define $k[n]$ as the subspace of $k\left[\mathbb{N}\right.$ with basis $\left\{x_{i}, x_{1}, \ldots, x^{n}\right\}$, Claim: $k[n]$ are all the subcoalgebras of KN
Pf. V a vector space $W \subseteq V$, then $W \subseteq\left(W^{\perp}\right)^{2}$ by definition let $D \subseteq C$ be a subcoalgebra, then $D^{\perp} \triangle C^{*}$ is an idled. KI[y]I is PID and $\left(y^{n}\right)$ are the only ideal.
then $D^{\perp}=\left(y^{n}\right)$ for some n
and $\left(y^{n}\right)^{\perp}=k[n-1]$, for any $f \in\left(y^{n}\right)^{\perp}, f\left(x^{i}\right)=0 \quad k$
and suppose $\sum_{i=0}^{m} a x_{i}^{i} \in\left(y^{n}\right)^{\perp}$ with $m \geqslant n$,
then let $l=m-n$, we have $y^{n} \cdot y^{l}\left(\frac{n_{n}^{n}}{n} x^{i}\right)$

$$
\Rightarrow\left(y^{n}\right)^{2}=k[n-1]
$$

$k i n]$ is a subcoalgebra, $\mathbb{U}\left(x^{m}\right)=\sum_{i \in t=m} x^{i} \otimes x^{j} \in k[n] \otimes k[n]$
WT find all the subcoalgebra of kin]. which is fool. consider $(k[n])^{*} \cong k[y]\left(y^{n+1}\right)$
$\left\{1, x, \cdot x^{n}\right\}$ is a basis for $k[n]$
let $\left\{1^{\prime}, x^{\prime}, \cdots x^{n \prime}\right\}$ be the duad basis
$\Delta^{\star}\left(x^{\prime \prime} \otimes x^{\prime}\right)=\left(x^{i+j}\right)^{\prime}$ then $(k[n])^{*}$ is a n-d k-algebra generated by x^{\prime}, and $\left(x^{\prime}\right)^{n+1}=0$.
$\Rightarrow k[y] /\left(y^{n+1}\right) 气(k[n])^{*}$ by correspondence theorem, all ideals of $k\left[y^{\prime}\right]\left(\left(y^{n+1}\right)\right.$ look like $\left(y^{k}\right)$ for $v i n$ egger $k s n$ $\left(y^{k}\right)^{\perp} \cong k[k-1]$

Problem 7.

Recall that for a coalgebra (C, Δ, ε), we have showed that the dual $\left(C^{*}, \Delta^{*}, \varepsilon^{*}\right)$ is an algebra.
(a) Suppose that $\phi: C \rightarrow D$ is a homomorphism of colagebras. Show that the dual map $\phi^{*}: D^{*} \rightarrow C^{*}$ is a homomorphism of algebras.
Solution: Note that ϕ being a homomorphism of coalgebras implies

$$
(\phi \otimes \phi) \circ \Delta_{C}=\Delta_{D} \circ \phi \quad \text { and } \quad \varepsilon_{C}=\varepsilon_{D} \circ \phi .
$$

Thus

$$
\phi^{*}\left(1_{D^{*}}\right)=\phi^{*}\left(\varepsilon_{D}\right)=\varepsilon_{D} \circ \phi=\varepsilon_{C}=1_{C^{*}}
$$

and

$$
\begin{aligned}
\phi^{*}(f g) & =\phi^{*} \circ \Delta_{D}^{*}(f \otimes g)=\left(\Delta_{D} \circ \phi\right)^{*}(f \otimes g)=\left((\phi \otimes \phi) \circ \Delta_{C}\right)^{*}(f \otimes g) \\
& \stackrel{(*)}{=} \Delta_{C}^{*}\left(\phi^{*} f \otimes \phi^{*} g\right)=\phi^{*}(f) \phi^{*}(g)
\end{aligned}
$$

for $f \in C^{*}, g \in D^{*}$. Here (*) is true since

$$
\begin{aligned}
{\left[\left((\phi \otimes \phi) \circ \Delta_{C}\right)^{*}(f \otimes g)\right](c) } & =(f \otimes g)\left(\sum \phi\left(c_{(1)}\right) \otimes \phi\left(c_{(2)}\right)\right) \\
& =\sum f\left(\phi c_{(1)}\right) \otimes g\left(\phi c_{(2)}\right) \\
& =\sum \phi^{*} f\left(c_{(1)}\right) \otimes \phi^{*} g\left(c_{(2)}\right) \\
& =\left(\phi^{*} f \otimes \phi^{*} g\right) \circ \Delta_{C}(c) \\
& =\left[\Delta_{C}^{*} \circ\left(\phi^{*} f \otimes \phi^{*} g\right)\right](c)
\end{aligned}
$$

for $f \in C^{*}, g \in D^{*}, c \in C$. Hence ϕ^{*} is a homomorphism of algebras.
(b) Suppose that C and D are coalgebras and consider the map $\psi: C^{*} \otimes D^{*} \rightarrow$ $(C \otimes D)^{*}$ given by $[\psi(f \otimes g)](v \otimes w)=f(v) g(w)$ for $f \in V^{*}, g \in W^{*}, v \in$ $V, w \in W$. Show that ψ is a homomorphism of algebras.
Solution: Note that

$$
\psi\left(1_{C^{*} \otimes D^{*}}\right)=\psi\left(\varepsilon_{C} \otimes \varepsilon_{D}\right)=\varepsilon_{C \otimes D}=1_{(C \otimes D)^{*}}
$$

since $\varepsilon_{C \otimes D}(c \otimes d)=\varepsilon_{C}(c) \varepsilon_{D}(d)$. Now note that for $f, g \in C^{*}, \alpha, \beta \in D^{*}$,

$$
m_{C^{*} \otimes D^{*}}=\left(m_{C^{*}} \otimes m_{D^{*}}\right) \circ \tau_{23}=\left(\Delta_{C}^{*} \otimes \Delta_{D}^{*}\right) \circ \tau_{23}
$$

implies that

$$
\begin{align*}
\psi((f \otimes \alpha)(g \otimes \beta)) & =\psi \circ m_{C^{*} \otimes D^{*}}((f \otimes \alpha) \otimes(g \otimes \beta)) \\
& =\psi \circ\left(\Delta_{C}^{*} \otimes \Delta_{D}^{*}\right) \circ \tau_{23}((f \otimes \alpha) \otimes(g \otimes \beta)) \\
& =\psi \circ\left(\Delta_{C}^{*} \otimes \Delta_{D}^{*}\right)((f \otimes g) \otimes(\alpha \otimes \beta)) \\
& =\psi\left(\Delta_{C}^{*}(f \otimes g) \otimes \Delta_{D}^{*}(\alpha \otimes \beta)\right), \tag{1}
\end{align*}
$$

and

$$
m_{(C \otimes D)^{*}}=\Delta_{C \otimes D}^{*}=\left(\tau_{23} \circ\left(\Delta_{C} \otimes \Delta_{D}\right)\right)^{*}
$$

implies that

$$
\begin{align*}
\psi(f \otimes \alpha) \psi(g \otimes \beta) & =m_{(C \otimes D)^{*}}(\psi(f \otimes \alpha) \otimes \psi(g \otimes \beta)) \\
& =\left(\tau_{23} \circ\left(\Delta_{C} \otimes \Delta_{D}\right)\right)^{*}(\psi(f \otimes \alpha) \otimes \psi(g \otimes \beta)) \\
& =(\psi(f \otimes \alpha) \otimes \psi(g \otimes \beta)) \circ \tau_{23} \circ\left(\Delta_{C} \otimes \Delta_{D}\right) \tag{2}
\end{align*}
$$

Now, for $f, g \in C^{*}, \alpha, \beta \in D^{*}, c \in C, d \in D,(1)$ implies that

$$
\begin{aligned}
{[\psi((f \otimes \alpha)(g \otimes \beta))](c \otimes d) } & =\left[\psi\left(\Delta_{C}^{*}(f \otimes g) \otimes \Delta_{D}^{*}(\alpha \otimes \beta)\right)\right] \\
& =\left[\Delta_{C}^{*}(f \otimes g)\right](c)\left[\Delta_{D}^{*}(\alpha \otimes \beta)\right](d) \\
& =(\sum_{c} \underbrace{f\left(c_{(1)}\right) \otimes g\left(c_{(2)}\right)}_{\in k \otimes k=k})(\sum_{d} \underbrace{\alpha\left(d_{(1)}\right) \otimes \beta\left(d_{(2)}\right)}_{\in k \otimes k=k}) \\
& =\left(\sum_{c} f\left(c_{(1)}\right) g\left(c_{(2)}\right)\right)\left(\sum_{d} \alpha\left(d_{(1)}\right) \beta\left(d_{(2)}\right)\right) \\
& =\sum_{c, d} f\left(c_{(1)}\right) g\left(c_{(2)}\right) \alpha\left(d_{(1)}\right) \beta\left(d_{(2)}\right),
\end{aligned}
$$

and (2) implies that

$$
\begin{aligned}
{[\psi(f \otimes \alpha) \psi(g \otimes \beta)](c \otimes d)=} & (\psi(f \otimes \alpha) \otimes \psi(g \otimes \beta)) \circ \tau_{23} \circ\left(\Delta_{C} \otimes \Delta_{D}\right)(c \otimes d) \\
= & (\psi(f \otimes \alpha) \otimes \psi(g \otimes \beta)) \\
& \circ \tau_{23}\left(\left(\sum_{c} c_{(1)} \otimes c_{(2)}\right)\left(\sum_{d} d_{(1)} \otimes d_{(2)}\right)\right) \\
= & (\psi(f \otimes \alpha) \otimes \psi(g \otimes \beta)) \\
& \circ \tau_{23}\left(\sum_{c, d} c_{(1)} \otimes c_{(2)} \otimes d_{(1)} \otimes d_{(2)}\right) \\
= & {[\psi(f \otimes \alpha) \otimes \psi(g \otimes \beta)]\left(\sum_{c, d} c_{(1)} \otimes d_{(1)} \otimes c_{(2)} \otimes d_{(2)}\right) } \\
= & \sum_{c, d}\left(\psi(f \otimes \alpha)\left(c_{(1)} \otimes d_{(1)}\right)\right) \otimes\left(\psi(g \otimes \beta)\left(c_{(2)} \otimes d_{(2)}\right)\right) \\
= & \sum_{c, d} \underbrace{f\left(c_{(1)}\right) \alpha\left(d_{(1)}\right) \otimes g\left(c_{(2)}\right) \beta\left(d_{(2)}\right)}_{\in k \otimes k=k} \\
= & \sum_{c, d} f\left(c_{(1)}\right) \alpha\left(d_{(1)}\right) g\left(c_{(2)}\right) \beta\left(d_{(2)}\right) .
\end{aligned}
$$

Noting that the two expressions agree (since k is commutative), we see that

$$
\psi((f \otimes \alpha)(g \otimes \beta))=\psi(f \otimes \alpha) \psi(g \otimes \beta)
$$

Hence ψ is a homomorphism of algebras.

