
Math 201 Winter 2016 Homework 3

February 12, 2016

In the first three exercises you fill in some of the details of the more elementary proof of

the half of Gabriel’s theorem which says that if a quiver Q has finite representation type,

then Q is Dynkin.

1. Suppose that Q is a subquiver of a quiver Q′. Show that there is a functor F :

RepK Q → RepK Q
′ defined as follows. For a represention (V, φ) of Q, F sends V to the

representation (W,ψ) where Wi = Vi if i ∈ Q0, Wi = 0 if i ∈ Q′0\Q0, and on arrows, ψα = φα

if a ∈ Q1, ψα = 0 if a ∈ Q′1 \ Q1. In other words, we “extend V by 0”. I leave it to you to

define the action on F on morphisms.

Now using F , prove that if Q has infinite representation type, then so does Q′.

We showed in class that every graph which is not Dynkin or Euclidean contains a Eu-

clidean graph as a subgraph. Thus this exercise implies that to show that a non-Dynkin

quiver has a infinite representation type, it suffices to show that quivers with underlying

graph Euclidean have infinite representation type.

2. Suppose that a connected quiver Q has underlying graph Q which has a cycle; we

include the case of a loop or a multiple edge. In other words, we assume that Q contains

a copy of one of the Euclidean graphs Ãm, for any m ≥ 0. To prove that Q has infinite

representation type, it suffices by exercise 1 to prove that a quiver whose underlying graph

is Ãm has infinite representation type.

So assume now that Q0 = {1, . . . ,m} and there are m arrows in Q with αi an arrow

(of some orientation) between i and i + 1 for 1 ≤ i ≤ m − 1, and αm an arrow (of some
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orientation) between m and 1. In this case it is not hard to prove directly that Q has infinite

representation type, as follows. For any λ ∈ K, define a representation (V, φ) with Vi = K

for all i; φαi
the identity map for all 1 ≤ i ≤ m− 1; and φαm : K → K multiplication by λ.

Prove that the representations defined above are all indecomposable, and are pairwise

nonisomorphic for distinct choices of λ. Thus assuming K is infinite, this shows that Q has

infinite representation type.

By this exercise, a quiver of finite representation type cannot contain an unoriented cycle

(where the notion of cycle includes loops and multiple edges). A connected graph with no

cycles is also called a tree.

3. Suppose that Q is any connected quiver whose underlying graph Q is a tree. Let

Q′ be a quiver with the same underlying graph as Q. Show that there is a sequence of

vertices i1, i2, . . . , im such that for each j ≥ 1, ij is a sink in sij−1
. . . si1(Q), and where

simsim−1 . . . si1(Q) = Q′.

This shows that the composition of reflection functors C+
im
. . . C+

i1
is a functor from RepQ

to RepQ′. Using this and the properties of reflection functors we proved in class, show that

Q has infinite representation type if and only if Q′ does.

Given this and the preceding exercises, it now suffices to pick a single convenient orien-

tation for each Euclidean graph of type D and E, and show that that quiver has infinite

representation type. This case-by-case analysis can be found in Corollary 2.7 on page 259 of

the book by Assem, Simson, and Skowronski and the preceding pages.

4. Let Q be a connected quiver whose underlying graph is a tree. Show that there is a

numbering of the vertex set Q0 of Q with {1, 2, . . . , n} such that for every arrow a ∈ Q1,

h(a) < t(a). In other words, all arrows point from a larger number to a smaller number.

Show then that i is always a sink of si−1 . . . s1(Q), so that one can define the composition

of reflection functors C+ = C+
n . . . C

+
1 : RepQ → RepQ. Now let Q be have underlying

graph which is Dynkin, and fix an admissible numbering of Q. Recall that for each vertex

i, if ei is the trivial path in the path algebra then KQei is an indecomposable projective

module. The corresponding representation (P, φ) has Pj = ejKQei for all j, with φα being

left multiplication by α for any arrow α : j → k.

Show that if S(i) is the simple representation of the quiver sisi+1 . . . sn(Q) supported at

vertex i, then P (i) ∼= C−1 . . . C
−
i−1(S(i)) and the dimension vector of P (i) is s1 . . . si−1(εi)
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where εi is the dimension vector of S(i). Also, formulate and prove a similar result for

indecomposable injective representations.

5. As practice in understanding the definition of reflection functors, pick some orientation

for the Dynkin graph E6, number the vertices admissibly, consider the simple representation

S(i) supported at a sink i, and calculate what happens when you apply the composition of

reflection functors C = C+
6 . . . C

+
1 repeatedly.

6. Consider the quiver Q with Q0 = {1, 2, 3, 4, 5} and with edges a : 2 → 1, b : 3 → 1,

c : 4 → 1, d : 5 → 1. The underlying graph of Q is the Euclidean graph D̃4. By Gabriel’s

theorem, Q has infinite representation type.

Consider the dimension vector β = (2, 1, 1, 1, 1) (so the 2 is in the central vertex.) (a).

Show that Q has infinitely many non-isomorphic representations with this dimension vector.

(b). In fact β is the vector that we showed spans the radical of the symmetrized Ringel

form ( , ). Show that si(β) = β for any i, so applying a reflection functor C+
i to any

representation with this dimension vector (of any quiver with this underlying graph) just

gives another representation of the same dimension vector. If we perform C+
5 C

+
4 . . . C

+
1 to

a representation V with dimension vector β, is the representation we get isomorphic to the

original one we started with?

7. Consider the representation space of the quiver Q with one vertex and one loop,

with dimension vector (2). As we have seen, this is the space of 2 × 2-matrices, where two

matrices M,N represent isomorphic representations if and only if they are conjugate, i.e.

M = PNP−1 for some P ∈ GL2(K). Assuming that K = C, there is one representation up

to isomorphism for each 2× 2 Jordan canonical form.

(a). Consider the orbits of the natural GL2(K)-action (i. e. similarity classes of matrices).

For each one, what is its dimension as an algebraic variety? Which other orbits are in its

closure?

(b). Generalize part (a) to n × n matrices for all n ≥ 2, i.e. how does the dimension

of each orbit depend on the Jordan form, and which similarity classes are in the closures of

other similarity classes?
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