Math 201a Spring 2017 Homework 4

Due June 9, 2017

I will ask for volunteers to present (brief) sketches of solutions to some of the problems in class, Friday June 9, 2017.

1. Let $R=k[x, y]$ for a field k. Let k be the simple module $R /(x, y)$.
(a). Calculate $\operatorname{Ext}_{R}^{1}(k, k)$. Using the correspondence between Ext and extensions, classify up to isomorphism all length $2 R$-modules M with composition factors k and k.
(b). Classify up to isomorphism all length $3 R$-modules M with composition factors k, k, and k.
2. Let R and S be rings and B an (R, S)-bimodule. We can form the upper triangular matrix ring $A=\left[\begin{array}{cc}R & B \\ 0 & S\end{array}\right]$ where the ring product is

$$
\left[\begin{array}{cc}
r_{1} & b_{1} \\
0 & s_{1}
\end{array}\right]\left[\begin{array}{cc}
r_{2} & b_{2} \\
0 & s_{2}
\end{array}\right]=\left[\begin{array}{cc}
r_{1} r_{2} & r_{1} b_{2}+b_{1} s_{2} \\
0 & s_{1} s_{2}
\end{array}\right] .
$$

(a). Show that right A-modules are in bijection with triples (M, N, f) where $M \in \operatorname{Mod}-R$, $N \in \operatorname{Mod}-S$, and $f \in \operatorname{Hom}_{S}\left(M \otimes_{R} B, N\right)$. (Hint: If P is a right A-module, let $M=P e_{1}$ and $N=P e_{2}$, where $e_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $e_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Conversely, given the data (M, N, f) show how to reconstruct a right A-module.)
(b). Show that if P is a projective right A-module and (M, N, f) is the corresponding triple, then N is a projective right S-module.
(c). If $A=\left[\begin{array}{ll}\mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Z}\end{array}\right]$, show that A is not right hereditary.
(d). Let A be the same ring as in part (c). Show that A is left hereditary.
3. (a). If M is a left R-module such that $\operatorname{pd}(\mathrm{M})=n<\infty$, show that there is a free module F such that $\operatorname{Ext}_{R}^{n}(M, F) \neq 0$.
(b). Suppose that R is a ring which is noetherian and self-injective (that is, R is injective as a left R-module). If $n=1 . \operatorname{gl} \operatorname{dim}(R)$, show that either $n=0$ or $n=\infty$. Give examples of both kinds. (Hint: recall that over a noetherian ring an arbitrary direct sum of injective modules remains injective).
4. Let $R=\mathbb{Z}_{n}$ be the ring of integers $\bmod n$. Find gl. $\operatorname{dim} R$ (as a funtion of n). (Problem 3 could be useful).
5. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence of left R-modules.
(a). Prove that $\operatorname{pd}(N) \leq 1+\max (\operatorname{pd}(L), \operatorname{pd}(M))$.
(b). If M is projective, prove that either L and N are also projective or else $\operatorname{pd}(N)=$ $1+\operatorname{pd}(L)$.
6. (a). Given a family of left R-modules $\left\{M_{i}\right\}_{i \in I}$, prove that $\operatorname{pd}\left(\bigoplus_{i} M_{i}\right)=\sup _{i} \operatorname{pd}\left(M_{i}\right)$.
(b). Show that if l. gldim $(R)=\infty$, then there exists a left R-module M with $\operatorname{pd}(M)=\infty$.
7. Let $R=k\langle x, y\rangle$ be a free associative algebra in two variables over the field k. Show that R is (left) hereditary by proving that every left ideal of R is free.

