MATH 200B WINTER 2022 MIDTERM SOLUTIONS

1 (15 pts). Let $A \in M_{3}(F)$ where F is an algebraically closed field. Classify up to similarity the matrices A which satisfy $A^{3}=A$, by describing their possible Jordan forms. There may be cases depending on the characteristic of F. Make sure you justify your answer.

Solution.
Because $A^{3}=A$, the matrix A satifies the polynomial $x^{3}-x=x(x-1)(x+1)$. Thus the minimal polynomial of A divides this.

Case 1: char $F \neq 2$. When the characteristic is not 2 , the numbers $-1,0,1$ are distinct and so the primes $x, x-1, x+1$ are pairwise non-associate. The invariant factors of A all divide the minimal polynomial, which is the largest invariant factor. So every invariant factor is also a product of distinct primes in $F[x]$. The elementary divisors are found by splitting each invariant factor as a product of powers of distinct primes. Thus every elementary divisor is linear and is equal to $x, x-1$, or $x+1$. The Jordan form of A is then of the form $J=\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right)$ where each $\lambda_{i} \in\{-1,0,1\}$. Conversely, it is obvious that every such Jordan form J satisfies $J^{3}=J$, and thus every matrix A similar to J satisfies $A^{3}=A$. So the set of possible matrices A is the set of all conjugates of these J.

This shows every such A is in the union of certain similarity classes. To be more exact, one can say how many distinct similarity classes of matrices there are: since Jordan forms are similar if and only if they are the same after rearranging blocks, there are 3 classes in which all λ_{i} are equal; 6 classes in which two of the λ_{i} are equal; and 1 class in which all λ_{i} are distinct, so there are 10 classes total.

Case 2: char $F=2$. In this case $x^{3}-x=x(x-1)^{2}$ and so the minimal polynomial is not necessarily a product of distinct primes. Since each invariant factor divides this, splitting the invariant factors into elementary divisors we find that each elementary divisor is either $x, x-1$, or $(x-1)^{2}$. Thus every Jordan form of A is either of the form $J=\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right)$ or else of the form $J=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda_{1}\end{array}\right)$, where each $\lambda_{i} \in\{0,1\}$. Conversely it is easy to calculate that every such J satisfies $J^{3}=J$, so the set of possible A is the set of all conjugates of these J.

Counting the number of similarity classes, one has 2 diagonal matrices in which the λ_{i} are all equal and 2 in which two of them are equal. There are 2 that contain the Jordan block. Thus there are 6 classes total.

2 (15 pts). Let R be a PID and M a nonzero finitely generated torsion left R-module. Recall that M is uniserial if there is a finite chain of submodules

$$
M_{0}=\{0\} \subseteq M_{1} \subseteq \cdots \subseteq M_{n}=M
$$

such that the M_{i} are all of the R-submodules of M.
(a) (10 pts) Show that M has only one elementary divisor if and only if M is uniserial.

Solution.

(The hypothesis that M is finitely generated was inadvertently left out of the original version. The elementary divisors and invariant factors are not even defined for an infinitely generated torsion module.)
Let $p_{1}^{e_{1}}, \ldots, p_{m}^{e_{m}}$ be the elementary divisors of M, so that $M \cong R /\left(p_{1}^{e_{1}}\right) \oplus \cdots \oplus R /\left(p_{m}^{e_{m}}\right)$. Suppose that $m \geq 2$, that is that there is more than one elementary divisor. In particular, we can decompose M as a nontrivial direct sum $M=N \oplus P$ with $N \neq 0$ and $P \neq 0$ (take $N=R /\left(p_{1}^{e_{1}}\right)$ and $\left.P=R /\left(p_{2}^{e_{2}}\right) \oplus \cdots \oplus R /\left(p_{m}^{e_{m}}\right)\right)$. But no such nontrivial direct sum can be a uniserial module, because thinking of M as an internal direct sum of N and P, then N and P are submodules of M such that $N \cap P=0$, and thus neither $N \subseteq P$ nor $P \subseteq N$ holds. So it is impossible to write all of the submodules of M in a single chain.

Conversely, suppose that M has one elementary divisor p^{e} for a prime p, so $M=R /\left(p^{e}\right)$. Since this is a factor module of R, its submodules are are in bijective correspondence with submodules I of R (that is, ideals) such that $\left(p^{e}\right) \subseteq I \subseteq R$. Since R is a PID, $I=(a)$ is principal and $\left(p^{e}\right) \subseteq(a)$ is equivalent to $a \mid p^{e}$. Since p is prime, by unique factorization the only divisors of p^{e} (up to associates) are the elements p^{i} with $0 \leq i \leq e$. So $I=\left(p^{i}\right)$ for some such i. Then the possible I form a single chain $\left(p^{e}\right) \subseteq\left(p^{e-1}\right) \subseteq \cdots \subseteq(p) \subseteq R$. Then by submodule correspondence, the submodules of M also form a single chain (0) \subseteq $\left(p^{e-1}\right) /\left(p^{e}\right) \subseteq \cdots \subseteq(p) /\left(p^{e}\right) \subseteq R /\left(p^{e}\right)$ and M is uniserial.
(b) (5 pts) Show that M has only one invariant factor if and only if M is cyclic.

We have $M \cong R /\left(f_{1}\right) \oplus R /\left(f_{2}\right) \oplus \cdots \oplus R /\left(f_{k}\right)$ where each f_{i} is nonzero, nonunit, and $f_{i} \mid f_{i+1}$ for $0 \leq i \leq k-1$. Then $f_{1}, f_{2}, \ldots, f_{k}$ is the sequence of invariant factors of M.

Suppose that M has a single invariant factor. Then $k=1$ and $M \cong R /\left(f_{1}\right)$. The module $R /\left(f_{1}\right)$ is cyclic, generated by $1+\left(f_{1}\right)$.

Conversely, suppose that M is cyclic. As we saw in class, a cyclic module is isomorphic to R / I for some ideal I. (you can quote this without proof. But here is why: suppose that M is generated by m. Define a homomorphism $\phi: R \rightarrow M$ by $\phi(r)=r m$. Then ϕ is surjective.

The kernel of ϕ is a submodule of R, that is, an ideal I. By the 1st isomorphism theorem, $M \cong R / I$.) Since R is a PID, $I=(g)$ for some g. Since $M \neq 0, g$ is not a unit. Since M is torsion, $g \neq 0$. We now have $R /\left(f_{1}\right) \oplus \cdots \oplus R /\left(f_{k}\right) \cong R /(g)$ and both expressions are in invariant factor form. By the uniqueness of the invariant factor form, $k=1, f_{1}=g$, and there is a single invariant factor.

