Math 200b Winter 2022 Homework 5

Due $2 / 25 / 2020$ by midnight on Gradescope, or hand in in class

1. Let R be a commutative domain which is an algebra over the field F, such that $\operatorname{dim}_{F} R=n<\infty$. Prove that R is a field. (Hint: for $0 \neq a \in R$, consider the map $R \rightarrow R$ given by left multiplication by a.)
2. Let $F \subseteq K$ be a field extension with $[K: F]=2$. If $a \in K$, by \sqrt{a} we mean an element of K whose square is a.
(a) Assume that F does not have characteristic 2. Show that $K=F(\sqrt{a})$ for some $a \in F$. (Hint: think about completing the square).
(b). Show that the result of part (a) fails in general if F has characteristic 2 .
3.(a). Let $F \subseteq K$ be a field extension. Suppose that $F \subseteq K_{1} \subseteq K$ and $F \subseteq K_{2} \subseteq K$ where K_{1} and K_{2} are subfields of K. The composite field $K_{1} K_{2}$ is defined to be the smallest subfield of K containing both K_{1} and K_{2}. Show that if $\left[K_{1}: F\right]<\infty$ and $\left[K_{2}: F\right]<\infty$ then

$$
K_{1} K_{2}=\left\{\sum_{i=1}^{d} a_{i} b_{i} \mid a_{i} \in K_{1}, b_{i} \in K_{2}, d \geq 0\right\} .
$$

(Hint: show that the right hand side is a subring of K - then why is it forced to be a subfield?)
(b). Show that if $\left[K_{1}: F\right]<\infty$ and $\left[K_{2}: F\right]<\infty$ as in (b), then there is a surjective homomorphism of F-algebras $\theta: K_{1} \otimes_{F} K_{2} \rightarrow K_{1} K_{2}$ given by $\theta(a \otimes b)=a b$. Prove that θ is an isomorphism if and only if $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right]\left[K_{2}: F\right]$.
(c). Show that $\mathbb{Q}(\sqrt{3}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt[3]{2}) \cong \mathbb{Q}(\sqrt{3}, \sqrt[3]{2})$ as \mathbb{Q}-algebras.
4. Find explicitly the splitting field K of $x^{6}-4$ over \mathbb{Q}, and find $[K: \mathbb{Q}]$.
5. Let $\alpha=\sqrt{2+\sqrt{2}} \in \mathbb{C}$ and let f be the minimal polynomial of α over \mathbb{Q}.
(a). Compute f.
(b). Let K be a splitting field for f over \mathbb{Q}. Find $[K: \mathbb{Q}]$.
6. Suppose that $f \in F[x]$ has degree n and that K is a splitting field for f over F.

Show that $[K: F] \leq n!$.
7. Let F be a field of characteristic p. Recall that we proved that if $f \in F[x]$ is inseparable and irreducible, then $f=\sum_{i=1}^{k} b_{i} x^{i p}$ for some $b_{i} \in F$, or in other words $f=g\left(x^{p}\right)$ where $g=\sum_{i=1}^{k} b_{i} x^{i} \in F[x]$.
(a). Prove that any irreducible polynomial $f \in F[x]$ is of the form $g\left(x^{p^{k}}\right)$ for some irreducible, separable polynomial $g \in F[x]$ and some $k \geq 0$.
(b). An algebraic extension $F \subseteq K$ is called purely inseparable if for all $\alpha \in K-F$, the minimal polynomial of α over F is inseparable. Prove that $F \subseteq K$ is purely inseparable if and only if every $\alpha \in K$ satisfies $\alpha^{p^{k}} \in F$ for some $k \geq 0$.

