MATH 200B MIDTERM SOLUTIONS

WEI YIN

Problem 1. Let R be an integral domain. Recall that a left R—module M is called
divisible if for all x € M, and 0 # r € R, there exists y € M such that ry = z.

(a). Let M be any left R—module and let N be a torsion left R—module. Prove
that M ®gr N is again a torsion left R—module.

(b). Let M be a divisible left R—module and again let N be a torsion left
R—module. Prove that M ®r N = 0.

Proof. (a). Let a = m;®ny+mao®@ng+---my®n; be an element in M ® N. Suppose
all the summands are torsion elements, then there exist nonzero elements r, - - - r;in
R such that r;(m; ® n;) = 0. Note that R is an integral domain so r = ryry-- -7, is
nonzero. We easily see that rao = 0, so « is also a torsion element. Thus, it suffices to
show that pure tensors are torsion elements. Let m®n be an element in M ® N. Since
N is torsion there is some 0 # r such that rn = 0. Now r- (m®n) =m® (r-n) = 0.

(b). Again, it suffices to show that pure tensors are 0 (by applying a similar
argument as in the beginning of part a, noting that a = 0 if all the summands are
0). With the notations above, we may find mg € M such that r - mg = m. Then
men=(r-my)@n=r-(my&n)=meR (r-n) =0. O

Problem 2. Let R be a PID. Suppose that there exists a nonzero finitely generated
divisible R—module M. Prove that R is a field.

Proof. By the classification theorem we may write M as R' @ R/(a1) ® R/(az) &
-+ R/(ay,), with aj|as|---a,. First we show that in this case M is torsion-free.
Consider the element 1 = (1,1,--- 1,1, ,i) and a,, € R. By assumption there
is an element © = (zq1--+ , %4, Ty11, ** Term) such that a,, - x = 1. But this is not
possible since the last component of the left hand side is 0, whereas the last component
of the right hand side is 1. Thus M should be torsion-free and hence free, with
t > 0. Now again take 1 = (1,1,---,1) € M. For any 0 # r € R there exists
r = (ry---,1) € M = R' such that rz = 1. Looking at the first component, we
draw r - z; = 1. So r is invertible. O

Problem 3. A matrix A € My(F) has a square root if there is B € My(F') such that
B? = A. Let F be an algebraically closed field of characteristic 2. Which matrices
A € My(F) have a square root?

Proof. We may assume that Ay is the Jordan canonical form of A, with SAS™ = Ay,
for some invertible matrix S. Note that A = B? <= SAS™! = SB?S™! «— A, =
B2 (By = SBS™'). Thus, A has a square root if and only if Ay has a square root.
Now consider the Jordan blocks of Aj.
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(1). Ao has 2 Jordan blocks. That is, A is diagonalizable. We assume A is of the

following form:
A0
0 ¢

Since F is algebraically closed we may find v/ (by this we mean THE root of the
equation #2 — A =0 in F) and 1/C in F. Then one sees easily that

(" %)
0 V¢
is a square root of Ay. Thus all diagonalizable matrices have square roots.
(2). Ap has only one Jordan block. So Ay is of the form A + N, where N is the

following matrix:
01
00

Suppose B is a square root of Ay. Then, B is not diagonalizable (otherwise we
draw a contradiction quickly). The Jordan canonical form of B should be (I + N for
some ¢, in other words T'(¢(I + N)T~! = B for some T. Note that ({I + N)?* is *1,
because N? = 0 and char(F) = 2. Thus Ay = B? = (T(¢I + N)T~')? = (*I. This
means Ay is a diagonal matrix, which is absurd.

We conclude: A matirx A has a square root if and only if it is diagonalizable. [J



