
MATH 200B MIDTERM SOLUTIONS

WEI YIN

Problem 1. Let R be an integral domain. Recall that a left R−module M is called
divisible if for all x ∈M, and 0 6= r ∈ R, there exists y ∈M such that ry = x.

(a). Let M be any left R−module and let N be a torsion left R−module. Prove
that M ⊗R N is again a torsion left R−module.

(b). Let M be a divisible left R−module and again let N be a torsion left
R−module. Prove that M ⊗R N = 0.

Proof. (a). Let α = m1⊗n1+m2⊗n2+ · · ·mt⊗nt be an element inM⊗N . Suppose
all the summands are torsion elements, then there exist nonzero elements r1, · · · rtin
R such that ri(mi ⊗ ni) = 0. Note that R is an integral domain so r = r1r2 · · · rt is
nonzero. We easily see that rα = 0, so α is also a torsion element. Thus, it suffices to
show that pure tensors are torsion elements. Letm⊗n be an element inM⊗N . Since
N is torsion there is some 0 6= r such that rn = 0. Now r · (m⊗ n) = m⊗ (r · n) = 0.

(b). Again, it suffices to show that pure tensors are 0 (by applying a similar
argument as in the beginning of part a, noting that α = 0 if all the summands are
0). With the notations above, we may find m0 ∈ M such that r · m0 = m. Then
m⊗ n = (r ·m0)⊗ n = r · (m0 ⊗ n) = m0 ⊗ (r · n) = 0. �

Problem 2. Let R be a PID. Suppose that there exists a nonzero finitely generated
divisible R−module M . Prove that R is a field.

Proof. By the classification theorem we may write M as Rt ⊕ R/(a1) ⊕ R/(a2) ⊕
· · ·R/(am), with a1|a2| · · · am. First we show that in this case M is torsion-free.
Consider the element 1 = (1, 1, · · · , 1̂, 1̂, · · · , 1̂) and am ∈ R. By assumption there
is an element x = (x1 · · · , xt, xt+1

∧
, · · · xt+m

∧
) such that am · x = 1. But this is not

possible since the last component of the left hand side is 0̂, whereas the last component
of the right hand side is 1̂. Thus M should be torsion-free and hence free, with
t > 0. Now again take 1 = (1, 1, · · · , 1) ∈ M . For any 0 6= r ∈ R there exists
x = (x1 · · · , xt) ∈ M = Rt such that rx = 1. Looking at the first component, we
draw r · x1 = 1. So r is invertible. �

Problem 3. A matrix A ∈M2(F ) has a square root if there is B ∈M2(F ) such that
B2 = A. Let F be an algebraically closed field of characteristic 2. Which matrices
A ∈M2(F ) have a square root?

Proof. We may assume that A0 is the Jordan canonical form of A, with SAS−1 = A0,
for some invertible matrix S. Note that A = B2 ⇐⇒ SAS−1 = SB2S−1 ⇐⇒ A0 =
B2

0 (B0 = SBS−1). Thus, A has a square root if and only if A0 has a square root.
Now consider the Jordan blocks of A0.
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(1). A0 has 2 Jordan blocks. That is, A is diagonalizable. We assume A0 is of the
following form: (

λ 0
0 ζ

)
Since F is algebraically closed we may find

√
λ (by this we mean THE root of the

equation x2 − λ = 0 in F ) and
√
ζ in F . Then one sees easily that(√

λ 0
0
√
ζ

)
is a square root of A0. Thus all diagonalizable matrices have square roots.

(2). A0 has only one Jordan block. So A0 is of the form λI + N , where N is the
following matrix: (

0 1
0 0

)
Suppose B is a square root of A0. Then, B is not diagonalizable (otherwise we

draw a contradiction quickly). The Jordan canonical form of B should be ζI +N for
some ζ, in other words T (ζI +N)T−1 = B for some T . Note that (ζI +N)2 is ζ2I,
because N2 = 0 and char(F ) = 2. Thus A0 = B2 = (T (ζI + N)T−1)2 = ζ2I. This
means A0 is a diagonal matrix, which is absurd.

We conclude: A matirx A has a square root if and only if it is diagonalizable. �


