MATH 200B MIDTERM SOLUTIONS

WEI YIN

Problem 1. Let R be an integral domain. Recall that a left R-module M is called divisible if for all $x \in M$, and $0 \neq r \in R$, there exists $y \in M$ such that $r y=x$.
(a). Let M be any left R-module and let N be a torsion left R-module. Prove that $M \otimes_{R} N$ is again a torsion left R-module.
(b). Let M be a divisible left R-module and again let N be a torsion left R-module. Prove that $M \otimes_{R} N=0$.

Proof. (a). Let $\alpha=m_{1} \otimes n_{1}+m_{2} \otimes n_{2}+\cdots m_{t} \otimes n_{t}$ be an element in $M \otimes N$. Suppose all the summands are torsion elements, then there exist nonzero elements $r_{1}, \cdots r_{t}$ in R such that $r_{i}\left(m_{i} \otimes n_{i}\right)=0$. Note that R is an integral domain so $r=r_{1} r_{2} \cdots r_{t}$ is nonzero. We easily see that $r \alpha=0$, so α is also a torsion element. Thus, it suffices to show that pure tensors are torsion elements. Let $m \otimes n$ be an element in $M \otimes N$. Since N is torsion there is some $0 \neq r$ such that $r n=0$. Now $r \cdot(m \otimes n)=m \otimes(r \cdot n)=0$.
(b). Again, it suffices to show that pure tensors are 0 (by applying a similar argument as in the beginning of part a, noting that $\alpha=0$ if all the summands are $0)$. With the notations above, we may find $m_{0} \in M$ such that $r \cdot m_{0}=m$. Then $m \otimes n=\left(r \cdot m_{0}\right) \otimes n=r \cdot\left(m_{0} \otimes n\right)=m_{0} \otimes(r \cdot n)=0$.

Problem 2. Let R be a PID. Suppose that there exists a nonzero finitely generated divisible R-module M. Prove that R is a field.

Proof. By the classification theorem we may write M as $R^{t} \oplus R /\left(a_{1}\right) \oplus R /\left(a_{2}\right) \oplus$ $\cdots R /\left(a_{m}\right)$, with $a_{1}\left|a_{2}\right| \cdots a_{m}$. First we show that in this case M is torsion-free. Consider the element $\mathbf{1}=(1,1, \cdots, \hat{1}, \hat{1}, \cdots, \hat{1})$ and $a_{m} \in R$. By assumption there is an element $x=\left(x_{1} \cdots, x_{t}, \widehat{x_{t+1}}, \cdots \widehat{x_{t+m}}\right)$ such that $a_{m} \cdot x=\mathbf{1}$. But this is not possible since the last component of the left hand side is $\hat{0}$, whereas the last component of the right hand side is $\hat{1}$. Thus M should be torsion-free and hence free, with $t>0$. Now again take $\mathbf{1}=(1,1, \cdots, 1) \in M$. For any $0 \neq r \in R$ there exists $x=\left(x_{1} \cdots, x_{t}\right) \in M=R^{t}$ such that $r x=\mathbf{1}$. Looking at the first component, we draw $r \cdot x_{1}=1$. So r is invertible.

Problem 3. A matrix $A \in M_{2}(F)$ has a square root if there is $B \in M_{2}(F)$ such that $B^{2}=A$. Let F be an algebraically closed field of characteristic 2 . Which matrices $A \in M_{2}(F)$ have a square root?

Proof. We may assume that A_{0} is the Jordan canonical form of A, with $S A S^{-1}=A_{0}$, for some invertible matrix S. Note that $A=B^{2} \Longleftrightarrow S A S^{-1}=S B^{2} S^{-1} \Longleftrightarrow A_{0}=$ $B_{0}^{2}\left(B_{0}=S B S^{-1}\right)$. Thus, A has a square root if and only if A_{0} has a square root. Now consider the Jordan blocks of A_{0}.
(1). A_{0} has 2 Jordan blocks. That is, A is diagonalizable. We assume A_{0} is of the following form:

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \zeta
\end{array}\right)
$$

Since F is algebraically closed we may find $\sqrt{\lambda}$ (by this we mean THE root of the equation $x^{2}-\lambda=0$ in F) and $\sqrt{\zeta}$ in F. Then one sees easily that

$$
\left(\begin{array}{cc}
\sqrt{\lambda} & 0 \\
0 & \sqrt{\zeta}
\end{array}\right)
$$

is a square root of A_{0}. Thus all diagonalizable matrices have square roots.
(2). A_{0} has only one Jordan block. So A_{0} is of the form $\lambda I+N$, where N is the following matrix:

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Suppose B is a square root of A_{0}. Then, B is not diagonalizable (otherwise we draw a contradiction quickly). The Jordan canonical form of B should be $\zeta I+N$ for some ζ, in other words $T(\zeta I+N) T^{-1}=B$ for some T. Note that $(\zeta I+N)^{2}$ is $\zeta^{2} I$, because $N^{2}=0$ and $\operatorname{char}(F)=2$. Thus $A_{0}=B^{2}=\left(T(\zeta I+N) T^{-1}\right)^{2}=\zeta^{2} I$. This means A_{0} is a diagonal matrix, which is absurd.

We conclude: A matirx A has a square root if and only if it is diagonalizable.

