1. Let $\pm \alpha, \pm \beta$ be the roots of the polynomial $f(x) = x^4 + ax^2 + b \in \mathbb{Z}[x]$.

(a). Prove that f is irreducible over \mathbb{Q} if and only if $\alpha^2, \alpha + \beta$, and $\alpha - \beta$ are not elements of \mathbb{Q}.

(b). Suppose that f is irreducible and let $G = \text{Gal}(K/\mathbb{Q})$ where K is the splitting field of f over \mathbb{Q}. Show that there are three possibilities for G, determined as follows:

(i) $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ if and only if $\alpha \beta \in \mathbb{Q}$.

(ii) $G \cong \mathbb{Z}_4$ if and only if $\mathbb{Q}(\alpha \beta) = \mathbb{Q}(\alpha^2)$.

(iii) $G \cong D_8$, the dihedral group of order 8, if and only if $\alpha \beta \not\in \mathbb{Q}(\alpha^2)$.

2. Let p be prime and let \mathbb{F}_{p^n} be a field with p^n elements. Let S be the set of generators (as a group) of the multiplicative group $(\mathbb{F}_{p^n})^\ast$.

(a). Let $f \in \mathbb{F}_p[x]$ be an irreducible polynomial of degree n. Show that f splits in \mathbb{F}_{p^n} and that either all of its roots are in S or none of them is.

(b). Show that $n \mid \varphi(p^n - 1)$ for all primes p and all $n \geq 1$, where φ is the Euler phi-function.

(c). Consider the explicit case of the field \mathbb{F}_{16}. Find all irreducible polynomials of degree 4 over \mathbb{F}_2. Which ones have roots in S?
3. Let \(\zeta \in \mathbb{C} \) be a primitive \(p \)th root of 1 for some prime \(p \geq 3 \). Let \(K = \mathbb{Q}(\zeta) \) be the splitting field of \(x^p - 1 \) inside \(\mathbb{C} \).

(a). Let \(\alpha = \sum_{i=0}^{p-1} \zeta^i \). This is called a Gauss sum. Prove that \(E = \mathbb{Q}(\alpha) \) is the unique subfield of \(K \) such that \([E : \mathbb{Q}] = 2\).

(b). Show that \(L = \mathbb{Q}(\zeta + \zeta^{-1}) \) is the unique subfield of \(K \) such that \([K : L] = 2\). Show that in fact \(L = K \cap \mathbb{R} \). (Hint: note that complex conjugation restricts to an automorphism of \(K \)).

4. Let \(f = x^p - 2 \) for some prime \(p \geq 3 \). Consider the splitting field \(K \) of \(f \) over \(\mathbb{Q} \). Show that \(K/\mathbb{Q} \) is Galois with \([K : \mathbb{Q}] = p(p - 1)\). Prove that \(G = \text{Gal}(K/\mathbb{Q}) \) is isomorphic to the semidirect product \(\mathbb{Z}_p^* \rtimes \psi \mathbb{Z}_p \), where \(\psi : \mathbb{Z}_p^* \to \text{Aut}(\mathbb{Z}_p) \) is the natural isomorphism.