Math 200b Winter 2021 Homework 8

Due $3 / 12 / 2021$ by midnight on Gradescope

1. Let $\pm \alpha, \pm \beta$ be the roots of the polynomial $f(x)=x^{4}+a x^{2}+b \in \mathbb{Z}[x]$.
(a). Prove that f is irreducible over \mathbb{Q} if and only if $\alpha^{2}, \alpha+\beta$, and $\alpha-\beta$ are not elements of \mathbb{Q}.
(b). Suppose that f is irreducible and let $G=\operatorname{Gal}(K / \mathbb{Q})$ where K is the splitting field of f over \mathbb{Q}. Show that there are three possibilities for G, determined as follows:
(i) $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ if and only if $\alpha \beta \in \mathbb{Q}$.
(ii) $G \cong \mathbb{Z}_{4}$ if and only if $\mathbb{Q}(\alpha \beta)=\mathbb{Q}\left(\alpha^{2}\right)$.
(iii) $G \cong D_{8}$, the dihedral group of order 8 , if and only if $\alpha \beta \notin \mathbb{Q}\left(\alpha^{2}\right)$.
2. Let p be prime and let $\mathbb{F}_{p^{n}}$ be a field with p^{n} elements. Let S be the set of generators (as a group) of the multiplicative group $\left(\mathbb{F}_{p^{n}}\right)^{*}$.
(a). Let $f \in \mathbb{F}_{p}[x]$ be an irreducible polynomial of degree n. Show that f splits in $\mathbb{F}_{p^{n}}$ and that either all of its roots are in S or none of them is.
(b). Show that $n \mid \varphi\left(p^{n}-1\right)$ for all primes p and all $n \geq 1$, where φ is the Euler phifunction.
(c). Consider the explicit case of the field \mathbb{F}_{16}. Find all irreducible polynomials of degree 4 over \mathbb{F}_{2}. Which ones have roots in S ?
3. Let $\zeta \in \mathbb{C}$ be a primitive p th root of 1 for some prime $p \geq 3$. Let $K=\mathbb{Q}(\zeta)$ be the splitting field of $x^{p}-1$ inside \mathbb{C}.
(a). Let $\alpha=\sum_{i=0}^{p-1} \zeta^{i^{2}}$. This is called a Gauss sum. Prove that $E=\mathbb{Q}(\alpha)$ is the unique subfield of K such that $[E: \mathbb{Q}]=2$.
(b). Show that $L=\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$ is the unique subfield of K such that $[K: L]=2$. Show that in fact $L=K \cap \mathbb{R}$. (Hint: note that complex conjugation restricts to an automorphism of K).
4. Let $f=x^{p}-2$ for some prime $p \geq 3$. Consider the splitting field K of f over \mathbb{Q}. Show that K / \mathbb{Q} is Galois with $[K: \mathbb{Q}]=p(p-1)$. Prove that $G=\operatorname{Gal}(K / \mathbb{Q})$ is isomorphic to the semidirect product $\mathbb{Z}_{p}^{*} \ltimes_{\psi} \mathbb{Z}_{p}$, where $\psi: \mathbb{Z}_{p}^{*} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ is the natural isomorphism.
