Math 200b Winter 2021 Homework 7

Due $3 / 5 / 2020$ by midnight on Gradescope

1. In this problem you show that $G=\operatorname{Aut}(\mathbb{R})=1$.
(a). Show that every element of $\operatorname{Aut}(\mathbb{R})$ fixes \mathbb{Q} pointwise; that is $\operatorname{Aut}(\mathbb{R})=\operatorname{Gal}(\mathbb{R} / \mathbb{Q})$.
(b). Let $\sigma \in G$. Prove that σ takes squares to squares and hence takes the set of positive numbers to itself. Using this conclude that $a<b$ implies $\sigma(a)<\sigma(b)$.
(c). Prove that σ is a continuous function.
(d). Prove that any continuous function $\mathbb{R} \rightarrow \mathbb{R}$ which fixes every element of \mathbb{Q} is the identity, and so $\sigma=1$.
(Remark: By constrast, it is possible to show that $\operatorname{Aut}(\mathbb{C})$ is uncountable!)
2. Let $F \subseteq K$ be a finite degree field extension. Suppose that $F \subseteq E_{1} \subseteq K$ and $F \subseteq E_{2} \subseteq K$ are intermediate fields and that E_{1} / F and E_{2} / F are normal extensions.
(a). Show that $\left(E_{1} \cap E_{2}\right) / F$ is a normal extension.
(b). Show that $\left(E_{1} E_{2}\right) / F$ is a normal extension. The composite $E_{1} E_{2}$ is defined on the previous homework.
3. Let $F \subseteq K$ be a finite degree Galois extension and let $F \subseteq E \subseteq K$ and $F \subseteq L \subseteq K$ be intermediate fields. Show that there is an isomorphism of fields $\theta: E \rightarrow L$ with $\left.\theta\right|_{F}=1_{F}$ if and only if the subgroups $\operatorname{Gal}(K / L)$ and $\operatorname{Gal}(K / E)$ of $G=\operatorname{Gal}(K / F)$ are conjugate subgroups in G.
4. Let F be a field of characteristic p. Recall that we proved that if $f \in F[x]$ is inseparable and irreducible, then $f=\sum_{i=0}^{n} b_{i} x^{i p}$ for some $b_{i} \in F$. We can also write this condition as $f=g\left(x^{p}\right)$ where $g=\sum_{i=0}^{n} b_{i} x^{i} \in F[x]$.
(a). Prove that any irreducible polynomial $f \in F[x]$ is of the form $g\left(x^{p^{k}}\right)$ for some irreducible, separable polynomial $g \in F[x]$ and some $k \geq 0$.
(b). An algebraic extension $F \subseteq K$ is called purely inseparable if for all $\alpha \in K-F$, the minimal polynomial of α over F is inseparable. Prove that $F \subseteq K$ is purely inseparable if and only if every $\alpha \in K$ satisfies $\alpha^{p^{k}} \in F$ for some $k \geq 0$.
5. Let F be a field of characteristic $p>0$, and let \mathbb{F}_{p} be its prime subfield. Let K be the splitting field of F of the polynomial $f(x)=x^{p}-x-a \in F[x]$. Let $\alpha \in K$ be a root of f and assume that $\alpha \notin F$. Show that
(a). $\alpha+i$ is also a root of f, for all $i \in \mathbb{F}_{p}$.
(b). $K=F(\alpha)$.
(c). f is separable and irreducible in $F[x]$, and K / F is Galois. (hint: all roots of f have minimal polynomials over F of the same degree).
(d). For each $i \in \mathbb{F}_{p}$ there is an automorphism $\sigma_{i} \in G=\operatorname{Gal}(K / F)$ such that $\sigma_{i}(\alpha)=$ $\alpha+i$. Moreover $G=\left\{\sigma_{i} \mid i \in \mathbb{F}_{p}\right\}$ and G is cyclic of order p.
6. Let $p_{1}, p_{2}, \ldots, p_{n}$ be different prime numbers and let $E=\mathbb{Q}\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right)$ as a subfield of \mathbb{C}.
(a). Show that E / \mathbb{Q} is Galois and that $\operatorname{Gal}(E / \mathbb{Q})$ is Elementary abelian of order 2^{n}. (Hint: show that the fields $\mathbb{Q}(\sqrt{k})$ are all different as k runs over the $2^{n}-1$ different products of nonempty subsets of the set $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.)
(b). Show that $E=\mathbb{Q}(\alpha)$, where $\alpha=\sqrt{p_{1}}+\cdots+\sqrt{p_{n}}$. (Hint: determine how the 2^{n} elements of the Galois group G act on the elements $\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}$. Then show that the orbit of α under G contains 2^{n} different elements.)
