Math 200b Winter 2021 Homework 6

Due $2 / 26 / 2020$ by midnight on Gradescope

1. Let F be a field of characteristic not 2 . Let $F \subseteq K$ be a field extension, and let $a, b \in F$ be elements, neither of which is a square in F. Let $\sqrt{a}, \sqrt{b} \in K$ be roots of the polynomials $x^{2}-a, x^{2}-b \in F[x]$, respectively. Prove that $[F(\sqrt{a}, \sqrt{b}): F]=4$ if and only if $a b$ is not a square in F, and $[F(\sqrt{a}, \sqrt{b}): F]=2$ otherwise.

2(a). Let $F \subseteq K$ be a field extension. Suppose that $F \subseteq K_{1} \subseteq K$ and $F \subseteq K_{2} \subseteq K$ where K_{1} and K_{2} are subfields of K. The composite field $K_{1} K_{2}$ is defined to be the smallest subfield of K containing both K_{1} and K_{2}. Show that if $\left[K_{1}: F\right]<\infty$ and $\left[K_{2}: F\right]<\infty$ then $K_{1} K_{2}$ can also be described as the usual notation for products of subsets of a ring suggests:

$$
K_{1} K_{2}=\left\{\sum_{i=1}^{d} a_{i} b_{i} \mid a_{i} \in K_{1}, b_{i} \in K_{2}, d \geq 0\right\} \subseteq K
$$

(Hint: show that $K_{1} K_{2}$ is a subring of K - then why is it forced to be a subfield?)
(b). Show that if $\left[K_{1}: F\right]<\infty$ and $\left[K_{2}: F\right]<\infty$ as in (b), then there is a surjective homomorphism of F-algebras $\theta: K_{1} \otimes_{F} K_{2} \rightarrow K_{1} K_{2}$ given by $\theta(a \otimes b)=a b$. Prove that θ is an isomorphism if and only if $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right]\left[K_{2}: F\right]$.
(c). Show that the \mathbb{Q}-algebra $\mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{3})$ is a field which is isomorphic to $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
3. Suppose that $f \in F[x]$ has degree n and that K is a splitting field for f over F. Show that $[K: F] \leq n$!.
4. Let K be the splitting field of $x^{6}-4$ over \mathbb{Q}. Find $[K: \mathbb{Q}]$.
5. Let $\alpha=\sqrt{2+\sqrt{2}} \in \mathbb{C}$ and let f be the minimal polynomial of α over \mathbb{Q}.
(a). Compute f.
(b). Let K be a splitting field for f over \mathbb{Q}. Find $[K: \mathbb{Q}]$.
6. Let K be a field with char $K=p>0$. Define $K^{p}=\left\{a^{p} \mid a \in K\right\}$ and recall that K is called perfect if $K^{p}=K$. In this problem let K be a nonperfect field.
(a). Consider the extension $F=K^{p} \subseteq K$. Show that for every $\alpha \in K-F$, minpoly ${ }_{F}(\alpha)$ is an inseparable polynomial of degree p.
(b). Show that if $[K: F]>p$ then the extension K / F has no primitive element, i.e. there is no $\gamma \in K$ such that $K=F(\gamma)$.
(c). Give an explicit example where $[K: F]<\infty$ and the situation of part (b) occurs; so finite degree extensions in characteristic p do not always have primitive elements.

