# Math 200b Winter 2021 Homework 5 

Due $2 / 19 / 2020$ by midnight on Gradescope

1. Let $M$ be a finitely generated $R$-module over a PID $R$. Prove that if $M$ is flat, then $M$ is free.
2. Show that the following polynomials are irreducible:
(a). $2 x^{3}+2 x+5$ in $\mathbb{Q}[x]$.
(b). $x^{2}+y^{2}-1$ as an element of the ring $\mathbb{Q}[x, y]$.
3. Show that the irreducible polynomials in $\mathbb{R}[x]$ all have degree 1 or 2 .
(Hint: compare factorization of a polynomial in $\mathbb{R}[x]$ over $\mathbb{R}$ and over $\mathbb{C}$. You may assume that any polynomial splits over $\mathbb{C}$. )
4. Let $F \subseteq K$ be a field extension with $[K: F]=2$. If $a \in K$, by $\sqrt{a}$ we mean an element of $K$ whose square is $a$.
(a) Assume that $F$ does not have characteristic 2. Show that $K=F(\sqrt{a})$ for some $a \in F$. (Hint: think about completing the square).
(b). Show that the result of part (a) fails in general if $F$ has characteristic 2 .
5. Let $R$ be a commutative domain which is an algebra over the field $F$, such that $\operatorname{dim}_{F} R=n<\infty$. Prove that $R$ is a field. (Hint: for $0 \neq a \in R$, consider the map $R \rightarrow R$ given by left multiplication by $a$.)
