Math 200b Winter 2021 Homework 1

Due $1 / 15 / 2020$ by midnight on Gradescope

1. Let R be an integral domain. An R-module is called torsion if for every $m \in M$, there is $0 \neq r \in R$ such that $r m=0$. Let M, N and $M_{1}, M_{2}, M_{3}, \ldots$ be torsion R-modules. For each question, either prove or give an explicit counterexample.
(a). Must the direct sum $\bigoplus_{n \geq 1} M_{n}$ be a torsion R-module?
(b). Must the direct product $\prod_{n \geq 1} M_{n}$ be a torsion R-module?
(c). Since R is commutative, $\operatorname{Hom}_{R}(M, N)$ is again an R-module. Must it be a torsion R-module? Does the answer change if M or N is a finitely generated module?
2. Let G be a finite group and F a field. Recall that for a vector space V over F, the group $\mathrm{GL}(V)$ is the group of all bijective linear transformations from V to itself, with group operation equal to composition. A representation of the group G (over F) is a homomorphism of groups $\phi: G \rightarrow \mathrm{GL}(V)$ for some vector space V.

Let $F G$ be the group algebra of G over F. Show that there is a bijection between $F G$-modules and representations of G over F.
3. Let R and S be rings. An abelian group M is an (R, S)-bimodule if it is both a left R-module and a right S-module, and these two actions are compatible in the sense that $(r m) s=r(m s)$ for all $r \in R, m \in M, s \in S$. For example, R is an (R, R)-bimodule, where R acts on both the left and right by multiplication.
(a). Suppose that M is an (R, S)-bimodule and N is a left R-module. Show that $\operatorname{Hom}_{R}(M, N)$ is a left S-module using the action $s \cdot \phi$, where $[s \cdot \phi](m)=\phi(m s)$ for $s \in S$, $\phi \in \operatorname{Hom}_{R}(M, N), m \in M$.
(b). Suppose that M is a left R-module and N is an (R, T)-bimodule. Show that $\operatorname{Hom}_{R}(M, N)$ is a right T-module using the action $\phi \cdot t$, where $[\phi \cdot t](m)=\phi(m) t$ for $t \in T$, $\phi \in \operatorname{Hom}_{R}(M, N), m \in M$.
(c). Suppose that M is an (R, S)-bimodule and N is an (R, T)-bimodule. By parts (a) and (b) $\operatorname{Hom}_{R}(M, N)$ is both a left S-module and a right T-module. Show that in fact $\operatorname{Hom}_{R}(M, N)$ is an (S, T)-bimodule.
4. Let R be a commutative ring. If I is an ideal of R and M is an R-module, we write $I M=\left\{\sum_{i=1}^{n} x_{i} m_{i} \mid x_{i} \in I, m_{i} \in M\right\}$, which is an R-submodule of M.
(a). Let I be an ideal of R. Show that if M is an R-module, then $M / I M$ is an R-module which is also an R / I-module via the action $(r+I) \cdot(m+I M)=r m+I M$.
(b). Recall that two sets X and Y have the same cardinality, written $|X|=|Y|$, if there is a bijective function $f: X \rightarrow Y$. Continue to assume that R is commutative, and suppose that M is a free R-module with basis X, and N is a free R-module with basis Y. Show that $M \cong N$ as R-modules if and only if $|X|=|Y|$. (Hint: If $M \cong N$, pick any maximal ideal I of R and show that $M / I M \cong N / I N$ is an isomorphism of vector spaces over the field $F=R / I$. Assume without proof the theorem from linear algebra that any two bases of a vector space have the same cardinality.)
5. In this problem you will see that the property proved in problem $4(b)$, called invariance of basis number, fails for free modules over noncommutative rings in general.

Let K be a field and let V be a countable-dimensional vector space over K with basis $v_{1}, v_{2}, v_{3}, \ldots$ Let $R=\operatorname{End}_{K}(V)$, the ring of all K-linear transformations of V, where the ring product is function composition as always. Let $\phi \in R$ be given by $\phi\left(v_{i}\right)=v_{i / 2}$ for all even i, and $\phi\left(v_{i}\right)=0$ for odd i. Similarly let $\psi \in R$ be given by $\psi\left(v_{i}\right)=v_{(i+1) / 2}$ for all odd i, and $\psi\left(v_{i}\right)=0$ for all even i.

Show that R is an internal direct sum $R=R \phi \oplus R \psi$. Show also that $R \phi \cong R \cong R \psi$ as left R-modules. Conclude that there is an isomorphism of left R-modules $R \cong R \oplus R$. So the free modules of rank 1 and 2 over R are isomorphic.
6. A left R-module M is called simple or irreducible if the only submodules of M are 0 and M.
(a). Show that if R is commutative, the simple R-modules are exactly the cyclic left modules of the form R / P for maximal ideals P of R.
(b). Let M be a simple module over any ring R. Show that the ring $\operatorname{End}_{R}(M)$ is a division ring, that is, that every nonzero element of this ring is a unit. This result is called Schur's Lemma.
(c). The course notes showed that for a field F, the vector space of length n column vectors $V=F^{n}$ is a left $R=M_{n}(F)$-module by left matrix multiplication, and V is a simple R-module. What is $\operatorname{End}_{R}(V)$ in this case?

