
MATH 200B WINTER 2021 FINAL –WITH SELECTED SOLUTIONS

1. Let F be a field. Let A ∈Mn(F ). Let f = minpolyF (A) ∈ F [x].

(a). Let F be the algebraic closure of F . Show that minpolyF (A) = f .

(b). Show that A is diagonalizable over F (that is, A is similar in Mn(F ) to a diagonal

matrix) if and only if f is a separable polynomial.

(c). Let A =

1 1 1

1 1 1

1 1 1

 ∈ M3(F ). Is A diagonalizable over F? The answer may depend

on the properties of F .

Most students did well on this problem. For those that missed part (a), the key is to use

that the minpoly is the largest invariant factor, and that invariant factors are unchanged by

base field extension (since the rational canonical form must be the same regardless of the

field). There is no obvious way to part (a) directly.

2. Let F ⊆ K be a field extension with [K : F ] < ∞. In this problem, if you find any

results from homework problems helpful you can quote them here rather than redoing them.

Note that a commutative ring R is called reduced if R has no nonzero nilpotent elements.

(a). Suppose that K/F is separable. Prove that the K-algebra K ⊗F K is reduced, but is

not a domain unless K = F .

(b). Suppose that K/F is inseparable. Show that the K-algebra K ⊗F K is not reduced.

Proof. (a). Since K/F is separable, K = F (α) for some α ∈ K, by the theorem of the

primitive element. Now we use the result from problem 2 from homework #6. We have

F (α) ∼= F [x]/(f) where f = minpolyF (α). Then K ⊗F K ∼= K[x]/(f) by that problem.

In the special case that K = F , of course K ⊗F K = F ⊗F F ∼= F is a field, and so a

domain. Now assume that K 6= F , so deg f = [K : F ] ≥ 2. Now f is irreducible over F ,

but it is certainly not irreducible over K, as we know that α ∈ K is a root of f , so that

(x − α) is an irreducible factor of f . The rest of the factorization of f into irreducibles in

K[x] is unknown, so let us write f = g1g2g3 . . . gk where each gi is monic and irreducible

in K[x]. If two of the gi are associates (and thus scalar multiples), then they will be equal

since they are monic. Then f will have multiple roots in a splitting field, which is not the
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case. Thus the gi are pairwise non-associate, and thus generate distinct maximal ideals. This

means that the ideals (gi) are pairwise comaximal. By the Chinese Remainder Theorem,

F [x]/(f) ∼= F [x]/(g1)×· · ·×F [x]/(gk). Each F [x]/(gi) is a factor by a maximal ideal and so

is a field Ki. We conclude that K ⊗K ∼= K1 ×K2 × . . . Km is a product of fields. But it is

easy to see that a product of fields has no nilpotents. But since f has at least two irreducible

factors in this case where we are assuming that K 6= F , then k ≥ 2 and so as a product of

two or more rings K ⊗K cannot be a domain.

Many students did not think about using the Chinese Remainder Theorem and tried to

argue the lack of nilpotents directly. This works but some care is required. If 0 6= h+ (f) is a

nonzero nilpotent element of K[x]/(f), then (h+ (f))n = hn + (f) = 0 + (f) for some n ≥ 2

(we cannot have n = 1, as then h+(f) = 0). Thus hn = fg for some g ∈ K[x]. The question

now is how to use that f is separable. Following the same argument as above, we can write

f = g1g2 . . . gk where the gi are monic irreducible, and f separable forces the gi to be pairwise

non-associate. This means that each gi divides hn, and since gi is irreducible, gi divides h by

unique factorization. But then f = g1g2 . . . gk divides h, again by unique factorization, and

this is a contradiction to h+ (f) 6= 0. It is also possible to pass to a splitting field L, where

f factors as a product of distinct linear factors, and do the same argument there to prove

that f divides h in the splitting field, and then noticing that since f, h ∈ K[x], if f |h in L[x]

then f |h in K[x] by the uniqueness in polynomial division with remainder. I think going to

the splitting field just makes things more complicated in this case.

(b). Since K/F is not separable, we can find α ∈ K such that f = minpolyF (α) is not

separable. Now F ⊆ F (α) ⊆ K and since we are tensoring over a field F , the tensor product

F (α) ⊗F F (α) is naturally a subring of K ⊗F K, as one can see by choosing bases over F .

It suffices to show that F (α)⊗F F (α) has nonzero nilpotents.

Let E = F (α). Now similar to above, E ⊗F E ∼= E[x]/(f). In this case, because f

is not separable, when we factor it into monic irreducibles in E[x], we get f = ge11 . . . gekk
where the gi are distinct but where at least one ei ≥ 1. This is because two different monic

irreducibles cannot have a common root (else both would be the minimal polynomial for that

root). Without loss of generality, suppose that e1 ≥ 2. Again using the chinese remainder

theorem we have E[x]/(f) ∼= E[x]/(ge11 )×· · ·×E[x]/(gekk ). But now E[x]/(ge11 ) has a nonzero

nilpotent element g1+(ge11 ), which is nonzero because e1 ≥ 2. Then (g1, 0, . . . , 0) is a nonzero

nilpotent element of the product.

We can avoid the Chinese remainder theorem here as well if we wish— one can prove

directly that g1g
e2
2 . . . gekk + (f) is nilpotent and nonzero in E[x]/(f).
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3. Let f(x) = x12 − 3 ∈ Q[x]. Let K be the splitting field of f over Q.

(a). Show that G = Gal(K/Q) is isomorphic to D24, a dihedral group of order 24. (Hint:

a primitive 12th root of 1 is given by e2πi/12 = cos(π/6) + i sin(π/6).)

(b). Let Z be the center of G. Let E = Fix(Z). Show that E is a splitting field over Q of

some polynomial g ∈ Q[x]. Find such a g.

Solution:

This problem had an unfortunate error—the Galois group is not D24 as claimed. Many

of the students on the exam gave in fact the same (incorrect) solution I had in mind when

I wrote the problem. I graded the solutions only on whether they correctly proved that

the extension K/Q had degree 24; that 24 automorphisms were written down and justified

why these were automorphisms; and that a reasonable attempt was made in part (b), in

particular showing that D24 has center of order 2 and/or justifying that Fix(Z)/Q would be

Galois (normal) by the fundamental theorem. Since the group is not D24 I couldn’t grade

part (b) too closely.

Let K be the splitting field of f = x12 − 3 over Q. Let α = 12
√

3 be the positive real 12th

root of 3, and let ζ = e2πi/12 be a primitive 12th root of 1. Now ζ = (cosπ/6) + i(sinπ/6) =√
3/2 + (1/2)i. Thus Q(ζ) ⊆ Q(

√
3, i). On the the other hand,

√
3 = ζ + ζ = ζ + ζ−1 and

i = ζ + ζ5 are both in Q(ζ), so Q(ζ) = Q(
√

3, i).

Similar to other examples of these type we did in class and in the notes, the roots of f

in C are {α, αζ, . . . αζ11} and so K = Q(α, ζ) = Q( 12
√

3,
√

3, i) = Q( 12
√

3, i) since
√

3 = 12
√

3
6

is already contained in the field generated by 12
√

3. Now f is irreducible over Q by the

Eisenstein criterion applied with the prime 3. So [Q(α) : Q] = deg f = 12. Since Q(α) ⊆ R,

clearly i 6∈ Q(α); also i satisfies x2 + 1 ∈ Q[x]. This forces [Q(α, i) : Q(α)] = 2 and hence

[Q(α, i) : Q] = [Q(α, i) : Q(α)][Q(α) : Q] = 24. Since K is the splitting field of a separable

polynomial f over Q, K/Q is Galois. So |Gal(K/Q)| = 24. Let G = Gal(K/Q).

If σ ∈ G, then σ(α) is another root of x12− 3 and σ(i) is another root of x2 + 1. There are

12 choices in the first case and 2 in the second, so 24 choices total. On the other hand, an

element in G is determined by its action on α and i and |G| = 24. It follows that all choices

occur.

It is important to realize that some argument has to be made here. Given a Galois extension

F (α1, . . . , αm), each element of the Galois group must send each αi to another root of fi =

minpolyF (αi). Also, if we fix i, then there exists some automorphism which sends αi to any

other root of fi we please (and does something unknown to the other αj); this is what our

results on splitting fields said. However, we cannot necessarily find an automorphism which



sends every αi to any other root of fi we please, simultaneously for all i at once. The reason

is that there may be “hidden relationships” among the elements αi.

In particular, we can find an automorphism σ ∈ G such that σ(α) = αζ and σ(i) = i; and

an automorphism τ ∈ G such that τ(α) = α and τ(i) = −i. The place where almost all of

you missed a subtlety at this point (and I did too when I was designing the problem!) was to

claim that σ(αζ i) = αζ i+1 for all i, and so σ has order 12. The problem is that we have not

determined what σ does to ζ, only what it does to i. And in fact σ does not fix ζ. Note that

σ(
√

3) = σ(α6) = α6ζ6 = −α6 = −
√

3. Thus σ(ζ) = σ(
√

3/2 + (1/2)i) = −
√

3/2 + (1/2)i =

ζ5. Similarly, τ does not fix ζ but rather τ(ζ) = ζ11 = ζ−1. In particular this means that

σ(αζ) = αζ6 = −α. Using this you can check that |σ| = 4 and so this σ and τ do not even

generate G.

Some students instead attempted to define an automorphism by σ′(α) = αζ, σ′(ζ) = ζ.

Such a σ′ would satisfy the formula σ′(αζ i) = αζ i+1 for all i, but in fact you can check that

no such σ′ exists. Here deg minpolyQ(ζ) = 4 so we run exactly into the problem mentioned

above, that we cannot necessarily define an automorphism that moves α and ζ simultane-

ously to any roots of their minimal polynomials we please, as that would lead to 48 different

automorphisms.

In fact we get a more complicated group of order 24 for G, which has no elements of

order 12. For each 0 ≤ j ≤ 11 there is an automorphism σj such that σj(α) = αζj and

σj(i) = i. The collection of these, H = {σj|0 ≤ j ≤ 11}, is clearly a subgroup of G, and

in fact must be equal to Gal(K/Q(i)) since these are 12 automorphisms that fix Q(i). So

which group of order 12 is it? Unfortunately it is the least familiar of the nonabelian groups

of order 12, sometimes called T , which can be described as the semidirect product Z3 oψ Z4

where ψ : Z4 → Aut(Z3) = Z∗3 ∼= Z2 is the only nontrivial homomorphism. (There are

only three nonabelian groups of order 12; the others are D12 and A4). The group T also

has presentation 〈a, b|a4 = 1 = b3, a−1ba = b2〉. We can match up H with this presentation

by sending σ1 to a and σ4 to b. Now we can calculate that τ−1σjτ = σ12−j. Thus G can

be described as a further semidirect product H oθ Z2 where θ : Z2 → Aut(H) sends the

generator to the order 2 automorphism of H given by b 7→ b2, a 7→ ba3. So G has presentation

〈a, b, c|a4 = b3 = c2 = 1, a−1ba = b2, c−1bc = b2, c−1ac = ba3〉 (if I haven’t made a calculation

error). I’m not sure if there is a simpler way to describe this group.

(b). It turns out that the answer in part (b) is not affected too much by the error in part

(a), and many students’ solutions to part (b) were essentially correct as written. One can

show that it is still true that the presentation above has a center of order 2, generated by a2.

So the center Z of G is generated by σ6, which is the automorphism sending α to −α and

fixing i (also fixing ζ). So this fixes α2. Thus Q(α2, i) ⊆ Fix(Z). Since α2 is a root of the

irreducible polynomial x6−3, one shows in a similar way as above that [Q(α2, i) : Q] = 12 and

thus E = Fix(Z) = Q(α2, i). The fact that E/Q is Galois comes right from the fundamental



theorem, since Z is a normal subgroup of G. Now one can take g = x6 − 3 and show that

E is the splitting field of g over Q, similarly to the way we showed that K = Q(α, i) is the

splitting field of x12 − 3 over Q. Other g’s are possible of course.


