Math 200b Winter 2020 Homework 7

Due 3/6/2020 in class or by 5pm in Jake Postema's mailbox.

1. Let $K = \mathbb{F}_p(x, y)$ be rational functions in two variables over the field \mathbb{F}_p of p elements. Let $F = \mathbb{F}_p(x^p, y^p)$.

(a). Show that K/F is purely inseparable, and that $[K:F] = p^2$.

(b). Show that there are infinitely many intermediate subfields between F and K, and conclude that the extension K/F does not have a primitive element.

2. In this problem you show that $G = \operatorname{Aut}(\mathbb{R})$ is trivial.

(a). Show that every element of G fixes \mathbb{Q} pointwise; that is, $\operatorname{Aut}(\mathbb{R}) = \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$.

(b). Let $\sigma \in G$. Prove that σ takes squares to squares and hence takes the set of positive numbers to itself. Using this conclude that a < b implies $\sigma(a) < \sigma(b)$.

(c). Prove that σ is a continuous function.

(d). Conclude that σ is the identity.

3. Let $F \subseteq K$ be a Galois extension and let $F \subseteq E \subseteq K$ and $F \subseteq L \subseteq K$ be intermediate fields. Show that there is an isomorphism $\theta : E \to L$ which restricts to the identity on Fif and only if the subgroups $\operatorname{Gal}(K/L)$ and $\operatorname{Gal}(K/E)$ of $G = \operatorname{Gal}(K/F)$ are conjugate subgroups in G.

4. Let $F \subseteq K$ be an algebraic extension, not necessarily of finite degree.

(a). Let *E* be the set of elements $\alpha \in K$ such that α is separable over *F*. Show that *E* is a subfield of *K* containing *F*. (Hint: Show for any $\alpha, \beta \in E$ that $F \subseteq F(\alpha, \beta)$ is a separable extension. To do this, construct a Galois extension of *F* containing α and β .)

(b). With the same notation as in (a), show that K/E is purely inseparable. Thus any algebraic extension decomposes into a separable extension followed by a purely inseparable extension.

(c). Suppose that $F \subseteq L \subseteq K$ where K/F is an algebraic extension. Show that K/F is separable if and only if L/F and K/L are separable.

5. Let p_1, \ldots, p_n be different prime numbers and let $E = \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_n})$ as a subfield of \mathbb{R} .

(a). Show that E/\mathbb{Q} is Galois and that $\operatorname{Gal}(E/\mathbb{Q})$ is elementary Abelian of order 2^n . (Hint: Show that the fields $\mathbb{Q}(\sqrt{k})$ are all different as k runs over the $2^n - 1$ different products of distinct members of the set $\{p_1, \ldots, p_n\}$.)

(b). Show that $E = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt{p_1} + \sqrt{p_2} + \cdots + \sqrt{p_n}$. (Hint: determine how the 2^n elements of the Galois group G act on the elements $\sqrt{p_1}, \ldots, \sqrt{p_n}$. Then show that the orbit of α under G contains 2^n different elements.)

6. Let p be a prime. Let K be the splitting field of $f(x) = x^p - 2$ over \mathbb{Q} . Let ζ be any primitive pth root of 1 in \mathbb{C} , and let $\alpha = \sqrt[p]{2} \in \mathbb{C}$.

Show that $K = \mathbb{Q}(\zeta, \alpha)$ and that [K : F] = p(p-1). Let $G = \operatorname{Gal}(K/\mathbb{Q})$ be the Galois group. Show that G is isomorphic to the semidirect product $\mathbb{Z}_p \rtimes_{\phi} (\mathbb{Z}_p)^*$, where $(\mathbb{Z}_p)^*$ is the group of units of \mathbb{Z}_p , and $\phi : (\mathbb{Z}_p)^* \to \operatorname{Aut}(\mathbb{Z}_p)$ is the natural identification.