Math 200b Winter 2020 Homework 7

Due $3 / 6 / 2020$ in class or by 5 pm in Jake Postema's mailbox.

1. Let $K=\mathbb{F}_{p}(x, y)$ be rational functions in two variables over the field \mathbb{F}_{p} of p elements. Let $F=\mathbb{F}_{p}\left(x^{p}, y^{p}\right)$.
(a). Show that K / F is purely inseparable, and that $[K: F]=p^{2}$.
(b). Show that there are infinitely many intermediate subfields between F and K, and conclude that the extension K / F does not have a primitive element.
2. In this problem you show that $G=\operatorname{Aut}(\mathbb{R})$ is trivial.
(a). Show that every element of G fixes \mathbb{Q} pointwise; that is, $\operatorname{Aut}(\mathbb{R})=\operatorname{Aut}(\mathbb{R} / \mathbb{Q})$.
(b). Let $\sigma \in G$. Prove that σ takes squares to squares and hence takes the set of positive numbers to itself. Using this conclude that $a<b$ implies $\sigma(a)<\sigma(b)$.
(c). Prove that σ is a continuous function.
(d). Conclude that σ is the identity.
3. Let $F \subseteq K$ be a Galois extension and let $F \subseteq E \subseteq K$ and $F \subseteq L \subseteq K$ be intermediate fields. Show that there is an isomorphism $\theta: E \rightarrow L$ which restricts to the identity on F if and only if the subgroups $\operatorname{Gal}(K / L)$ and $\operatorname{Gal}(K / E)$ of $G=\operatorname{Gal}(K / F)$ are conjugate subgroups in G.
4. Let $F \subseteq K$ be an algebraic extension, not necessarily of finite degree.
(a). Let E be the set of elements $\alpha \in K$ such that α is separable over F. Show that E is a subfield of K containing F. (Hint: Show for any $\alpha, \beta \in E$ that $F \subseteq F(\alpha, \beta)$ is a separable extension. To do this, construct a Galois extension of F containing α and β.)
(b). With the same notation as in (a), show that K / E is purely inseparable. Thus any algebraic extension decomposes into a separable extension followed by a purely inseparable extension.
(c). Suppose that $F \subseteq L \subseteq K$ where K / F is an algebraic extension. Show that K / F is separable if and only if L / F and K / L are separable.
5. Let p_{1}, \ldots, p_{n} be different prime numbers and let $E=\mathbb{Q}\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right)$ as a subfield of \mathbb{R}.
(a). Show that E / \mathbb{Q} is Galois and that $\operatorname{Gal}(E / \mathbb{Q})$ is elementary Abelian of order 2^{n}. (Hint: Show that the fields $\mathbb{Q}(\sqrt{k})$ are all different as k runs over the $2^{n}-1$ different products of distinct members of the set $\left\{p_{1}, \ldots, p_{n}\right\}$.)
(b). Show that $E=\mathbb{Q}(\alpha)$, where $\alpha=\sqrt{p_{1}}+\sqrt{p_{2}}+\cdots+\sqrt{p_{n}}$. (Hint: determine how the 2^{n} elements of the Galois group G act on the elements $\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}$. Then show that the orbit of α under G contains 2^{n} different elements.)
6. Let p be a prime. Let K be the splitting field of $f(x)=x^{p}-2$ over \mathbb{Q}. Let ζ be any primitive p th root of 1 in \mathbb{C}, and let $\alpha=\sqrt[p]{2} \in \mathbb{C}$.

Show that $K=\mathbb{Q}(\zeta, \alpha)$ and that $[K: F]=p(p-1)$. Let $G=\operatorname{Gal}(K / \mathbb{Q})$ be the Galois group. Show that G is isomorphic to the semidirect product $\mathbb{Z}_{p} \rtimes_{\phi}\left(\mathbb{Z}_{p}\right)^{*}$, where $\left(\mathbb{Z}_{p}\right)^{*}$ is the group of units of \mathbb{Z}_{p}, and $\phi:\left(\mathbb{Z}_{p}\right)^{*} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ is the natural identification.

