Math 200b Winter 2020 Homework 6

Due $2 / 28 / 2020$ in class or by 5 pm in Jake Postema's mailbox.

1. Show that $x^{2}+y^{2}-1$ is an irreducible polynomial in the ring $\mathbb{Q}[x, y]$.
2. Let K be the splitting field of $x^{6}-4$ over \mathbb{Q}. Find $[K: \mathbb{Q}]$.
3. Let $\alpha=\sqrt{2+\sqrt{2}} \in \mathbb{C}$ and let f be the minimal polynomial of α over \mathbb{Q}.
(a). Compute f.
(b). Let K be a splitting field for f over \mathbb{Q}. Find $[K: \mathbb{Q}]$.
4. An algebraic field extension $F \subseteq K$ is called normal if whenever $g \in F[x]$ is irreducible and $\alpha \in K$ is a root of g, then g splits completely into linear factors in $K[x]$. Let $F \subseteq K$ be a field extension such that $[K: F]<\infty$. Prove that $F \subseteq K$ is a normal extension if and only if K is the splitting field over F of some polynomial $f \in F[x]$.

Hint: Suppose that K is a splitting field over F for a polynomial $f \in F[x]$. Let $g \in F[x]$ be an irreducible polynomial with a root in K. Let $K \subseteq L$ where L is a splitting field over K for g. Show that if $\alpha_{1}, \alpha_{2} \in L$ are any two roots of g then there is an automorphism σ of L which is the identity on F and which takes α_{1} to α_{2}. Then notice that $\sigma(K) \subseteq K$. The other direction is easier.
5. Let $F \subseteq K_{1} \subseteq K$ and $F \subseteq K_{2} \subseteq K$ be fields. Suppose that $F \subseteq K_{1}$ and $F \subseteq K_{2}$ are algebraic extensions which are normal.
(a). Show that $F \subseteq K_{1} \cap K_{2}$ is also a normal extension.
(b). Suppose that $\left[K_{1}: F\right]<\infty$ and $\left[K_{2}: F\right]<\infty$. Show that $F \subseteq K_{1} K_{2}$ is a normal extension. (The composite $K_{1} K_{2}$ is defined on the previous homework.)
6. Let F be a field of characteristic p. Recall that we proved that if $f \in F[x]$ is inseparable and irreducible, then $f=g\left(x^{p}\right)$ for some $g \in F[x]$.
(a). Prove that any irreducible polynomial $f \in F[x]$ is of the form $g\left(x^{p^{k}}\right)$ for some irreducible, separable polynomial $g \in F[x]$.
(b). An algebraic extension $F \subseteq K$ is called purely inseparable if for all $\alpha \in K \backslash F$, the minimal polynomial of α over F is inseparable. Prove that $F \subseteq K$ is purely inseparable if and only if every $\alpha \in K$ satisfies $\alpha^{p^{k}} \in F$ for some $k \geq 0$.
(c). Show that if F is a non-perfect field, for all $k \geq 1$ there is a purely inseparable extension $F \subseteq K$ with $[K: F]=p^{k}$.

