Math 200b Winter 2020 Homework 5

Due $2 / 21 / 2020$ in class or by 5 pm in Jake Postema's mailbox.

1. Let F be a field of characteristic not 2 . Let $F \subseteq K$ be a field extension, and let $a, b \in F$ be elements, neither of which is a square in F. Let $\sqrt{a}, \sqrt{b} \in K$ be roots of the polynomials $x^{2}-a, x^{2}-b \in F[x]$, respectively. Prove that $[F(\sqrt{a}, \sqrt{b}): F]=4$ if and only if $a b$ is not a square in F, and $[F(\sqrt{a}, \sqrt{b}): F]=2$ otherwise.
2. Let R be a commutative domain which is an algebra over the field F, such that $\operatorname{dim}_{F} R=n<\infty$. Prove that R is a field. (Hint: for $0 \neq a \in R$, consider the map $R \rightarrow R$ given by left multiplication by a.)

3(a). Let $F \subseteq K$ be a field extension. Suppose that $F \subseteq K_{1} \subseteq K$ and $F \subseteq K_{2} \subseteq K$ where K_{1} and K_{2} are subfields of K. Following the definition in the text, the composite field $K_{1} K_{2}$ is defined to be the smallest subfield of K containing both K_{1} and K_{2}. Show that if $\left[K_{1}: F\right]<\infty$ and $\left[K_{2}: F\right]<\infty$ then $K_{1} K_{2}$ can also be described as the usual notation for products of subsets of a ring suggests:

$$
K_{1} K_{2}=\left\{\sum_{i=1}^{d} a_{i} b_{i} \mid a_{i} \in K_{1}, b_{i} \in K_{2}, d \geq 0\right\} \subseteq K
$$

(Hint: problem 2).
(b). Show that if $\left[K_{1}: F\right]<\infty$ and $\left[K_{2}: F\right]<\infty$ as in (b), then there is a surjective homomorphism of F-algebras $\theta: K_{1} \otimes_{F} K_{2} \rightarrow K_{1} K_{2}$ given by $\theta(a \otimes b)=a b$. Prove that θ is an isomorphism if and only if $\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right]\left[K_{2}: F\right]$.
(c). Show that the \mathbb{Q}-algebra $\mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{3})$ is a field which is isomorphic to $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
4. Let $F \subseteq K$ be a field extension. Suppose that $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where $f(x)=$ $\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right) \in F[x]$. Show that $[K: F] \leq n!$.

