Math 200b Winter 2020 Homework 4

Due 2/7/2020 in J. Postema's mailbox by 5pm (no class that day)

1. Let V be a vector space over a field F and let $v_{1}, v_{2} \in V$ be linearly independent over F. Show that $v_{1} \otimes v_{2}+v_{2} \otimes v_{1} \in V \otimes_{F} V$ is an element which is not equal to any pure tensor $u \otimes w$ with $u, w \in V$.
2. Let R be a commutative ring and let I be an ideal of R. Let M be a left R-module.
(a). Prove that $R / I \otimes M \cong M / I M$ as left R-modules.
(b). Suppose that I and J are ideals of R. Prove that there is an isomorphism of R-algebras

$$
R / I \otimes_{R} R / J \cong R /(I+J)
$$

(that is, an isomorphism of R-modules that is also a ring isomorphism).
3. Let $F \subseteq K$ be an inclusion of fields. Then K is an F-algebra in a natural way. Since K and $F[x]$ are F-algebras, $K \otimes_{F} F[x]$ is also an F-algebra.
(a). Prove that $K \otimes_{F} F[x]$ is actually a K-algebra and that there is a K-algebra isomorphism $K \otimes F[x] \cong K[x]$.
(b). Consider the ring $R=F[x] /(g(x))$ for some $g \in F[x]$. Prove that $K \otimes_{F}$. \cong $K[x] /(g(x))$ as K-algebras.
(c). Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \times \mathbb{C}$ as \mathbb{C}-algebras. (Hint: $\mathbb{C} \cong \mathbb{R}[x] /\left(x^{2}+1\right)$.)
4. Recall from a previous homework that an (R, S)-bimodule M is a left R-module and right S-module structure on M such that $(r m) s=r(m s)$ for all $r \in R, m \in M, s \in S$. You proved on that homework that if M is an (R, S)-bimodule and N is an (R, T)-bimodule, then $\operatorname{Hom}_{R}(M, N)$ is naturally an (S, T)-bimodule. The following exercise is a similar result for the tensor product:

Suppose that M is an (S, R)-bimodule and N is an (R, T)-bimodule. Show that $M \otimes_{R} N$ is an (S, T)-bimodule, where $s \cdot(m \otimes n)=s m \otimes n$ and $(m \otimes n) \cdot t=m \otimes n t$.
5. Let R be an integral domain with field of fractions F. Let M be any R-module. Let $S=R \backslash\{0\}$. Define the localization of M along the multiplicative system S to be the set of (equivalence classes of) formal "fractions" $M S^{-1}=\{m / s \mid m \in M, s \in S\}$ under the equivalence relation where $m / s \sim n / t$ if and only if $t m=s n$. The proof that $M S^{-1}$ is again an abelian group, where $m / s+n / t=(t m+s n) /(s t)$, is essentially the same as for the field of fractions and you can assume this.
(a). Prove that $M S^{-1}$ is a left F-module, where $r / s \cdot m / t=r m / s t$ (you should check this is well-defined).
(b). Show that $M S^{-1} \cong F \otimes_{R} M$ as left F-modules. So this is a case where the "extension of scalars" has a more explicit description, as a localization.
(c). Show that if $\phi: M \rightarrow N$ is an injective R-module homomorphism, then $1 \otimes \phi:$ $F \otimes_{R} M \rightarrow F \otimes_{R} N$ defined by $[1 \otimes \phi](f \otimes m)=f \otimes \phi(m)$ is an injective F-module homomorphism. Conclude that F is a flat R-module.
6. Let R be an integral domain with field of fractions F.
(a). Let M be a finitely generated R-module. Show that $F \otimes_{R} M$ is a finite-dimensional F vector space and that $\operatorname{dim}_{F}\left(F \otimes_{R} M\right)$ is equal to $\operatorname{rk}(M)$, the rank of M as defined previously. This gives another way of thinking about rank which is often useful.
(b). Show that if $0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0$ is a short exact sequence of finitely generated R-modules, then $\operatorname{rk}(N)=\operatorname{rk}(M)+\operatorname{rk}(P)$.

